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Summary 

Various energy efficiency measures (EEMs) have been used in the shipping 

market, but their potential to reduce fuel consumption and air emissions are not 

fully recognized partly due to uncertain ship performance models used in those 

EEMs. The project report investigates the feasibility of shipping EEMs that can 

be improved by implementing data analytics and AI through the demonstration of 

their integration into the IMO Just-In-Time (JIT) arrival guidance. What Big data 

analytics can help to improve and promote EEMs in shipping through, 1) 

improving ship performance models in these EEMs, 2) developing intelligent 

decision support for individual vessels, 3) accurate evaluation of fuel and 

environmental benefits from these measures, etc?  

This report also investigates the requirements and willingness of different 

stakeholders to use data analysis for those EEMs from seafarers’ perspectives to 

find obstacles/requirements for the implementation of these EEMs. From a social 

perspective, by studying the capability, willingness, and barriers to use AI to assist 

ship operations, this project has looked for AI integrated solutions to help 

smoothen implementation and utilization of the EEMs without introducing extra 

workload/burdens to seafarers and assist decision-making processes to reduce 

pressure for ship masters onboard. Through the analysis, several findings can be 

concluded in this report: 

• empirical and theoretical ship performance models contain large uncertainties for 

predicting ship speed/power during seaway operations, 

• purely data-driven models can give good predictions of historical ship 

performance if proper AI/machine learning methods are chosen to build the AI 

models, however large discrepancy between prediction and actual performance 

for future sailing is not satisfactory to ship operators. 

• a ship energy system is a complex dynamic coupling system.  Adding more energy 

efficiency devices onboard will make the system even more complex and hard to 

model. Some automatic/intelligent systems should be provided to make the 

EEMs efficiently used by crew members onboard. 

• dynamic interaction of different ship energy components should be 

systematically considered in the development of EEMs rather than looking at 

increasing efficiency of a single energy components. 

• current pure data-driven models may not capture the dynamic coupling of 

different ship energy components for EEMs. Therefore, this report recommends 

combining physics into data-based machine learning methods to increase 

modelling accuracy. 

• large energy savings are demonstrated to implement JIT using AI assisted EEMs. 
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Sammanfattning 

Olika energieffektivitetsåtgärder (EEM) har använts på sjöfartsmarknaden, men 

deras potential att minska bränsleförbrukningen och luftutsläppen är inte fullt 

erkänd, delvis på grund av osäkra fartygsprestandamodeller som används i dessa 

EEMs. Projektrapporten undersöker genomförbarheten av att skicka EEMs som 

kan förbättras genom att implementera dataanalys och AI genom demonstration 

av deras integration i IMO:s Just-In-Time (JIT) ankomstvägledning. Vilken Big 

data-analys kan hjälpa till att förbättra och främja EEM inom sjöfarten genom, 1) 

förbättra fartygsprestandamodeller i dessa EEMs, 2) utveckla intelligent 

beslutsstöd för enskilda fartyg, 3) korrekt utvärdering av bränsle- och 

miljöfördelar med dessa åtgärder, etc?  

Denna rapport undersöker också olika intressenters krav och vilja att använda 

dataanalys för dessa EEM ur sjöfolks perspektiv för att hitta hinder/krav för 

implementeringen av dessa EEMs. Ur ett socialt perspektiv, genom att studera 

förmågan, viljan och hindren för att använda AI för att hjälpa fartygsoperationer, 

letar detta projekt efter AI-integrerade lösningar för att underlätta implementering 

och utnyttjande av EEM utan att införa extra arbetsbelastning/bördor för sjöfolk 

och hjälpa beslut - Att göra processer för att minska trycket för fartygsbefälhavare 

ombord. Genom analysen kan flera slutsatser dras i denna rapport: 

• empiriska och teoretiska fartygsprestandamodeller innehåller stora osäkerheter 

för att förutsäga fartygets hastighet/styrka under sjöfart, 

• rent datadrivna modeller kan ge bra förutsägelser om historiska fartygs prestanda 

om korrekta AI/maskininlärningsmetoder väljs för att bygga AI-modellerna, 

men stor skillnad mellan förutsägelse och faktisk prestanda för framtida segling 

är inte tillfredsställande för fartygsoperatörer. 

• fartygets energisystem är ett komplext dynamiskt kopplingssystem. Att lägga till 

fler energieffektiva enheter ombord kommer att göra systemet ännu mer 

komplext och svårt att modellera. Vissa automatiska/intelligenta system bör 

tillhandahållas för att EEM ska kunna användas effektivt av 

besättningsmedlemmar ombord. 

• Dynamisk interaktion mellan olika fartygsenergikomponenter bör systematiskt 

beaktas vid utvecklingen av EEM snarare än att titta på ökad effektivitet hos en 

enskild energikomponent. 

• nuvarande rent datadrivna modeller kanske inte fångar den dynamiska 

kopplingen av olika fartygsenergikomponenter för EEM. Därför 

rekommenderar den här rapporten att man kombinerar fysik i databaserade 

maskininlärningsmetoder för att öka modelleringsnoggrannheten. 

• stora energibesparingar har demonstrerats för att implementera JIT med hjälp av 

AI-stödda EEM.  
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1 Introduction 
Although measures to increase energy efficiency are mandatory according to the 

UN organization International Maritime Organization (IMO 2019), there is still 

much room for improvement in reducing emissions in commercial shipping (e.g., 

DNV 2015; IMO 2020; Poulsen et al. 2021). This report investigates how fuel 

consumption and air emissions can be reduced through digitalization and Artificial 

Intelligence (AI) in shipping. Machine Learning (ML) technology, a core 

technology within AI, opens new avenues for energy savings in the shipping 

industry by enabling improved energy performance models that can identify more 

efficient ways of operating individual ships. Improved knowledge of a ship’s 

performance at sea can help calculate potential fuel savings, suggest general 

measures that would decrease fuel use, and provide instructions to individual 

vessels based on identified correlations in existing ship data. Thus, ML can 

become an integrated part of energy efficiency measures (EEMs). 

Previous research and commercial development have produced promising results 

in developing ML models that can calculate how ships perform in various 

conditions and provide recommendations on how to operate ships more 

efficiently. However, these methods still need to be improved. The models that 

are used to make predictions for a specific ship are usually imprecise as they use 

certain baselines to make these calculations (for example, assuming the ships are 

running with full cargo). In real-life conditions, loading, navigational, and 

environmental factors will differ from theoretical models and experimental 

settings (e.g., Tillig et al. 2017, Andersson 2018, Lang et al. 2022, etc.). By 

considering relevant variables that influence the ship propulsion under varying 

real-life conditions, the accuracy of these predictions can be improved. This can 

be done by adapting models to varying circumstances (e.g., the technical 

specificities of the ship, operation mode, and whether the ship is running fully 

loaded with cargo or not). This will help identify the most suitable energy 

efficiency measures for domains and specific ships. This knowledge will be 

beneficial in determining the most suitable energy efficiency measure (EEM). 

Identifying the most optimal way to save fuel through digital models is not a 

straightforward task. The computer models used to improve efficiency will always 

be an extrapolation and approximation of real-life conditions. Models will need to 

be evaluated using the same or similar testing data used to build the model, as real-

life trials are very time-consuming and would require many journeys to provide 

mathematically significant results on savings. It is almost impossible to determine 

how much savings are made when a ship uses a specific EEM. Because each 

journey is executed in unique weather conditions, you would not know how much 

fuel would have been used if the ship was operated in any other way. A crucial 

part of decreasing consumption is finding better ways to assess potential fuel 

savings of EEMs. 



 
 

Lighthouse December 2023 6 (56) 

A key to creating digital models for improving energy efficiency in shipping is 

identifying strategies for arriving just in time (JIT). It's a well-known fact in the 

industry that a just-in-time approach would increase energy effectiveness 

compared to current practices of the average ship, i.e., so that the ship doesn’t use 

excessive speed throughout the journey. Due to physical principles, more energy 

will be used if a ship uses excessive speed throughout the journey and waits at 

anchorage in the harbor area. Keeping an even speed or even better constant 

energy consumption and arriving just in time for off-loading and on-loading will 

significantly reduce fuel consumption. As DNV formulated it: “Due to the 

steepness of the speed-power curves of vessels, speed variability results in excess 

consumption compared to constant speed or better constant RPM” (DNV 2015). 

Theoretically, every hour spent in the harbor could have been used to reduce the 

fuel consumption of the journey. DNV writes that “Our work experience with 

shipping companies and ports as well as AIS data analytics show that waiting 

times are a major issue in some ports – bearing significant improvement potential” 

(DNV 2015). A way of evaluating potential energy savings that will be used in this 

report is to see how much time ships spend at anchorage. This method can help 

identify where interventions can be most beneficial as digital tools for improving 

energy efficiency will be most useful for ships that currently operate in a sub-

optimal way. The report will also investigate the different potentials for ships 

using speed as the control variable/target and those using engine power/RPM as 

the control variable. This work is important because the development, installation, 

and evaluation of EEMs rely on accurate modeling of a ship’s energy performance 

when sailing, which describes a ship’s power consumption in terms of navigational 

conditions, encountered sea weather environments, loading conditions, etc. 

The efficiency of EEMs that require adaptation in navigation by the captain (and 

other involved actors) in terms of planning and execution of the journey depends 

on several social factors. Although theoretically and mathematically sound, an 

EEM will only be efficient if it is used as intended. Compliance with EEMs will 

depend on, among other things, the determination and attitudes of involved actors 

and the ability to overcome various organizational challenges. This pilot project 

takes as its point of departure that methods of reducing shipping emissions are 

always embedded in social practices and organizations (Viktorelius et al. 2021). 

Thus, fuel savings requires both technical changes and changes in organizational/ 

social practices. Potential energy savings are thus situated in the socio-technical 

system, including human organization, machinery, and the materiality of harbors 

and oceans. Or to speak with Palm and Thollander (2020), problems related to 

energy use must be tackled from a multi-disciplinary perspective (Palm and 

Thollander 2020). Therefore, this pilot project aims at finding feedback loops 

between the social and technical aspects of energy efficiency—i.e., how can 

knowledge of the practicalities of the social dimensions of the shipping industry 
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provide helpful knowledge for developing technical measures, and how can 

technical measures be made relevant in a ship’s operation?  

The project studies the feasibility of shipping energy efficiency measures (EEMs) 

that can be significantly improved by integrating data analytics and AI into the 

IMO Just-In-Time (JIT) arrival guidance. The following tasks are carried out to 

achieve the objectives, 

-  Analyze the average anchor and waiting times of ships arriving at two typical 

ports, identify energy efficiency measures (EEMs) used in the shipping 

industry and investigate the feasibility of making use of those EEMs to 

facilitate IMO JIT arrival guidance, as well as its potential for fuel saving. 

- Study the knowledge gaps on the efficiency of applying different EEMs to 

achieve the IMO JIT, in terms of e.g., improving ship performance models 

in these EMMs, providing accurate evaluation of ETA, fuel and 

environmental benefits of different energy metrics, etc., under the assistance 

of big data analytics and AI techniques. 

- Based on the investigation of IMO JIT and uncertainties of EEMs 

implementation, investigate how AI can help us increase our understanding 

of coupling interaction between ship resistance, propulsion efficiency, and 

engine load when sailing in random sea environments for better 

development of EEMs and IMO JIT 

- A simple demonstration (which should be extended and more thoroughly 

investigated if more time is allowed to give a more realistic consideration) of 

different assumed scenarios for voyage optimization on a ship with full-scale 

measurement is performed to investigate how the ship’s operation related 

measures can be integrated into the IMO JIT, under the assistance of AI. 

- Show how these EEMs are situated in the shipping industry's current 

organizational and technical systems and discuss how they relate to the 

technical solutions suggested in this report. 

- Studying the capability, willingness, and barriers to using AI assist ship 

operations from a social perspective 

Several factors that can promote or hinder the use of energy efficiency measures 

are explored and discussed in this report. The presenting and discussing of these 

factors rely on our interviews conducted for this pilot project and on previous 

research literature and reports.  

2 Overview of ship energy efficiency measures 
There is an increasing awareness in the shipping industry of the importance of 

reducing fuel consumption. Most importantly, it is a question of creating 
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competitive advantages for individual shipping companies, as fuel constitutes a 

major part of the cost of an operation. The cost of fuel reaches somewhere 

between 25 and 50 percent (depending on current fuel prices, margins in 

operation, and other factors) of total operating costs in shipping (DNV 2015). 

From a study, DNV concludes that “cost impact is the key driver for energy 

efficiency” (DNV 2015). Shipping companies also have the drive to lessen their 

environmental footprint due to regulatory pressure and increasing demand from 

customers to minimize the quantity of carbon emission per transported item.  

