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To optimally design a geotechnical engineering structure, an iterative decision-making process is11

required due to the prevailing uncertainty of the ground conditions. In this paper, the authors show12

that such sequential decision making processes can be analyzed and optimized quantitatively, ex-13

emplifying with the design of a surcharge for an embankment on soft soil. The paper proposes14

a risk-based decision-theoretic approach to finding the optimal preloading sequence, i.e. finding15

the optimal surcharge height and, when needed, adapting it to the observed settlement. Adopting16

heuristics – a parametric description of preloading strategies – the approach balances the cost of17

surcharge material against financial penalties related to project delays and insufficient overcon-18

solidation, which causes damage due to creep. The result is a preloading strategy that optimally19

accounts for information obtained from planned settlement measurements. The preloading plan-20

ning problem is solved for different decision settings, going from optimizing a constant surcharge21

height, to finding the optimal time for adjusting the surcharge. The findings highlight the potential22

of using risk-based decision planning in geotechnical engineering, in particular in combination23

with the observational method.24
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1. Introduction26

Design of geotechnical engineering structures implies decision making under uncertainty. The27

reason is mainly a lack of knowledge about the prevailing ground conditions, but there are also28

limitations in understanding and predicting the ground–structure interaction or temporal varia-29

tions. Managing these uncertainties is essential to achieving a design of satisfactory quality with-30

out unnecessary delays and at a reasonable cost. One approach to this challenge is to view the31

geotechnical design and execution as a sequential decision problem, which has been studied in32

other areas of engineering and decision making (e.g., Rosenstein & Barto, 2001; Memarzadeh33

et al., 2014; Malings & Pozzi, 2016; Papakonstantinou & Shinozuka, 2014; Bismut & Straub,34

2021; Wang et al., 2022). The aim is to find the sequence of decisions that minimize the expected35

design and construction costs. In the ideal case, the analysis should also consider operational and36

maintenance costs (Mendoza et al., 2021).37

A typical example of a geotechnical engineer’s decision under uncertainty is the design of em-38

bankments on soft soil prone to consolidation settlements. The embankment load initiates a con-39

solidation process toward a final long-term settlement, but neither the magnitude of this settlement,40

nor the time until it is reached, can be well predicted by the engineer; despite geotechnical pre-41

investigations being performed, there are typically considerable uncertainties regarding the soil’s42

hydraulic conductivity and deformation properties. Unless this uncertainty is carefully managed43

by a planned sequence of inspection decisions and mitigating actions during design and construc-44

tion, unwanted costly consequences such as time delays or residual settlements after completion45

of the superstructure may occur. The engineering challenge therefore essentially lies in find-46

ing a cost-effective design solution, considering not only the technical requirements at the time47

of project completion, but also the respective probabilities and costs of potential consequences48

caused by an unsuccessful design.49

One design alternative is to accelerate the consolidation by installing prefabricated vertical50

drains (PVDs) and preloading the embankment with a surcharge load (Figure 1) (Hansbo, 1979;51

Alonso et al., 2000; Walker & Indraratna, 2007; Indraratna et al., 2016; Geng & Yu, 2017; Guo52

et al., 2018; Nguyen et al., 2021). If a large enough surcharge load is used for a sufficiently long53
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time and unloaded correctly, project delay and residual settlements can be avoided.
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Figure 1: Preloading of an embankment with a surcharge of total height ∆H to accelerate consolidation. (GW: ground

water).