Regulations that affect all shipping companies are the ones decided upon by the IMO. In 

2018, the IMO adopted an initial greenhouse gas (GHG) abatement strategy, aiming to 

lower “CO2 emissions per transport-work, as an average across international shipping, by 

at least 40% by 2030, pursuing efforts toward 70% by 2050 compared to 2008” (IMO, 

2018). But there are also other relevant regulations for example, in a new climate plan, 

the European Union (EU) proposes that the scope of its Emissions Trading System 

(ETS) be expanded to include carbon dioxide (CO2) emissions from ships, which would 

be the first time this has been done. In a similar vein, Japan has informed the IMO that it 

would support a carbon tax that would raise more than $50 billion (B) per year [2], 

marking a significant step forward by the world's second-largest shipowner nation in 

addressing emissions from maritime transport.  

But despite obvious benefits associated with fuel savings, “many shipping 

companies struggle with implementation” (DNV 2015) of energy efficiency 

measures. 

Besides saving costs for individual business companies, reducing fuel 

consumption in shipping is crucial for combating anthropogenic climate change. 

Maritime transportation is associated with much lower emission of greenhouse 

gases per weight unit of cargo than air freight and road transportation. In fact, 

“shipping is the most energy-efficient way of transporting bulk freights” 

(Jafarzadeh & Bouwer Utne 2013). However, given the large quantities of goods 

transported by sea, maritime transportation still contributes to global emissions 

and anthropogenic global warming. Depending on the source, the shipping 

industry contributes between 2% (Rehmatulla et al. 2017) and 3.1% (Turan 2015) 

to anthropogenic CO2 emissions globally. Within the EU, shipping answers to 4% 

of the emission of greenhouse gases. According to the Fourth IMO GHG study 

(IMO 2020), GHG emissions from shipping have increased by 9.6% from 2012 to 

2018. It has been argued that these emissions globally “are likely to represent 

around 17% of CO2 emissions under the business-as-usual scenario by 2050” 

(Rehmatulla et al. 2017). 

2.1 Overview of implementing ship energy efficiency 

measures 
There are many ways to reduce emissions in maritime transportation while 

transporting the same amount of goods over the same distance. The consumption 
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of energy can be reduced through the technical development of machinery and 

equipment. The engines, propellers, and the construction of the hull of newly built 

vessels can be improved from previously built ships. In Fig. 2-1 this step is 

represented by the first circle. This step is concerned with the hardware of the 

ship and having the ships fitted with more energy-efficient engines and other less 

polluting equipment. In line with directions from IMO, the design energy 

efficiency is measured through an Energy Efficiency Design Index (EEDI) 

referring to the amount of CO2 emitted by the ship per capacity mile (tonne-mile) 

(Fig. 2-1). IMO’s goal is to continuously lower the “required EEDI value for the 

ships so future ships are even more energy efficient” (Jassal 2018). The EEDI was 

made mandatory for new ships in July 2011 (IMO 2019). 

 
Figure 2-1: Steps of energy efficiency implementation 

But energy efficiency is not only related to the physical equipment but also to how 

the equipment of the vessel is used. Fuel consumption can also be reduced by 

planning and executing voyages differently (e.g., Eide et al. 2009; IMO 2020; 

Viktorelius et al. 2022). For example, by running fully loaded with cargo and 

reducing the speed (as energy consumption per nautical mile will increase at high 

speed). It might also be more beneficial to take a longer route in good weather 

conditions compared to a shorter route in bad weather conditions. If there are 

variations in weather throughout the journey, it is likely more efficient from a fuel 

consumption perspective to slow down in bad weather conditions and speed up in 

good weather conditions. Improving energy efficiency through planning and 

execution is illustrated by the second two circles in Fig.2-1. These steps are 

regulated through the IMO by a demand for vessels to have a Ship Energy 

Efficiency Management Plan (SEEMP). In short, SEEMP is the plan of all 

practices that can be performed to achieve better energy efficiency (IMO 2019). 

“The SEEMP urges the ship owner and operator at each stage of the plan to 

consider new technologies and practices when seeking to optimize the 

performance of a ship.” (IMO 2019) The demand for a Ship Energy Efficiency 

Management Plan (SEEMP) came into force in 2013 (DNV 2015). 

The fourth step in Figure 2-1 is about monitoring energy use and collecting data 

for future improvements. This is a voluntary measure but recommended by the 
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IMO. Energy Efficiency Operational Indicator (EEOI) is a monitoring tool that is 

suggested by the IMO and is measured in the amount of CO2 emitted by the ship 

per ton-mile of work (Jassal 2018). The EEOI (how efficiently the ship is 

operated) is not to be confused with the EEDI (how energy efficient the ship is 

built). “EEOI enables operators to measure the fuel efficiency of a ship in 

operation and to gauge the effect of any changes in operation, e.g., improved 

voyage planning or more frequent propeller cleaning, or introduction of technical 

measures such as waste heat recovery systems or a new propeller” (IMO 2019). 

This data collection opens new avenues for using digital measures to decrease the 

use of fuel in shipping. The availability of historical data on ship performance can 

help facilitate improvement in future operations. Because interpretation and 

understanding of the data pose many demands to ship operators and crew, the 

large dataset collected does not automatically lead to optimal energy use in 

shipping (Viktorelius and Lundh 2019), or “Having set up an IT system providing 

all relevant reports in perfect granularity and frequency does not necessarily mean 

that performance is managed” (DNV 2015). 

2.2 EEMs in assisting ship operations 
So, what energy efficiency measures exist, and which ones are preferred by 

shipping companies and crew? There is no agreed-upon list of available energy 

efficiency measures (EEMs) in shipping, and in the available categorizations, there 

are many overlaps, i.e., a particular measure might tick several of the boxes in the 

various categorizations. Figure 2-2 displays some examples of measures that could 

fit into the SEEMP plan. ABS energy outlook (ABS 2020) has identified several 

measures (EEMs) that could be used to reach the goals set by the IMO, including 

fuel-efficient operations, weather routing, draft and trim optimization, propeller 

and hull cleaning, speed optimization, and timely maintenance. These are the most 

common measures that are implemented in today’s shipping market.  

In the same fashion as ABS (Fig. 2-2), DNV has comprised a list of common 

EEMs and inquired into their frequency of use (DNV 2015). Slow steaming is 

understood to be the measure that saves the most energy. “Asked about the major 

contributors to energy savings in 2014, “slow steaming” outpaced all other 

measures by far”. Followed by hull and propeller cleaning, voyage planning 

optimization, performance monitoring and reporting, hull coating, advanced 

weather routing, propulsion retrofitting, trim & draft optimization, and then 

Awareness and/ or incentives.  

IMO understands the EEDI to be the “most important technical measure 

and aims at promoting the use of more energy efficient (less polluting) equipment 

and engines” (IMO 2019). Measures that relate to the planning and execution of 

journeys are much harder to implement and require changes in established 

practices (while a generally improved energy efficiency of the ship keeps on 

operating the ship as has always been done. AS the DNV report state: 
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“operational measures appear less tangible than technical measures” (DNV 2015). 

Few continuously work with and update their SEEMP (DNV 2015), as discussed 

in the introduction, it is not necessarily saving energy to comply with the IMO 

regulations when it comes to the planning and execution of a voyage (ibid). As 

DNV states, “Only a minority of shipping companies have achieved their targets 

entirely or at least largely. Many others have chosen the compliance driven 

approach and realized hardly any savings” (DNV 2015). Only complying with 

regulation does not offer any king's road to energy savings. 

 

 

Figure 2-1: Example of Energy Efficiency Measures that can fit into the SEEMP framework. 

2.3 Incentives and challenges of implementing EEMs in 

shipping 
As shown by DNV (2015), ship operators do not choose only one but use several 

energy efficiency measures. According to the comprehensive shipping energy 

management study by DNV (2015), the selection of measures is mainly “driven by 

financial considerations (payback period 80%, vessel age 70%, investment 66% 

and ongoing costs of a measure 34%). But nearly half of the participants names 

‘availability of information’ as a driver for the selection of measures, which 

indicates further improvement potential at relatively low effort.” “For 29% of 

respondents, “tracking savings through performance management systems” is 

viewed as a key enabler, too”. 

The adaptation of EEMs is dependent on technological factors. As Armstrong & 

Banks write: “Whilst various technological and operation improvements are 

known and available, with many being demonstrated to be cost effective and with 

savings reported in the industry, their take up in the world fleet remains low” 

(Armstrong & Banks 2015). Technical reports such as the Energy management study 

by DNV (2015), the Just in Time Arrival Guide by IMO (2020), and the Zero Carbon 
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Outlook by ABS (2022) identify social factors that limit shipping companies' work 

towards improved energy efficiency.  

Through a poll distributed to actors within the shipping industry, DNV identified; 

i) “lack of financial resources”, ii) lack of expertise among staff, iii) resistance to 

change by crew/office staff as the most important, and iv) lack of time for 

implementation, as the most important blocking mechanisms towards 

implementing energy saving measures. The complete list from DNV (2015) is 

presented in Figure 2-3. 

 

Figure 2-2: Challenges for implementing energy efficiency measures identified in DNV (2015). 

The socio-technical research on maritime energy efficiency focuses less on such 

individual factors but demonstrates how the implementation of energy efficiency 

measures is situated in the broader socio-technical system of shipping. This 

research demonstrates through empirical examples how various actors have 

different sometimes mutually exclusive goals (Armstrongs & Banks 2015). Various 

“cultures, and concerns, grounded in their different roles and responsibilities” 

(Viktorelius et al. 2022). Overlapping responsibilities or gaps in responsibility, 

difficulties in establishing joint goals and shared visions (Borg & von Knorring 

2019). Problems in communication and cooperation between actors have also 

been identified as crucial barriers to energy-efficient voyage execution (Poulsen & 

Sornn-Friese 2015), i.e., a lack of communication and correct information made it 

difficult to establish the communication and trust that was necessary to facilitate 

energy efficiency measures. 

Another blocking mechanism towards increased energy efficiency identified in 

previous research is that responsibilities are divided between many subsectors of 

the organization so that no one can be held responsible or accountable for 

implementing any measure (Johnson et al. 2014). The fact that some energy 

efficiency measures require collaborations not only within one organization (such 

as a shipping company) but between several organizations (for example the JIT 

arrivals) makes the implementation even more difficult (Johnson & Styhre 2015). 
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2.4 Trend of utilizing AI/ML and EEMs for IMO JIT 
Given the acknowledged difficulties in improving the energy efficiency of the 

planning and execution of voyages, much scholarly work has been done to 

determine the best way to plan and operate ships. Machine learning (ML) 

techniques and Artificial Intelligence (AI) come with great possibilities to develop 

more accurate ship performance models and more reliable EEMs to reduce GHG 

emissions. Academics and industry actors work to devise the best ways to operate 

a ship using weather forecasts and ship data to predict the ship's performance 

during various conditions. For EEMs used for ship voyage planning and 

operations, a key component is a ship’s sailing speeds along voyages, and it is 

strongly related to the arrival time. To facilitate a ship’s JIT guidance, those 

operation EEMs should implement reliable models that can predict a ship’s 

accurate arrival time under various operational and environmental conditions. 

This report will focus on the impact of uncertain (arrival time) prediction models 

on the energy efficiency of JIT operations, especially, how the AI/ML techniques 

can help to improve the efficiency of those EEMs to facilitate JIT guidance. 

The results of this report are based on an interdisciplinary approach, identifying 

potential savings and optimization of energy efficiency from both a social 

perspective and a technical perspective. The social obstacles to energy efficiency 

are identified through a literature review as well as through interviews with 

captains, shipping companies, and charter departments. Interviews were 

conducted with individual captains and charter departments in three shipping 

companies. This data collection is not designed to provide a full mapping of how 

social dimensions and organization of the shipping industry hinder/facilitate 

increased energy efficiency or, for that matter, estimate how much each of these 

factors hinders measures to increase energy efficiency. Rather the study aims at 

identifying relevant areas that can create bottlenecks in reducing emissions from 

the shipping industry. These social perspectives are used to inform the technical 

inquiry of this pilot study and discuss in what circumstances certain methods are 

suitable. The social perspective will also be used to critically discuss and 

contextualize the relevance of the project's technical findings. 

Also, these digital tools and predictions are situated in the above-mentioned 

difficulties in implementing EEMs, which will be discussed in more detail in 

Section 7.  

3 Potentials of EEMs related to IMO JIT 
There is a gap in the research of the impact of vessel sailing delays and, on their 

arrival, ahead of schedule. It is apparent that port congestion is one of the causes 

of vessel delays. Official reports agree with this reason. That, however, is not the 

only reason for vessel delays as rough weather, labor shortages and customs’ 

delays also contribute to vessel delay. The consequences of vessel delays can be 

categorized into several levels, from an increase in operational costs, to further 
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delays in the supply chain. The impact of port and canal congestion or long 

waiting time at port can be categorized as the following items, 

• Extra costs for port services. 

• Charterers need to pay extra (demurrage). 

• Shipping companies may lose new contracts due to ship unavailability. 

• Customers experience an increase in the costs of goods and services. 

• Escalating environmental impact. 

• Hull fouling 

• Extra CO2 emissions 

However, from shipping energy efficiency perspectives, longer waiting times at 

ports mean larger potential of fuel saving by implementing different EEMs related 

to IMO Just-In-Time (JIT) arrival strategies. Before presenting the statistics of 

ship waiting times at ports, several terminologies will be given below for the 

completeness of the report. 

3.1 Terminologies to describe Port and Canal Congestion 
Vessels are handled in a First Come First Served (FCFS) queue. If a ship arrives 

too late or too early, it must wait in queue until a new place is available in the quay 

for berthing. 

• Port Congestion: A situation where several ships are waiting outside a port 

unable to load/unload freight. Associated with waiting vessels. Causes: 

o Mismatch between port capacity and port demand. 

o Low infrastructure. 

o Miscellaneous. 

• A quay is a place by the water where boats stop to load and unload cargo. 

The time a ship stays at the quay can be denoted as: Processing time, 

Handling time, Duration of operation. 

 Some other terms and definitions related to port operations: 

• Berth Time: How long a ship stays docked. 

• Laytime: The set time for a ship to load and unload without extra costs. 

• Demurrage: Extra time a ship stays docked beyond the set time, usually 
with extra charges. 

• Detention: Extra time a ship stays in the port area, but not necessarily 
docked. 

• Turnaround Time: Total time from when a ship enters to when it leaves 
the port. 

• Call Size, Workload: The number/volume of cargo the port must handle. 

Definitions associated with waiting vessels: 

• Anchored, Anchoring, Moored, Waiting, Non-Sailing (Franzkeit, et al. 

2020) 
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• Offshore waiting (Akakura 2023) 

• Vessels at anchor  

These are associated with speeds (in general) <1 knots, other thresholds can be 

found in the literature. Because of quay restrictions, a ship waiting for berthing 

waits in the anchoring area outside of the port. The Waiting Time is defined as 

the difference between the time of arrival and the time the ship gets to dock 

(enters the quay area): 

𝑡𝑤𝑎𝑖𝑡 = 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝑑𝑜𝑐𝑘𝑖𝑛𝑔 

Some other definitions: Waiting times are defined as the period between “Arrival 

to port limits”, that is, when the ship enters the anchorage zone. 

An alternative definition of waiting time is the time the ship spends in the 

anchoring area moving at a very low speed: 

𝑡𝑤𝑎𝑖𝑡 = 𝑡𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 | 𝑉𝑠ℎ𝑖𝑝 ≪ 1 𝑘𝑛𝑜𝑡𝑠 & 𝑟𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 ≤ 𝑠𝑚𝑎𝑙𝑙 

In the case of canal congestion ships wait in queue until they can cross the 

channel. Canals have physical limitations on how many ships can transit. An 

excessive influx produces a bottleneck effect. Canal congestion was brought to 

public attention after the Ever Given incident in 2021. 

3.2 Statistics on waiting/anchor time at ports from official 

reports 
Ports authorities rarely share data about how many ships are anchored or their 

waiting times for loading/unloading. Therefore, most information on this topic is 

usually sourced from official reports and academic studies. In the following 

subsections, the statics of waiting/anchor time at different ports are summarized 

based on official reports from the United Nations Conference on Trade and 

Development (UNCTAD), International Monetary Fund (IMF) and World Bank. 

The statistics are expected to give us some qualitative overview of how much the 

IMO JIT can help to reduce shipping emissions. Some assumed scenarios by 

implementing voyage optimization for JIT are presented in Section 6 to provide 

quantitative estimations of emission reductions for JIT related EEMs.  

3.2.1  Statistics from UNCTAD reports 

The United Nations Conference on Trade and Development (UNCTAD) annual 

"Review of Maritime Transport" (RMT) sets out port performance indicators to 

gauge port efficiency. The concepts of Port Congestion and Ship Waiting times 

gained prominence after the 2016 UNCTAD report. Their importance was further 

highlighted during the COVID-19 pandemic, which brought these issues to the 

forefront in the annual reports. The waiting times at ports of US and China as two 

examples are extracted and presented in Table 1. The 2016 RMT report indicated 

that the global average ship waiting time at ports was 4.53 days in 2014 and 3.46 

days in 2015. This report did not differentiate between loading and discharging or 
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by cargo type. From 2017 to 2020, the RMT reports did not offer this data. 

However, the 2022 RMT report introduced a breakdown by cargo type. This 

report revealed that, between 2018 and 2021, the average waiting time in US ports 

was 101 hours for loading and 49 hours for discharging dry bulk carriers. For 

tankers, the times were 54 hours for loading and 69 hours for discharging. The 

2023 RMT report, which analyzed data from January to May 2022, showed a slight 

improvement for US ports. Dry bulk carriers had waiting times of 88 hours for 

loading and 30 hours for discharging. Tankers waited 39.3 hours for loading and 

30.7 hours for discharging. 

Table 1: US and China Average Waiting time of dry-bulk and tankers at ports (UNCTAD) 

Report 

Year 

Analysis 

Period 
Cargo Type 

Waiting time to 

load (hours) 

Waiting time to 

discharge (hours) 

US China US China 

2021 
2018 - 

2021 

Dry Bulk 101 66 49 56 

Tankers 54 45 69 77 

2022 
Jan-May 

2022 

Dry Bulk 88 78.8 30 38.9 

Tankers 39.3 39.7 30.7 54.4 

2023 
Jan-Apr 

2023 

Dry Bulk 91.1 61.5 41.6 39 

Tankers 49.1 37.9 56.2 56.3 

 

In contrast, the 2022 RMT report showed that in Chinese ports, dry bulk 

carriers waited 66 hours to load and 56 hours to discharge. Tankers had waiting 

times of 45 hours for loading and 77 hours for discharging. The 2023 RMT report 

indicated that these times changed to 78.8 hours and 38.9 hours for loading and 

discharging dry bulk carriers, respectively, and 39.7 hours for loading and 54.4 

hours for discharging tankers. The reported waiting times include transit times and 

the time in anchorage, and it could be used to optimize the speed of vessels 

following the IMO JIT proposal. Furthermore, the 2023 RMT report provided a 

monthly breakdown of waiting times from 2016 to 2023. This data highlighted a 

notable disparity between developing and developed countries. A rising trend in 

waiting times was observed over this period. 
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Figure 3-1. Average waiting time ships between 2016 and 2023 clustered by country development status. Source: 

Clarksons Research retrieved from UNCTAD. 

The average waiting time in anchorage is presented in Figure 3-1 by country 

development status. Developed countries presented lower waiting times in ports, 

most likely due to better infrastructure and better handling capabilities compared 

to developing countries. Despite that it can be noted that under high congestion 

the waiting times can be similar in both cases. The congestion seems to return to 

normal after the second half of 2022 with respect to the pre-pandemic levels. 

3.2.2 Statistics from International Monetary Fund (IMF) reports 

Before the onset of the COVID-19 pandemic, a container ship typically took 

between 6 to 6.5 days to complete its journey in the North Atlantic trades. 

However, post-pandemic conditions have seen a surge in these travel times by 

about 25%, pushing the average duration to between 8 and 9 days. The report by 

Komaromi, Cerdeiro, and Liu (2022) highlights a significant increase in port 

delays, with average delay deviations, respect to pre-pandemic conditions, 

exceeding 1.5 days by December 2021. This assessment was made possible using 

AIS data, which tracks whether ships are anchored or moored in proximity to 

ports. 

It is important to note that a significant portion of this increase (66%), is due to 

ships being anchored for extended periods as they await permission to enter ports. 

Figure 3-2 shows the deviations in waiting times for ships compared to a pre-

pandemic baseline. Like the statistics in Figure 3-1, the data shows a growing 

trend in waiting times during the year 2021. The reasons of said sudden increase in 

waiting times was the stricter regulations in place to slow the spread of the 

pandemic. 
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Figure 3-2: Deviation in anchorage times respect to pre-pandemic times. (Source: Komaromi, Cerdeiro and Liu 

2022. IMF Reports) 

 

3.2.3 Statistics from World Bank reports 

The World Bank releases an annual report titled "The Container Port 

Performance Index" (abbreviated as CPPI). This report is dedicated to evaluating 

the efficiency of ports within the broader supply chain. It's important to note that 

inefficiencies or delays at ports can have a ripple effect, leading to subsequent 

delays for scheduled liner ships. To gauge port efficiency, the CPPI analyzed AIS 

data. This data pinpoints the locations of ships in proximity to ports staying in or 

close to anchorage areas. The report further delves into the relative time 

consumption at ports, breaking it down based on different ship sizes. 

Their reports for 2021 and 2021 show that, in average, only 60% of the time a 

ship spend in port is used for port operations and 30% of the time is consumed 

from port arrival to anchoring until berth allocation (arrival time) as can be 

observed in Figure 3-3 and Figure 3-4. The report suggests that the average port 

call worldwide in 2021 was 36.3 hours and it increased to 36.8 hours in 2022. The 

average arrival time is presented in Figure 3-5. The data is taken from the moment 

the ship enters the anchoring area until berth. It shows a growing trend in the 

reported period.  



 
 

Lighthouse December 2023 19 (56) 

 

Figure 3-3: Port Time Consumption in 2021 (Source: Word Bank 2021) 

 

 

Figure 3-4: Port Time Consumption in 2022 (Source: Word Bank 2022) 

 

Figure 3-5: Average arrival time during 2021 and 2022 (Source: Word Bank 2022)  
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3.2.4 Report for the Port of Gothenburg 

The 2021 BRAVE ECO report (Benchmark for Reduction of Anchoring Vessels’ 

Emissions – Enabling Change of Operation) studies the significance of the "Just 

in Time" (JIT) shipping. The JIT shipping method emphasizes the timely arrival 

of vessels, ensuring that they dock only when they can be immediately serviced. 

This minimizes idle time at ports, which in turn reduces unnecessary emissions 

from ships waiting at anchor. In BRAVE ECO the Port of Gothenburg is brought 

as a case study and statistics during the years 2010 and the period 2014 to 2020 is 

presented. Conversely to the previously shown institutional reports, the presented 

data does not account for individual waiting times but for the total waiting time 

across all vessels. The total waiting time of all ships and minimum waiting time 

per ship at the Port of Gothenburg port are presented in Figure 3-6 and Figure 3-

7, respectively. 

 

Figure 3-6: Total Waiting time at Port of Gothenburg between 2010 and 2020 (BRAVE ECO 2021). 

Although the report does not include the number of ships, a quick estimation can 

be made of the severity of the waiting. According to the Port of Gothenburg 

official report, the port handles approximately 110 ship calls a week. It is 

equivalent to 5,720 ships/year. A quick estimation of the average waiting at port 

for an individual ship is given by: 

𝑡𝑠ℎ𝑖𝑝 =
𝑡𝑦𝑒𝑎𝑟

#𝑠ℎ𝑖𝑝𝑠𝑦𝑒𝑎𝑟
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Figure 3-7. Minimum Waiting time per ship at Port of Gothenburg 2010-2020. (BRAVE ECO 2021). 

 

Table 2. Lighthouse report on port congestion of Gothenburg during 2019. (BRAVE ECO 2021). 

Ship Type 
Time [h] 

Number of times at 
anchor 

Times per anchor 
occasion 

Port Call In transfer Port Call In transfer Port Call In transfer 

Product Tanker 24455 
19124 

766 
879 

32 
22 

Crude Oil Ship 3004 42 72 

Bunkering Ship 13317 5434 1384 915 10 6 

Container Ship 1201 347 56 44 21 8 

Vehicle Carrier 288 93 4 3 72 31 

General Cargo 2334 5646 245 853 10 7 

Other 174 807 15 161 12 5 

Bulk 77 4318 12 465 6 9 

Total (hours) 44850 35770 2524 3320 18 11 

 

In addition, the report provides data on the total time various ship categories 

spent anchored outside the Port of Gothenburg in 2019. The data was derived 

from AIS records. The results are listed in Table 2. The provided information 

gives insight into the cumulative time ships spent in anchorage during port calls in 

2019 at the Port of Gothenburg. Specifically, ships spent a total of 35,770 hours 

anchored. The 35,770 hours represent the combined total of all ships' anchorage 

times. This could mean a few ships spent a long time at anchor, or many ships 

spent shorter periods anchored. Without the number of ships or individual 

anchorage durations, we can't determine the average time a ship spends at anchor. 

However, high cumulative anchorage times indicate inefficiencies or congestion at 

the port, leading to longer wait times for ships. 
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3.3 Statistics on waiting/anchor time from research papers 
Research by Akakura (2023) highlights the increased offshore waiting times at 

global container terminals due to the COVID-19 pandemic's impact on port 

services. Utilizing historical AIS data, the study reveals that many ships 

experienced extended delays to access port services. The study also shows that 

some ships would rather opt to wait outside designated anchorage areas or choose 

to drift instead of waiting in the designated anchorage area. Despite the evident 

challenges, port authorities rarely disclose related statistics. The study emphasizes 

the need for improved port efficiency and scheduling to mitigate these delays and 

their broader implications on trade and the environment. The result is presented 

in Figure 3-8. 

The research presents discrepancies with respect to the official reports regarding 

the waiting times. Nonetheless, the trend presented in the figure corresponds to 

the trends presented by UNCTAD and the IMF (Figure 3-1 and Figure 3-2) but 

differs in magnitude. The data provided by Akakura (2023) suggests that the 

phenomenon is still relevant in 2023. 

 

 

Figure 3-8: Average delays to planned arrival time of destination ports (Akakura 2023). 

 

Other research activities are reported in Vukić and Lai (2022), which provides an 

in-depth examination of the San Pedro Bay ports in the US, specifically the Port 

of Los Angeles (LA) and the Port of Long Beach (LB). The results are extracted 

and presented in Figure 3-9. Together, these ports account for 40% of the US's 

seaborne container imports. However, increased demand for port services has led 

to significant congestion, with ship queues reaching 100 and wait times extending 

up to 23 days. By January 2022, a record 105 ships were anchored. Prolonged 

anchoring not only disrupts the supply chain but also results in increased fuel 
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consumption and CO2 emissions. Although the data reflects the case study of San 

Pedro Bay during the pandemic it is still relevant to bring into consideration as 

stricter environmental regulations, accidents, adverse weather conditions, and 

other unforeseen events can exacerbate port congestion. 

 

 

Figure 3-9. Number of ships waiting at anchor at Port of Los Angeles (Vukić and Lai 2022).  

 

From the research reported by Franzkeit et al. (2020), the Automatic 

Identification System (AIS) is used to understand and track vessel movements. 

Specifically, it examines the waiting times for vessels near the port of Rotterdam. 

The research brings different definitions of waiting times detection using AIS 

data. It specifies that some vessels may not opt for anchoring but instead on 

steaming at very slow speeds (<3 knots) around the anchoring area. Their research 

suggests that dry cargo has significantly shorter waiting times compared to 

tankers. Figure 3-10 shows the average waiting time in Rotterdam port between 

2016 and 2018. It is evident that the waiting times during October-December 

2016 and June-August 2017 show a significant increase with respect to the rest of 

the study period showing signs of port congestion. The increase may be due to the 

increased demand for port services during the period. 
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Figure 3-10. Average Waiting time at Port of Rotterdam (Franzkeit et al. 2020). 

 

3.4 Conclusion remarks and potential EEMs for JIT operation. 
Port congestion poses significant challenges, but port authorities often lack 

transparency regarding relevant statistics. Access to such data is crucial for 

enhancing port operations and developing strategies like "Just in Time" (JIT) 

shipping, as suggested by the IMO, to reduce idle times at ports. One notable 

issue is the consistent increase in ship waiting times at ports, with a particular 

spike post-COVID-19. This problem affects both developed and developing 

countries and remains relevant as we return to normalcy. Prolonged waiting times 

have a ripple effect throughout the supply chain, disrupting downstream activities 

and potentially causing shortages and increased costs for consumers. Furthermore, 

extended waiting times contribute to unnecessary emissions, stemming from ships 

anchoring or drifting while waiting and the missed emission reduction 

opportunities through speed optimization. Discrepancies between official reports 

from financial and research institutions like UNCTAD, the World Bank, and the 

IMF, and independent research in journal articles using AIS data highlight a 

knowledge gap that requires closure. In consequence, research in this area should 

include the analysis of historical AIS data near ports to validate congestion 

numbers and assess the actual economic and environmental impacts of ships 

waiting offshore.  

Several shipping EEMs (energy efficiency measures) can be used to implement 

IMO Just-In-Time strategy to allow for accurate expected of arrival. All of them 

require reliable ship energy performance models to accurately estimate a ship’s 

speed in terms of setting engine power under different ocean environmental 

conditions. Those EEMs are briefly described as follows: 

Speed optimization: Speed optimization plays a key role in guaranteeing an 

accurate Estimated Time of Arrival (ETA) for voyages, considering the dynamics 

of weather forecasting, fuel efficiency, and navigational strategies. By adjusting a 

ship's speed in response to changing weather conditions, vessels can either avoid 

areas with unfavored weather, such as storms or rough seas, which could slow the 

ship down and even cause danger and damage or take advantage of favorable 
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conditions like the calm sea and tailwind. This approach helps in maintaining a 

steady pace toward the destination, reducing the likelihood of unexpected delays. 

ETA performance monitoring: ETA performance monitoring indicates tracking 

and evaluating the performance of the ship to reach the destination. This usually 

involves the following aspects, such as real-time monitoring of the operation, data 

analysis, ETA predictions, and improvements in adhering to the required ETA. 

Real-time data from onboard monitoring systems is crucial for updating route 

plans and ETA predictions. The integration of such data into voyage 

optimization/speed optimization systems allows for more responsive and 

informed decision-making. ETA performance monitoring is crucial in the 

shipping industry, since it can impact operational costs, operation management, 

and overall shipping efficiency. By closely monitoring and analyzing ETA 

performance, shipping companies can identify the potential for improvement, 

enhance their shipping operation’s reliability, and make more informed and 

adaptive operational decisions. 

Voyage optimization: Voyage optimization is the key factor in improving and 

ensuring accurate ETA for voyages. It involves comprehensive approaches to 

planning and executing voyages, considering various factors such as weather 

conditions, sea states, fuel efficiency, and vessel performance. The route 

optimization can find and provide the ship with optimized routes with respect to 

different objectives, such as operation safety, efficiency, and accurate ETA. 

Specifically, when it integrates with other components, for example, weather 

forecast, real-time monitoring, and predictive analytics, the voyage optimization 

could constantly update the plan, adjust, and respond to the dynamic changes to 

ensure the shipping is on schedule, and the operation is on track with minimum 

cost. 

Trim/engine/CPP optimization: Trim, engine, and Controllable Pitch 

Propeller (CPP) optimization are crucial concepts in maritime navigation and can 

significantly contribute to achieving an accurate Estimated Time of Arrival (ETA). 

Trim optimization involves adjusting the distribution of cargo and ballast on a 

vessel, to achieve optimal balance and buoyancy. It can minimize resistance 

through water, therefore reducing the total fuel consumption. This optimal trim 

position depends on the load of the vessel, water depth, and sea states. By 

reducing the resistance and optimizing the hydrodynamic efficiency, ships can 

maintain the required speeds or achieve the same speed using less fuel, directly 

influencing the accuracy of ETA.  

Engine optimization is about balancing and arranging the ship's main and auxiliary 

engines in the most efficient way. This involves tuning engine settings to adapt to 

the current conditions, such as sea state, load, and vessel speed. Proper engine 

arrangement can ensure that the vessel operates within the optimal power range, 

reducing fuel consumption and the wear and tear of the engine. This optimization 
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is crucial since it directly correlates with the ability to maintain or adjust speed, 

following the voyage/speed optimization, to meet the scheduled ETA.  

CPP optimization refers to adjusting the pitch of the propeller blades in a 

controllable pitch propeller system. Unlike fixed-pitch propellers, CPPs control 

the angle of the blade during operation, providing greater efficiency for the ship’s 

propulsion. This flexibility is beneficial in varying sea conditions or when 

maneuvering in ports. By adjusting the pitch, the ship can maintain optimal 

propulsion efficiency, adhering to the schedule and achieving accurate ETA. 

Together, these optimizations form an integrated approach to efficient maritime 

navigation. They ensure the vessel not only travels at optimal speeds and follows 

the defined routes, but also reduces fuel and operational costs. Moreover, they 

ensure that ships can adhere to their scheduled ETAs, even when confronting 

changing sea conditions and operational demands. 

4 Challenges to achieve JIT operations 
To help ships have an accurate JIT operation, the models used to predict the JIT 

usually include various uncertainties. Below we will list some examples to show 

the difference/uncertainty between today’s models and real measurements, as well 

as possibilities for improvement. 

4.1 Weather forecasts  
In maritime applications, voyage planning heavily relies on weather forecasts, 

therefore the accuracy of the weather forecast has a great impact on the planning 

result. The safety and efficiency of the voyage depend on the capability of the 

weather model in prediction and speed to respond to dynamic changes. However, 

weather forecasting is a comprehensive process and includes lots of uncertainty, 

especially for long-term predictions. Its uncertainty is due to the limitations of 

weather prediction models, the varying spatial and temporal resolution of weather 

data, and the unpredictable and dynamic changing nature of the environment. 

These uncertainties in weather forecasts consequently impact the ETA 

predictions.  

Concerning safety and efficiency, ships need to adjust voyages according to the 

updated weather forecasts. This continuous adjustment makes it difficult to 

predict ETAs accurately. Furthermore, the complexity can also increase with the 

length of the voyage, since longer routes can have a higher probability of 

encountering unexpected weather changes. Weather changes can lead to 

deviations from the pre-planned voyages, speed adjustments, and in extreme 

cases, re-plan to avoid harsh weather. All these situations can significantly change 

arrival times. Traditional route optimization methods, especially early-stage 

methods, focused on achieving the shortest time or distance sailing, and usually 

neglecting the uncertainties in weather data. Currently, many state-of-the-art 
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approaches (Yuan et al, 2022; Vettor et al. 2020) address these uncertainties by 

employing advanced weather models with different strategies.  

The forecast model indicates the weather models that can provide short-term or 

medium-term predictions, to assist the operation and planning. And generally, it 

can be developed by numerical approaches or using AI/machine learning 

algorithms. The hindcast approach is a validation and test method for the forecast 

models, that entails running the weather model with previously observed data in a 

past time, to test the outcome and the accuracy of the forecast weather models.  

Numerical weather models being used widely now, for example, are those 

provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), and the National Oceanic and Atmospheric Administration (NOAA). 

They use equations to simulate the atmospheric processes and predict future 

changes. They are deterministic approaches assisted with ensemble techniques, 

and ensemble forecasting enables multiple models to run with different initial 

conditions, therefore providing a wide range of possible results, to compensate for 

the uncertainties. Thus, these models have high requirements on prior knowledge 

of the related physical processes with great complexity. They can predict short-

term changes with high accuracy, but as time increases, the deviation will grow 

significantly. Besides, small differences in initial conditions can lead to significant 

changes in results for long-term prediction.  

AI and machine learning technologies can also be employed for weather 

predictions. They analyze the observation data to identify and establish the 

relationship between key factors, and generally can achieve great accuracy in 

interpolation when the resolution of data is not high enough. Since they are driven 

by the measurement datasets, AI models can potentially reduce uncertainties by 

learning from historical and real-time dataset and keep updating the model to 

provide more accurate predictions, responding to the dynamic change in the 

external environment.  The limitation therefore lies in the data quality and 

quantity, in order to acquire well-trained models. 

In conclusion, the uncertainty in weather forecasting shows a great challenge for 

voyage planning, especially to achieve accurate ETA predictions. The integration 

of probabilistic and ensemble forecasting models, as well as advanced AI/ML 

models with real-time data, into voyage optimization methods can provide a 

significant advancement in addressing the challenge. However, the unpredictability 

of weather and the complex considerations including various factors, such as 

safety, fuel efficiency, and operational constraints, continue to make accurate ETA 

predictions a challenging endeavor. 

4.2 Ship performance models 
Fuel consumption in a seaway is dependent on many parameters, such as marine 

engine operating parameters, propeller efficiency, and ship resistance (Carlton, 

2012). Ship propulsion power is generally connected to the sailing speed and the 
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encountered sea environments. The relationship between ship power/fuel 

consumption and ship speed is illustrated in Figure 4-1. 

 

 

Figure 4-1: Typical workflow for the conventional estimation of the speed to propulsion power/fuel consumption of 

a ship. 

In the workflow, the first step is acquiring ship resistance at different sailing 

speeds. The engine configuration, propeller efficiencies and fuel-related factors of 

a ship will be used to compute the propulsion power and fuel consumption for 

sailing under different operational and environmental conditions. Various 

methods have been developed for ship performance modeling, mainly relying on a 

set of ship parameters. These methods can be categorized into empirical or semi-

empirical formulations, computational fluid dynamics (CFD), and model tests 

(Aertssen, 1966; Journee, 1976; Faltinsen et al., 1980; Townsin and Kwon, 1982; 

Guang, 1987; Kwon, 2008; Prpic-Orsic and Faltinsen, 2012; Chuang and Steen, 

2012, 2013; Kim et al., 2017).  However, those traditional methods have different 

drawbacks. The CFD methods require high computation resources, while the 

model tests are typically time-consuming and expensive. Although the empirical or 

semi-empirical methods can provide accurate expected mean values since the 

parameters are (in principle) obtained by regression, they may lead to significant 

scattering among different ship types. Especially with the installation of fuel-

saving devices, e.g., wave foils, Flettner rotor, and ship retrofitting, the changes in 

ship resistance and related energy efficiency also cause significant differences 

between individual ships. Moreover, it is challenging to model the complex and 

massive environmental conditions randomly encountered during actual ship 

navigation.  
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Figure 4-2: The propulsion power comparison between state-of-art physical model and full-scale measurement for 

one chemical tank sailing voyage. 

A comparison between the predicted propulsion power of a chemical tanker based 

on the current ITTC guideline methods and its actual measured values is 

presented in Figure 4-2. The vessel adopted a constant power strategy during its 

voyages, and there's a significant underestimating discrepancy between the 

predictions of the physical performance model and the actual measurements. The 

uncertainties associated with traditional physical models are also increasingly being 

reported within the maritime industry. Dalheim and Steen (2020) evaluated one 

year of onboard monitoring data and reported that the added resistance from full-

scale measurements was significantly larger than the conventional frequency-

domain CFD calculations. Vitali et al. (2020) analyzed the speed loss of container 

ships integrated with weather data and found some discrepancies compared with 

existing empirical methods. And a significant difference between the linear 

superposition principal calculation and the ship's full-scale measurements has been 

investigated by Lang and Mao (2020, 2021).  

4.3 Coupling of hull-propulsion-engine 
Specific Fuel Oil Consumption (SFOC) is a critical metric in the maritime 

industry, used to represent the efficiency of a marine engine. It represents the 

amount of fuel consumed by the engine relative to its power output over a certain 

period. Essentially, it measures how much fuel is needed to produce a specific 

amount of power, therefore it is a key indicator of marine engine efficiency. Lower 

SFOC indicates a more fuel-efficient engine that generates more power with less 

fuel, leading to reduced operating costs and lower emissions. Conversely, higher 

SFOC values indicate less efficient fuel usage, which translates to higher costs and 

increased emissions. 

Several factors can influence an engine's SFOC, including the engine type and 

design, its operating conditions, and maintenance practices. For a specific marine 

diesel engine, its SFOC is significantly affected by the engine operation/setting 

parameters and its interactions with ship resistance/propulsion systems. 

Moreover, the actual operating conditions often differ from the ideal or test 

conditions under which the theoretical SFOC is determined. Factors such as load 

variations, sea state, hull condition (like fouling), and ambient temperature can all 

influence the actual engine performance.  

In the voyage optimization system, a ship performance model is an essential 

component, since the optimization requires the evaluation of the associated sailing 

cost for decision-making, to suggest a feasible voyage with the optimized cost. For 

energy-efficient sailings, the voyage optimization system needs the ship 

performance model to estimate the corresponding fuel consumption of each 

feasible route, based on the sailing and environmental conditions. Thus, the 

accuracy and the robust assessment of the ship performance model would have a 
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great influence on the voyage optimization result. For the performance model, 

SFOC is one of the significant elements that the estimation of fuel consumption is 

dependent on. If the value of SFOC fails to reflect the real value in the actual 

operation, the decisions provided by the voyage optimization can also lead to 

great deviations. It not only causes sub-optimal voyage planning concerning 

optimization objectives, such as consuming more fuel, but also can make the ship 

not capable of following the scheduled ETA, since the planned power/fuel is 

based on an inaccurate estimation. Moreover, when ships are sailing in a dynamic 

marine environment, the variation of ship resistance and propulsion efficiency can 

lead to continuous adjustment of marine engine settings to keep ships’ pre-defined 

navigation patterns. The combination of dynamic sailing marine environments and 

engine setting variations may cause actual engine SFOC to differ significantly from 

the provided SFOC curve. These differences could also lead to deviations in 

sailings, which may continuously accumulate as the voyage proceeds. 

For the hull-propulsion-engine coupling, if only to consider the single resistance 

or power in the voyage optimization, the result will be quite different from 

considering also SFOC for fuel optimization. The same might also stand if voyage 

optimization only uses resistance instead of power. Then the coupling between 

resistance and propeller, i.e., the propulsion efficiency is neglected and not 

considered in the voyage optimization. Especially, the comparison of voyage 

optimization between using power and fuel can be quite inspiring. 

In this report, different ship/engine operation parameters that affect the SFOC of 

the marine diesel engine are evaluated and compared with conventionally used 

SFOC curves, based on the full-scale measurement of two types of ships with 

controlled pitch propellers. Especially, how the operation of CPPs affects SFOC 

is studied. The most relevant parameters that affect the efficiency of marine 

engine operations SFOC are identified and used to establish data-driven SFOC 

models by different machine learning techniques. The impact of more accurate 

SFOC machine learning models in comparison with empirical SFOC curves on a 

ship’s fuel consumption is briefly studied by demonstrating their application to 

evaluate a ship’s energy performance along several typical voyages. Methods and 

potentials for optimization of marine engine settings in terms of fuel savings are 

briefly discussed for further investigations. 

5 Feasibility of AI/ML to implementing JIT  

5.1 Data-driven VPP models  
Driven by today's digital transformation in shipping, large amounts of ship 

operation data are collected via sensors and data acquisition systems for in-service 

monitoring (Dalheim and Steen, 2020). There is a trend to apply data-driven 

methods to significantly improve vessel prediction program (VPP) capabilities and 

related energy efficiency measures.  
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Petersen et al. (2012) compared artificial neural networks (ANNs) and Gaussian 

processes (GP) for a domestic ferry’s fuel consumption and ship speed prediction 

by using a two-month dataset (254 trips). Tree-based supervised machine learning 

algorithms and rigid/lasso regression methods were also applied for the ferry 

dataset by Soner et al. (2018, 2019) and Bassam et al. (2022). Mao et al. (2016) 

applied a 2nd-order autoregression model to establish the relationship between 

ship speed and engine RPM and extracted sea environments from a container 

ship’s one-year measurements. Gan et al. (2017) constructed a multilayer 

perceptron network for the long-term speed prediction of inland ships using AIS 

data. Brandsaeter and Vanem (2018) adapted and validated different regression 

models to predict a ship’s speed based on the shaft thrust, draft, trim and related 6 

DOFs motions. Coraddu et al. (2019) proposed a deep learning model to estimate 

the speed loss of two Handymax chemical/product tankers based on two-year 

onboard measurements, with main engine fuel consumption, auxiliary engine 

power, shaft power, ship draft, and MetOcean data as input features. Berthelsen 

and Nielsen (2021) investigated the ship speed-power relationship based on a 

combined econometric and naval architectural data-driven model fed with 

operational data from more than 50,000 noon reports. Different machine learning 

methods have been recently used based on simulated or full-scale measurements 

(Abebe et al., 2020; Milakovic et al., 2020; Tarelko and Rudzki, 2020; Moreira et 

al., 2021; Yuan et al., 2021; Gupta et al., 2022; Lang et al., 2022). 

The predicted speed over ground of a chemical tanker based on the conventional 

machine learning method is presented in Figure 5-1. For the voyage illustrated in 

the upper figure, prior to 2018-07-04, the machine learning model's prediction 

deviates from the full-scale measurement by approximately one knot. For the 

remainder of this voyage, the predicted values closely match the actual 

measurements. In contrast, for the voyage depicted in the lower figure, the vessel 

encountered untrained sea conditions in the latter part. As the machine learning 

model had not been trained on such data, its predictive capability was 

compromised. This underscores a limitation of traditional machine learning 

methods: they tend to perform suboptimal and can produce unreasonable results 

when faced with unseen scenarios. 
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Figure 5-1: The speed over ground comparison between machine learning model prediction and full-scale 

measurement for two chemical tank sailing voyages. 

5.2 Grey-box models  
Models based on first principles or semi-empirical methods are named as white-

box models (WBMs). The accuracy of WBMs depends on the assumption and 

simplification made in the physical modeling process. The data-driven 

regression/machine learning models belong to black-box models (BBMs), using 

experimental or full-scale sailing data. BBMs do not require prior knowledge, but 

they do need a large number of ship performance data. The interpretability and 

extrapolation of BBMs are poor, which could lead to significant wrong results for 

unseen scenarios. A third model category, i.e., grey-box models (GBMs), is 

classified by Haranen et al. (2016). GBMs are developed by combining physical 

principles from WBMs, and big ship data inferences from BBMs. The GBMs can 

be built by using much less data than BBMs, and provide higher accuracy than 

WBMs. Furthermore, GBMs have good model interpretability and extrapolation 

capability, and can avoid unreasonable results for unseen scenarios. Table 3 

summarizes the advantage/disadvantage of the WBMs, BBMs, and GBMs. 

Table 3: Summary advantage/disadvantage of WBMs, BBMs and GBMs. 

Type Description Advantage Disadvantage 

WBMs 
Based on prior 
knowledge and 

physical principles 

Don't need historical 
data, and can 

extrapolate beyond the 
given data range with 
good interpretability 

Require lots of prior 
knowledge, and the accuracy 
depends on assumptions and 
uncertainties implicit in the 

model 

BBMs 

Established using 
experimental or 
full-scale sailing 

data and is purely 
data-driven 

Don't require prior 
knowledge, and more 
accurate than WBMs 

Require large number of full-
scale measurements, the model 

interpretability and 
extrapolation are poor, and 
may result in unseasonable 

results for unseen data 

https://www.sciencedirect.com/science/article/pii/S1366554521002519#b0210
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GBMs 

Developed based 
on physical 
properties 

underlying WBMs, 
and knowledge 

from operational 
data in BBMs 

Less full-scale data required than BBMs, higher accuracy than 
WBMs, with good model interpretability and extrapolation 
capability, can avoid unreasonable results for unseen data 

 

Current research activities to build models for ship speed prediction focus on 

either BBMs based on ship data, or WBMs based on ship principles. There is an 

emergent trend towards hybrid approaches that synergistically combine physics 

with machine learning paradigms for more accurate ship speed estimation, 

harnessing the inherent interpretability of physical models. Recently, Lang et al. 

(2024) proposes a novel physics-informed machine learning method to build grey-

box model (GBM) predicting ship speed for ocean crossing ships. In this method, 

the expected ship speed in calm water is first modeled by the physics-informed 

neural networks (PINNs) based on speed-power model tests. Then a machine 

learning algorithm is integrated to estimate ship speed reduction under actual 

weather conditions. The architecture of the approach is depicted in Figure 5-2, 

where the white-box model is PINNs model, and the black-box model is machine 

learning model. 

Subsequently, the same two voyages delineated in Figure 5-1 are employed as case 

studies to juxtapose the conventional machine learning model with the established 

grey-box model as presented in Figure 5-3. It is evident that the grey-box model 

consistently outperforms in predictive capability across both voyages. Notably, 

when confronted with limited training data—as seen in the latter part of the 

depicted voyage in 2019 - the grey-box model, considering physical principles, 

yields predictions that are both plausible and closely aligned with the measured 

values. 

 

Figure 5-2: The parallel grey-box modeling procedure for ship speed prediction. 

http://dict.eudic.net/dicts/en/depict
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Figure 5-3: The speed over ground prediction comparison between machine learning model and grey-box model for 

two chemical tank sailing voyages. 

5.3 JIT feasibility from today’s models  
In this section, a comparative analysis is conducted between traditional machine 

learning algorithms and the grey-box model, evaluating their efficacy in achieving 

Just-In-Time (JIT) operations when predictions are initiated from 72 to 12 hours 

ahead of arrival. Fourteen voyages of chemical tankers are employed as case 

studies. 
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Figure 5-4: The accumulated error in sailing time of the machine learning model (in blue) and grey-box model (in 

red), for time ahead of arrival (a) 72 hours, (b) 36 hours, (c) 24 hours and (d) 12 hours. 

In the associated Figure 5-4, the x-axis represents the varying distances traveled 

over time, while the y-axis delineates the cumulative navigational time errors. As 

inferred from the figure, for predictions initiated 72 hours ahead of a JIT 

requirement, the machine learning model can accrue an error close to 6 hours, 

whereas the grey-box model restricts its maximal error to approximately 50% of 

that, around 3 hours. However, for predictions 36 and 24 hours ahead, both 

models effectively reduce the error margin to approximately 1 hour. When 

forecasting the port arrival time 12 hours in advance, the discrepancy narrows 

further to about half an hour. Consequently, in practical navigation scenarios, 

employing AI/ML techniques to enhance JIT operations can offer precise 

estimations, particularly when predictions begin a day and a half prior to the 

expected port arrival. 

6 JIT analysis from AI-assist voyage optimization  
To demonstrate the benefits of AI techniques integrated voyage optimization for 

assisting the IMO JIT EEM in terms of fuel saving, this section first presents 

results of voyage optimizations using various ship performance modelling 

techniques of cost functions in the optimization process, in comparison with 

optimization using AI/ML built ship performance/cost models. The objective of 

voyage optimization is set as the minimum fuel consumption along a voyage, and 

meanwhile, the ETA of voyage planning is set the same as the selected case study 

voyages. In total, five modelling approaches to build the cost function are 

investigated. The results indicate the importance of accurate performance/cost 

models for reliable voyage optimization by using AI/ML-techniques in the 

modelling process. Then, the AI/ML performance models are used to study the 

benefits of using the AI-assist voyage optimization for the IMO JIT 

implementation in terms of different JIT scenarios.  

6.1 Ship performance modelling for cost functions 
In the voyage planning/optimization process, the cost function, which describes a 

ship’s speed and energy consumption under various environmental conditions, is 

needed to search for optimal sailing waypoints with specific speeds. A typical 

framework to establish the ship performance model, i.e., relationship between 

speed and fuel/power, is illustrated in Figure 6-1. 
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Figure 6-1. Ship energy consumption estimation process 

 

For a given ship speed V (speed through water), a ship’s total resistance of the 

ship RTotal is normally estimated by summing calm water resistance RCalm, and 

added resistances of wind RWind, wave RWave, current Rc, and shallow water Rs, i.e.,  

 

RTotal = RCalm + RWind + RWave + Rc + Rs. 

 

The thrust forces from the engine and propellers counteract the total resistance 

RTotal to push the ship forward. Therefore, the shaft power Ps that the engine needs 

to produce can be estimated by, 

Ps = RTotal  × V/η                        

 

where η is the efficiency coefficient including the hull efficiency, propeller open 

water efficiency, and engine shaft efficiency. Finally, the relationship between 

engine power and fuel consumption is as follows: 

Fuel = Ps  × SFOC. 

It should be noted that for ship voyage optimization systems, different cost 

functions have been used to search for energy efficiency shipping routes. Due to 

large uncertainties/discrepancies of SFOC between measured and provided by 

theoretical models/manufacturers as shown in Figure 6-2, the easily accessible 

power consumptions are also used as cost for such a voyage optimization. The 

power consumption model is also the performance models that shipping 

companies can get from towing tank tests during their design stage. More 

practically, the fuel consumption along a voyage is used for the optimization 

purpose. In addition, different modelling techniques have been used in the 

shipping market to build models for the cost of power and fuel consumption. 

Table 4 summarizes different cost models which are used in this report to 

investigate the sensitivity of voyage optimization EEM on the modelling 

techniques of ship performance/cost functions. 
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Figure 6-2. Results of voyage optimization with five different ship performance models 

Table 4: Different performance models used for the cost functions 

Cost models in optimization Speed-Power SFOC 

Empirical Power Empirical - 

ML Power ML - 

Empirical Fuel Empirical Empirical 

ML Power + SFOC ML Empirical 

ML Fuel ML ML 

 

6.1.1 Cost models of power consumptions 

There are two models of power consumption in this study, i.e., the empirical 

model and machine learning data-driven model to estimate the power 

consumption at various operational and environmental conditions. In the 

“Empirical Power” model, all the resistance components and propulsion 

efficiency related parameters in Section 6.1 are estimated by empirical formulas as 

in Tillig et al. (2017). When a ship’s performance monitoring data is available, the 

“ML Power” model could be established and used for her voyage optimization 

system. In this case, the relationship between speed and power is established by a 

Machine learning method. In this study, the XGBoost (Extreme Gradient 

Boosting), an advanced and efficient implementation of gradient boosting, is 

employed as the ML technique to develop the speed-power model, and the cost 

function utilizes the XGBoost model to obtain the evaluation of engine shaft 

power as an ML approach. 

6.1.2 Cost models of fuel consumptions 

Three models of fuel consumption are investigated in this study. In the 

“Empirical Fuel” model, the same empirical formulas as in the “Empirical 

Power” model are used to estimate the relationship between speed and power. To 
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estimate the fuel consumption for a specific power, the so-called Specific Fuel Oil 

Consumption (SFOC) is needed. For the “Empirical Fuel” model, the SFOC is 

coming from engine manufacturers, and it follows a standardized curve as in 

Figure 6-3. If the speed-power relationship is modelled by the machine learning 

method and the SFOC is coming from the engine manufacturers, it is named as 

“ML Power + SFOC” model. Finally, if the machine learning method, i.e., 

XGBoost method in this study, is used to establish the direct relationship between 

speed and fuel consumption, this model is called the “ML Fuel” model as in Table 

4. But it should be noted that in this model, the fuel only refers to the marine 

engine fuel consumption related to propulsion. 

 

Figure 6-3. SFOC for the case study ship used in this report. 

For the fuel performance model, SFOC is one of the essential. If the SFOC model 

fails to reflect a ship’s actual operational performance, the voyage optimization 

may lead to great deviations. It not only causes sub-optimal voyage optimization 

such as consuming more fuel than expected, but also can make the ship not 

capable of following the scheduled ETA, since the planned power/fuel is based 

on an inaccurate estimation. So, in the following study we would like to investigate 

the impact of different cost functions on the ship voyage optimization results. The 

selection of those five different cost function models may be due to  

1) confidence of the accuracy of various models, such as the empirical speed to 

power models are normally more reliable if the variation of SFOC as in Figure 6-2 

is not considered; and  

2) available resources to build such cost function models, such as most ships do 

not have performance monitoring data to build the Machine learning models. 

6.2 Voyage optimization by different performance/cost 

models 
A chemical tanker with full-scale measurement is used in this case study, to 

compare the voyage optimization results by different methods. A conventional 

weather routing system was installed on the ship to guide the voyage planning. 
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Combined with the ship master’s experience, the actual sailing routes are 

supposed to be more efficient than ordinary voyage planning systems. To estimate 

power/fuel consumption, the cost functions also require encountered MetOcean 

environment inputs (wind, wave, and current), which are extracted from ECMWF 

ERA-5 (2019) dataset for wind and wave, and ocean current data is acquired from 

Copernicus 2019 server. And finally, the voyage optimization algorithm is chosen 

as the three-dimensional Dijkstra algorithm (3DDA) (Wang et al, 2019, 2021). 

Two westbound voyage cases are used in this part for optimization validation, 

with optimized routes presented in  

Figure 6-4. Optimized routes by different cost functions for the case study voyage 

20161108 (Left), and for the case study voyage 20150721 (Right).-4. The weather 

changes in both two cases are not dramatic, and the highest significant wave 

heights is no more than 4 meters as shown in Error! Reference source not 

found.. These two cases present the normal and calm sailing status for ships 

operating in the North Atlantic Sea. The optimization results by changing 

different cost functions are listed in Error! Reference source not found.5, where 

the fuel consumption is given both in amount and the reduction percentage 

compared to the actual fuel cost. The actual fuel consumption is estimated by the 

ML ship model to provide the most accurate estimation of the actual cost. 

Figure 6-4 shows that the actual routes for both cases have undergone a well-

considered planning process. The routes in general do not deviate much from the 

shortest Great Circle route, leading to a relatively short total distance, and their 

encountered weather conditions are also calm. Especially for the case Voyage 

20161108, the actual route adjusts its heading twice to keep sailing in very calm 

waves. Therefore, the actual fuel consumption for both cases is not very high. For 

such calm sailing cases, a fuel reduction of around 5% from voyage planning 

compared with the actual route can be considered significant. However, from the 

result shown in Error! Reference source not found., the result of total fuel 

consumption fluctuates greatly in the amount due to the change of ship cost 

function models.  

 

Table 5: Comparison of ship voyage optimization results when employing different ship performance/cost function 

models  
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Cost function models 
Voyage 20161108 Voyage 20150721 

Fuel [Ton] Saving % Fuel [Ton] Saving [%] 

Actual ship routes 177.9 - 178.5 - 
Empirical Power 163.1 8.4 178.0 0.3 
ML Power 154.6 13.1 151.4 15.2 
Empirical Fuel 162.3 8.8 165.9 7.0 
ML Power + SFOC 154.3 13.3 151.3 15.2 
ML Fuel 161.3 9.3 161.3 9.6 

 

 

Figure 6-4. Optimized routes by different cost functions for the case study voyage 20161108 (Left), and for the 

case study voyage 20150721 (Right).  

 

Figure 6-5. Significant wave height encountered along the optimized voyage 20161108 (Left), and along the case 

study voyage 20150721 (Right). 

For fuel savings, the three cost functions by ML techniques, i.e., “ML Power”, 

“ML Fuel” and “ML power + SFOC” models, all present a higher fuel saving 

from voyage optimizations for both two case study voyages. Specifically, for the 

summer Voyage 20150721 with a bit larger variation along the sailing routes, the 

divergences in the fuel consumption become more noticeable. Moreover, to 

compare the voyage optimization when different cost functions are used, i.e., 

power consumption or fuel consumption as the cost, the empirical models give 

more apparent deviations of voyage planning results in terms of both trajectories 

and fuel consumption for the summer Voyage 20150721. The “Empirical Power” 

model gives 0.3% fuel savings, while the “Empirical Fuel” model shows a result of 

7.0%. The two ML ship models give close results for both cases, with around 13% 

and 15% saving, respectively. However, when considering the effect of SFOC, the 

result both changes to around 9%.  
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For the suggested routes shown in  

Figure 6-4. Optimized routes by different cost functions for the case study voyage 

20161108 (Left), and for the case study voyage 20150721 (Right).-4, the two 

empirical models, i.e., “Empirical Power” and “Empirical Fuel” models, give the 

most diverged planning results. Especially, voyage optimizations using the 

“Empirical Power” model suggests a noticeable long detour, which explains its 

relatively high fuel cost with only 0.3% savings, while choosing fuel as energy cost 

can lead to 7.0%. It may be due to using the power cost as the optimization 

objective can neglect the effect of long-distance and only opt for the lower power, 

thereby leading to local optimizations. This corresponds to the encountered Hs 

during the voyage shown in Error! Reference source not found.6-5, where the 

cost function of “Empirical Power” model gives the optimized route with the 

modest waves encountered. Similar results can also be observed in the other case 

study Voyage 20161108. Optimization results using ML models present closer 

results in both two cases, with similar suggested routes, fuel savings, and 

encountered sea states.  

6.3 Deep sea navigation with different JIT notifications 
Assume the waiting time at the port is 8 hours as an example. Two scenarios of 

being informed in advance about the waiting time are simulated below. To achieve 

the objective of Just-In-Time (JIT), an update of the voyage planning can be 

performed to avoid the traffic congestion inside and around the port area. 

Meanwhile, slowing down the sailing speed also shows a reduction in fuel 

consumption. The two JIT scenarios are defined in Table 6, named as JIT24h and 

JIT48h. When the expected time of arrival without waiting, i.e., JIT arrival of this 

voyage, is known, the 3DDA voyage optimization algorithm is used to plan the 

left voyage, i.e., from the current position of this voyage to its destination. 

Table 6: Different scenarios of arrival time expected and updated for JIT 

Name JIT scenarios Description in detail 

JIT24h Know the exact time 
to the destination port 
without waiting 24 
hours ahead of 
arrival. 
 

It means that the ship’s sailing time from now to 
the destination is extended to 32 hours. When the 
ship is arriving at the port, she does not need to 
wait for loading/unloading. 
The total computation time of the 3DDA voyage 
optimization algorithm to update the voyage 
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planning of the last 32 hours sailing at the left 
voyage by an ordinary laptop is 24 seconds. 

JIT48h Know the exact time 
to the destination port 
without waiting 48 
hours ahead of 
arrival. 

It means that the ship’s sailing time from now to 
the destination is extended to 56 hours. When the 
ship is arriving at the port, she does not need to 
wait for loading/unloading. 
The total computation time of the 3DDA voyage 
optimization algorithm to update the voyage 
planning of the last 56 hours sailing at the left 
voyage by an ordinary laptop is 174 seconds. 

 

The optimization results of the updated voyage are presented in Figure 6-6, Figure 

6-7, and Figure 6-8. The routes of the voyage are revised with slight deviations, 

from the preliminary planned voyage in the rest of the sailing for both scenarios, 

and the speeds are also slowed down accordingly to compensate for the 8 hours 

waiting time. The updated ship route trajectories optimized by the same 3DDA 

optimization algorithm are given in Figure 6-6, and the speed profiles are given in 

Figure 6-7, with the x-axis in longitude and time respectively. 

 

Figure 6-6. Updates of optimized ship routes based on the two listed JIT scenarios. 
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     (a)                                                                    (b) 

Figure 6-7. The speed profiles and encountered significant wave height Hs of ship routes 

optimized by the 3DDA method in terms of Longitude (a) and time (b), respectively.  

The accumulative fuel consumption along the voyage is also shown in Figure 6-4 

to compare the fuel consumption. The final overall consumptions are nearly 

identical for both simulated scenarios, which are 142.0 tons (JIT 24) and 141.9 

tons (JIT 48), respectively. However, compared with the previously planned 

voyage (3DDA), which consumes fuel 151.8 tons, it still shows around 5% more 

fuel reduction. And compared with the actual voyage which shows 171.3 tons of 

fuel usage, the 3DDA method shows a fuel saving of 11.4%, and JIT update 

contributes to around 17.1% for both scenarios. Moreover, the update of the 

voyage is efficient and takes only several minutes, which can be performed easily, 

since the left of the voyage is only in a short length of time. 

 

Figure 6-8.  Accumulative fuel consumption optimized on different JIT scenarios. 
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7 Situating fuel savings in the social practices of the 

shipping industry 
This section of the report situates energy efficiency measures in the social 

practices of shipping and is based on both interviews conducted as a part of this 

study and a literature review.1 The presentation is intended to give a perspective 

on the importance of considering social factors when designing digital measures 

for energy efficiency and to support the technical inquiries of this report. When it 

comes to energy efficiency, this section mainly concerns the planning and 

operation phase of energy efficiency measures (Figure 2-1). The general purpose 

of this section is to inform the discussion on the technical aspects of this report—

i.e., what are important social dimensions to consider when designing digital 

EEMs for improved propulsion in terms of energy consumption. 

Fuel saving is a high priority in all interviews we have conducted, both because of 

high associated costs and an increasing demand from their customers to track 

emissions (this was especially prominent in the RoRo sector). This finding is 

aligned with a general understanding of the field. DNV writes that: “Most 

respondents name several reasons as to why energy efficiency is important to 

them, nobody feels unaffected. More than 80% of nomination fuel costs are the 

key driver for efficiency, followed by environmental footprint with 58%” (DNV 

2015). But when it comes to how energy savings that are related to the planning 

and execution of voyages should be afforded, stakeholders have many 

uncertainties and conflicting views on how this should be done. When saving 

energy seems to be such an important target for the involved actors, one must ask 

the question of why the current practices are not optimal from an energy-saving 

perspective. The following part of this section discusses important factors that will 

affect the applicability of specific EEMs and identify differences in various 

segments of the shipping industry and among actors. 

7.1 The current ship operation 
The first finding is that the potential for fuel savings depends on current shipping 

industry practices, i.e., how the ships are operated today. Given the basic physical 

principles of water and wind resistance, large savings can generally be made by 

reducing the speed of the ship. As such a slower crossing from point A to B is 

generally more energy efficient (down to a certain speed). Slowing down the speed 

is not always a viable option, as swift deliveries often are a competitive advantage 

when cargo transportation is ordered. However, as shown by the presentation 

 
 

1 A complement to conducted interviews is a reading of the previous research and reports. For example, 

the DNV report (2015) gives a good overview of how shipping companies view and works toward 

increased energy efficiency, what measures are preferred and who is understood to be responsible. align 

with general points prevalent in interviews etc. 
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below, many ships have long waiting times in the harbors waiting for their 

designated slot to offload their cargo. Understanding the general pattern of ship 

movement and waiting times makes it possible to estimate potential fuel savings in 

the shipping industry. By identifying differences between ships in terms of various 

variables (cargo, shipping segment, flag) it is possible to identify where 

interventions would be more beneficial, i.e., EEMs to facilitate Just-In-Time 

arrival will be more beneficial among ships and shipping segments with long 

waiting times and poor ship management today. 

To understand why ships aren’t operated in an optimal way when it comes to 

energy efficiency, one must also understand why the ships are operated in the 

present way as in Table 7. The reasons for this are manyfold. Early arrivals can be 

explained by captains not wanting to be late for their assigned offloading time slot. 

As conveyed to us in the interviews, being slightly late on arrival can lead to much 

larger delays because their offloading has been down prioritized, and they might 

need to wait in line to use the lock (applicable in some harbors). Delays also want 

to be avoided because they lead to additional work for the captains in 

communicating with the harbor and the shipping companies' land office. Delays 

can sometimes also be associated with additional costs for shipping companies, in 

terms of fines or the customer canceling the contract. Given the uncertainties of 

weather conditions, captains tend to use unnecessary high speed throughout the 

journey, which consequently consumes too much energy. Certain types of 

cargo/transportation are more sensitive to delays than others. As will be discussed 

in the next section, this matter is also related to how contracts and charter party 

agreements are written. 

Table 7: Overview of factors influencing the possibility of increasing energy efficiency in shipping within a particular 

shipping company. Inductively constructed table from information collected in the literature review and in the 

interviews. 

How the ships are operated today 

Current compliance with JIT 

Current technology used  

Target variable used in operations 

Information 

The possibility to change practices 

Organization 

Regulations and party agreements 

Attitudes, habits, and cultural practices  

Investment costs 

The want and incentives to change practices 

Determination 

Knowledge 

Incentives and rewards  

Conflicting incentives 
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Potential energy savings for some EEMs are also dependent on the currently used 

technology and the target variable for the operation i.e., if the captains can set the 

exact SOG (Sped Over Ground) or constant fuel consumption for the vessel, or if 

they operate with a leaver producing a certain engine power. These factors 

influence the captains' ability to navigate energy efficiently, and the potential fuel 

savings. When it comes to digital EEMs some of them require pitched propellers 

or the ability to drive the ship at a constant fuel consumption or a constant RPM. 

If the captain cannot make these settings, some EEMs will not work. The 

effectiveness of EEMs might also depend on several other ship variables. The 

effectiveness and willingness to try a digital tool for providing recommendations 

are also dependent on the control/ target variables currently used. 

A related concern is the availability of information. This is a technical matter, but 

also a managerial matter. Ship data is stored and logged both digitally and 

manually and organizational decisions need to be made on how this data should 

be collected, stored, and utilized. As Poulsen & Johnson (2016) have argued, many 

shipping companies do not have accumulated real-time data on the energy 

performance of their vessels. Availability of information is crucial for many digital 

EEMs, data need to be sufficiently accurate, in a resolution that is sufficient (data 

points per minute) and stored and made available. If this information is 

unavailable, it will make the applicability of certain digital tools impossible. 

Previous literature has argued that “Just presenting fuel statistics to crews is not 

enough since the complexity of the data does not allow unambiguous causal 

inferences and clear implications for actions” (Viktorelius et al. 2022). This is of 

course true but the information needs to be available to data scientists and 

engineers who design digital tools. 

7.2 The possibility of changing practices 
In assessing potential fuel savings in the shipping industry, one must further 

consider that the operation of any ship is situated in the larger organization of 

shipping. A captain has a relatively large degree of autonomy (or at least 

responsibility) during a journey. However, how a captain navigates is strongly 

influenced by his general instructions for his job and the instructions he receives 

from the land office and the harbor. If captains get the order to change 

destination harbor or speed up during the journey, they will do this if they can do 

it without jeopardizing safety on board. The decisions of the captain and the 

instruction the captain gets from land are situated in a larger socio-technical 

structure. It is influenced by demands from customers, regulations, habits, and 

wider technical and organizational structures. Involved actors include, but are not 

limited to: “individual ship officers (navigators, engineers, etc.) to shipyards, 

shipowners, operators, charterers, cargo owners, ports, and traffic management 

services” (Viktorelius et al. 2022). 
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This larger structure of stakeholders with various objectives, values, and 

institutional culture (c.f., Larsson & Bengtsson 2022; Larsson & Sjölander-

Lindqvist 2022) means that changes in practices cannot be made by one actor. For 

example, a just-in-time approach is not relevant if a harbor does not have the 

capacity to organize this for the arriving ships. “The work to improve ship energy 

efficiency cannot be reduced to the accomplishment of a single decision-maker 

but depends on the active engagement and collaboration among several 

distributed professional groups and actors” (Viktorelius et al. 2022). The multitude 

of actors can create “gaps in responsibilities between the stakeholders, mutually 

exclusive goals, and focus areas as well as differing conceptions of performance 

monitoring” (Viktorelius et al. 2022). Or as DNV writes: “The responsibility for 

energy management appears unclear in many shipping companies. Not even a 

third of all companies have a dedicated energy manager or team. Most companies 

have assigned the task to ‘everybody’, which often actually means ‘nobody’” 

(DNV 2015). 

Concrete examples of this can be when there is a lack of communication between 

stakeholders so that ships do not know that their planned offloading slot has been 

moved forward. Sometimes these matters can be solved with equipment and 

routines for communications, i.e., making information available throughout actors. 

Sometimes these issues cannot be resolved only through communication. For 

example, does a harbor have the capacity to deal with just-in-time arrival/ late 

arrivals to facilitate fuel savings. As DNV write: “In a perfect world each hour 

spent there could be transposed to slower average sailing speed with 

corresponding bunker savings. In practice some of this potential can be realized 

by better communication between, ship, operations department, and port in 

combination with just-in-time procedures.” (DNV 2015). Because of this, several 

measures to save fuel must involve coordinated actions of several stakeholders 

within the own organization and beyond. 

Furthermore, a factor that is addressed both by stakeholders in our interviews and 

in the literature is how regulations, and especially charter party agreements, can 

make EEMs more difficult or impossible to implement without changing these. 

Such agreements can result in a captain being unable to execute a 

recommendation from a digital system in terms of setting a particular speed or 

energy consumption setting. As IMO concludes, the possibility for a master or 

onshore Marine Team to change speed to arrive JIT “usually depends on the 

charter party terms” (IMO 2020, 2021). The extent to which this affects various 

operators will vary with different supply chains and contracts. For example, IMO 

(2020) recognizes that “there are fewer contractual barriers” in the container 

segment compared to tramp service. Finally, although many measures for 

improving energy efficiency afford savings in the long run, the cost of investments 

might discourage shipping companies from making investments. When asked 
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about the most important consideration for energy efficiency measures, 80 % 

replied that the payback period is the most important concern (DNV 2015). 

7.3  The want and incentives to change practices 
While all interviewed actors express an interest in reducing emissions, engagement 

in this issue is not equally distributed among actors. As discussed above, all actors 

claim to be committed to fuel savings, but the commitment and determination to 

this differ among different individuals and actors across the shipping industry. 

While everyone we interviewed expressed concern for fuel consumption this was 

not the primary concern for everyone. The charter department's highest priority 

was always keeping their ships in business rather than saving fuel. Captains’ 

highest priority was the safety of the ship and crew and delivering their goods as 

per the agreement. To facilitate the implementation of an energy efficiency 

measure that includes changing the way a journey is planned and executed, 

commitment among actors is required. Although many such EEMs within the 

SEEMP paradigm are executed at a local level, changes generally need to be 

addressed top-down to engage all relevant actors. As written in DNV (2015) 

“Topics can get burned in the organization, if not planned and executed well. 

Most shipping companies deal well with technical challenges but struggle on the 

people’s side. This is a severe challenge, as about half of the achievable energy 

savings are related to ship and shore staff’s behavior.”  

A crucial aspect of determination and engagement among actors is 

knowledge. While captains and other actors, of course, are very knowledgeable in 

their field, there is still a lack of knowledge on issues related to energy efficiency. 

As DNV write: “Interestingly many respondents seem to underestimate the share 

of fuel costs in total shipping costs. Just 30% assume the share to be 25% or 

more” (DNV 2015). The interviews we have conducted for this report reveal 

conflicting views on the most energy-efficient way to operate a vessel and show 

doubt when given information on the technical measures. This point is connected 

to the availability of information, but the information need not just be available 

but also possible to understand and to act upon by the involved actors. “Just 

presenting fuel statistics to crews is not enough since the complexity of the data 

does not allow unambiguous causal inferences and clear implications for actions” 

(Viktorelius et al. 2022, 394). This does not necessarily mean that the information 

needs to be interpretable by each involved actor but that the know-how is 

integrated into the larger socio-technical system, for some actors’ clear 

instructions on how to act on specific data will suffice. Information is also often 

difficult to interpret and act upon to operate a vessel more efficiently. For 

example, the data processing provided by ML algorithms taking ship and weather 

data into consideration is impossible for any human to process and act upon. The 

problem is, therefore, not only what Armstrong and Banks propose: “with 

minimal staff onboard it could be a far stretch to expect integration of 

information and analysis provided by different systems.” (2015) 



 
 

Lighthouse December 2023 49 (56) 

Also, attitudes, habits, and cultural practices among staff can make the 

implementation of EEM more difficult. DNV write: “But still shipping companies 

struggle with implementation due to resistance to change among ship and shore 

staff, partially lacking skills and absence of a performance management culture.” 

(DNV 2015) Although knowledge and awareness among actors are important, 

general measures aimed at reducing emissions through raising awareness and 

fostering a culture of responsibility seem to have a limited import on climate 

reduction. The conclusion of the interviews we have been making is that there 

need to be clear incentives and rewards for fuel saving among involved actors. 

Talking about a study by Rasmussen et al. (2018) Viktorelius et al. write, “fuel was 

paid by the charterer and not the shipping company, seafarers were not 

encouraged to save fuel, which could even lead to a penalty if the specified ship 

speed was not maintained. The type of charter and the company's priorities thus 

influenced the seafarers' attitudes and the use of the fuel consumption indicators.” 

(Viktorelius et al. 2022) This is one example of when incentives and rewards are 

not structured in a way that promotes fuel savings. It is also common with 

conflicting goals and incentives both from inside and outside the organization 

where it is difficult for involved actors to prioritize between these goals. There are 

also conflicting goals within the debate on fuel savings and environmental 

issues—some regulations require lowering the emission of sulfur, others require 

lower emissions of carbon, and within the organization, a reduction of costs might 

be the most relevant. Depending on how these are prioritized, measures such as 

scrubbers, low sulfur fuel, or different fuels might be a higher priority. 

8 Conclusions 
One would think that general cost savings would be a strong incentive for 

companies to reduce fuel consumption. As DNV concluded, for an operator, 5% 

savings in a 40% cost position equate to two percentage points EBITA (Earnings 

Before Interest, Taxes, and Amortization). The operators struggle with 

implementation, which is a human aspect. (DNV 2015). 

According to IMO (2020), both operational and technical measures are required 

to increase energy efficiency. When it comes to reducing and eventually 

discontinuing the GHG in shipping, changes in fuel will also be required. But also 

in this situation, energy efficiency in terms of operational and technological 

perspectives will be a relevant competitive advantage. It will require collaboration 

between stakeholders in the maritime industry (IMO 2020). 

However, few studies have examined the interdependence of practices and 

technologies underlying organizational cognitive systems and change. The 

identified research gap calls for more longitudinal process-based case studies 

investigating the design, implementation, and use of information technologies 

supporting organizational planning and decision-making required for improving 

energy efficiency (Viktorelius et al. 2022). In addition, shipping companies struggle 
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with the implementation of measures and acknowledge the need to address the 

human factor (DNV 2015). Pathways that involve changes to multiple 

technologies, infrastructures, organizations, and institutions are often explored 

slowly (Viktorelius 2022). 

Communication could be listed as an additional energy efficiency measure (EEM). 

But when we talk about communication in this regard, we do not just refer to 

correspondence and exchange information or trying to reach a common 

understanding between different shipping stakeholders in particular ship operation 

situations. As an EEM, the communication can be served as a systematic way of 

collecting, distributing, corresponding and reflection of all ship operation related 

information (requirements, constraints, objectives, planning, available sources, and 

navigation conditions, etc.) among different stakeholders, which should help reach 

common understanding and continuous updating of operation goals/conditions, 

in terms of ship operation objectives of fuel saving and emission reduction. 

By analyzing the actual benefits of using big data analytics and AI in a ship’s 

energy efficiency measures (EEMs), this project is expected to help further reduce 

fuel consumption/ emissions by promoting the upgrading and utilization of AI-

integrated shipping EEMs, to assist decision-making processes in reducing 

pressure for ship masters onboard. To know whether EEMs are suitable for a 

specific shipping company/ ship, it's necessary to identify how it operates, the 

technical details of ships, as well as willingness to adapt. Based on different 

reports of ship waiting time in ports, more than 5 hours of waiting time on 

average are expected even for the Port of Gothenburg. In large ports such as in 

the US or China, the waiting time can be of days. The long waiting time also 

means a large potential of fuel saving when implementing EEMs for the IMO 

Just-In-Time arrival strategy. It is also concluded that more advanced ship 

performance models, such as combining physical model and data-driven methods, 

are extremely important to develop reliable EEMs for JIT strategy. Taking the 

voyage optimization as an EEM to facilitate the JIT arrival for example, more 

than 10% fuel saving can be expected if the expected time of arrival is known 24 

hours ahead of the arrival. 

There are major differences across actions. According to DNV, in their daily 

advisory practice, they see shipping companies that have realized savings of 10 to 

15% and more, while others have achieved hardly anything. All have SEEMPs in 

place and all are compliant. But some do significantly better than others (DNV 

2015). At the 72nd session of the MEPC, the initial IMO strategy was agreed 

upon with a vision to, e.g., reduce at least 40% of the average carbon intensity by 

2030. Having set up an IT system providing all relevant reports in perfect 

granularity and frequency does not necessarily mean that performance is managed. 

Living a performance management “culture”, regularly challenging, and 

supporting subordinates to improve efficiency, is as challenging as the 

implementation of data collection, processing, and report generation. (DNV 
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2015). The human element in energy management should be treated as equally 

important as technology (Kitada and Ölc ̧er 2015). 
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Schøyen H, Bråthen S (2015) Measuring and improving operational energy 

efficiency in short sea container shipping. 17:26–35. 

https://doi.org/10.1016/j.rtbm.2015.10.004   

Sea-Intelligence. (August 30, 2022). Average monthly delays for late container 

vessel arrivals worldwide from January 2019 to July 2022 (in days) [Graph]. In 

Statista. Retrieved October 03, 2023, from 

https://www.statista.com/statistics/1303383/average-delays-for-late-ship-

arrivals-worldwide/ 

Soner, O., Akyuz, E., Celik, M., 2018. Use of tree based methods in ship 

performance monitoring under operating conditions. Ocean Engineering 166, 

302-310. 

Soner, O., Akyuz, E., Celik, M., 2019. Statistical modeling of ship operational 

performance monitoring problem. Journal of Marine Science and Technology 24, 

543-552. 

Tarelko, W., Rudzki, K., 2020. Applying artificial neural networks for modeling 

ship speed and fuel consumption. Neural Computing and 

Applications  32, 17379–17395. 

The World Bank, 2022. The Container Port Performance Index 2021: A 

Comparable Assessment of Container Port Performance. World Bank, 

Washington, DC. License: Creative Commons Attribution CC BY 3.0 IGO. 

The World Bank, 2023. The Container Port Performance Index 2022: A 

Comparable Assessment of Performance based on Vessel Time in Port (Fine). 

World Bank, Washington, DC. License: Creative Commons Attribution CC BY 

3.0 IGO. 

Tillig, F., Ringsberg, J., Mao, W., Ramne, B. (2017).  A generic energy system 

model for efficient ship design and operation. Journal of engineering for the 

Maritime Environment, Vol. 231 (2), p. 649-666.  

Townsin, R.L., Kwon, Y. J., 1982. Approximate formulae for the speed loss due 

to added resistance in wind and waves. The Royal Institution of Naval Architects 

124, 199-207. 

Vettor, R., Szlapczynska, J., Szlapczynski, R., Tycholiz, W., & Soares, C. G. (2020). 

Towards improving optimized ship weather routing. Polish Maritime Research, 

27(1), 60-69. 

Viktorelius, M., & Lundh, M. (2019). Energy efficiency at sea: an activity 

theoretical perspective on operational energy efficiency in maritime transport. 

https://doi.org/10.1016/j.erss.2018.04.039
https://doi.org/10.1016/j.rtbm.2015.10.004
https://link.springer.com/journal/521
https://link.springer.com/journal/521


 
 

Lighthouse December 2023 56 (56) 

Energy Research & Social Science, Vol.52, pp.1-9. 

https://doi.org/10.1016/j.erss.2019.01.021  

Viktorelius, M., MacKinnon, S. N., & Lundh, M. (2021). Automation and the 

imbrication of human and material agency: a sociomaterial perspective. International 

Journal of Human-Computer Studies, 145, 102538. 

https://doi.org/10.1016/j.ijhcs.2020.102538 

Viktorelius, M., Varvne, H., & von Knorring, H. (2022). An overview of 

sociotechnical research on maritime energy efficiency. WMU Journal of Maritime 

Affairs, 1-13.  

Vitali, N., Prpic-Orsic, J., Soares, C.G., 2020. Coupling voyage and weather data to 

estimate speed loss of container ships in realistic conditions. Ocean Engineering 

210. 

Vukić, L., & Lai, K. (2022). Acute port congestion and emissions exceedances as 

an impact of COVID-19 outcome: The case of San Pedro Bay ports. Journal of 

Shipping and Trade, 7(1), 25. https://doi.org/10.1186/s41072-022-00126-5 

Wang, H., Mao, W., and Eriksson, L., 2019, "A Three-Dimensional Dijkstra's 

algorithm for multi-objective ship voyage optimization," Ocean Engineering, 186, 

p. 106131. 

Wang, H., Lang, X. and Mao, W. (2021). Voyage optimization combining genetic 

algorithm and dynamic programming for fuel/emissions reduction. 

Transportation Research Part D: Transport and Environment, Vol.90, 102670 

DOI: 10.1016/j.trd.2020.102670 

Yuan, Q., Wang, S., Zhao, J., Hsieh, T. H., Sun, Z., & Liu, B. (2022). Uncertainty-

informed ship voyage optimization approach for exploiting safety, energy saving 

and low carbon routes. Ocean Engineering, 266, 112887. 

Yuan, Z., Liu, J.X., Zhang, Q., Liu, Y., Yuan, Y., Li, Z.Z., 2021. A practical 

estimation method of inland ship speed under complex and Changeful navigation 

environment. IEEE Access 9, 15643-15658.                               

https://doi.org/10.1016/j.erss.2019.01.021
https://doi.org/10.1016/j.ijhcs.2020.102538
https://doi.org/10.1186/s41072-022-00126-5

	1 Introduction
	2 Overview of ship energy efficiency measures
	2.1 Overview of implementing ship energy efficiency measures
	2.2 EEMs in assisting ship operations
	2.3 Incentives and challenges of implementing EEMs in shipping
	2.4 Trend of utilizing AI/ML and EEMs for IMO JIT

	3 Potentials of EEMs related to IMO JIT
	3.1 Terminologies to describe Port and Canal Congestion
	3.2 Statistics on waiting/anchor time at ports from official reports
	3.2.1  Statistics from UNCTAD reports
	3.2.2 Statistics from International Monetary Fund (IMF) reports
	3.2.3 Statistics from World Bank reports
	3.2.4 Report for the Port of Gothenburg

	3.3 Statistics on waiting/anchor time from research papers
	3.4 Conclusion remarks and potential EEMs for JIT operation.

	4 Challenges to achieve JIT operations
	4.1 Weather forecasts
	4.2 Ship performance models
	4.3 Coupling of hull-propulsion-engine

	5 Feasibility of AI/ML to implementing JIT
	5.1 Data-driven VPP models
	5.2 Grey-box models
	5.3 JIT feasibility from today’s models

	6 JIT analysis from AI-assist voyage optimization
	6.1 Ship performance modelling for cost functions
	6.1.1 Cost models of power consumptions
	6.1.2 Cost models of fuel consumptions

	6.2 Voyage optimization by different performance/cost models
	6.3 Deep sea navigation with different JIT notifications

	7 Situating fuel savings in the social practices of the shipping industry
	7.1 The current ship operation
	7.2 The possibility of changing practices
	7.3  The want and incentives to change practices

	8 Conclusions
	9 References