54

The cost of surcharge material can be high, e.g., due to limited availability. This entices the55

engineer to optimize the cost of the surcharge against the risk of insufficient preloading. The56

engineer can also consider increasing the height of the surcharge at a later time, in response to57

observations of too slow settlement rates. However, this combination of having both sequential58

decisions on the applied surcharge height and prevailing uncertainties in the outcomes makes this59

a challenging optimization problem.60

To the authors’ knowledge, this problem – nor any other geotechnical problem – has never61

been formalized as a sequential decision problem. A few studies have however used other, simpler62

decision theoretical analyses for other geotechnical applications: Einstein et al. (1978) showed an63

early application of decision theoretical principles; Zetterlund et al. (2011), Sousa et al. (2017), and64

Klerk et al. (2019) performed value of information analyses; and preposterior analyses were per-65

formed by Schweckendiek & Vrouwenvelder (2013), Spross & Johansson (2017), van der Krogt66

et al. (2022), Löfman & Korkiala-Tanttu (2022), and Spross et al. (2022).67

Probabilistic settlement analyses have recently been performed by e.g. Bari et al. (2016),68

Bong & Stuedlein (2018), and Löfman & Korkiala-Tanttu (2021). Addressing the design issue of69

embankment preloading with PVDs, Spross & Larsson (2021) specifically showed how a proba-70
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bilistically evaluated initial surcharge height can be used in an observational method to limit the71

probability of time delay and residual settlement in soft soil. Spross et al. (2019) discussed how72

settlement monitoring can be evaluated as a basis for a decision to increase the surcharge height.73

The specific decision-theoretical problem was highlighted, but not solved.74

In this paper, we propose a risk-based decision-theoretic approach to optimize the sequential75

decisions involved in embankment preloading. The sequence of decisions on initial surcharge76

height and later additions to the surcharge are optimized such that a desired settlement is achieved77

at a minimal expected cost, which reflects whether the settlement is achieved within a fixed time-78

frame. Construction delays as well as insufficient overconsolidation, which is a cause of residual79

settlement, are explicitly penalized.80

We use Spross & Larsson (2021)’s probabilistic preloading model to describe the settlement81

evolution. This model in based on Hansbo (1979)’s analytical PVD model and Larsson & Säll-82

fors (1986)’s analytical settlement model, in which the soil deformation properties are evaluated83

in constant-rate-of-strain tests. The probabilistic modelling of the soil properties is based on con-84

cepts developed by Phoon & Kulhawy (1999) and Müller et al. (2014, 2016). We extended the85

preloading model to allow simulation of soil settlement curves when the surcharge height is ad-86

justed, thereby enabling modelling of the effect of sequential surcharge height decisions on the87

settlement evolution.88

The outcome of the analysis is a preloading strategy, which prescribes how much surcharge89

to add conditional on settlement measurements. To tackle the added complexity of the optimiza-90

tion that arises from including these measurements in the decision process, we adopt a heuristic91

description of preloading strategies (Bismut & Straub, 2021). The optimization thereby yields92

optimized heuristic parameter values. We also investigate the influence of the assumed cost model93

on the obtained preloading plans.94

The paper is structured as follows: Section 2 introduces the investigated embankment preload-95

ing problem in further details. Section 3 presents the preloading model. Section 4 summarizes96

the proposed decision-theoretic framework and Section 5 introduces the key concept of heuristic97

strategies. Section 6 present the specifics of the geotechnical and cost models in the numerical98

investigations, followed by the presentation of the results in Section 7. We discuss possible exten-99
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sions of the investigation and adaptations of the method in Section 8.100

2. Example application101

To illustrate the proposed framework, we take the specific example introduced by Spross &102

Larsson (2021). We consider a section of an embankment built for the construction of Swedisch103

National Road 73, from southern Stockholm towards Nynäshamm. A cross section of the soil is104

shown in Figure 2.105

+6.2 m
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Dry crust
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Clayey gyttja

Till

–10.3 m

Embankment
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+2.2 m
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z

Figure 2: Cross-section of the soil under the planned embankment (from Spross & Larsson (2021), CC-BY 4.0,

http://creativecommons.org/licenses/by/4.0/)

The considered engineering problem is the planning of the amount of surcharge loading the106

embankment during an available preloading time, tmax, within which an acceptable soil consolida-107

tion is to be reached. The engineering questions are: 1) What surcharge height should be used? 2)108

When is a load increase warranted during the preloading time, and if so, how much more should109

be added?110

3. Geotechnical model and design requirements111

In this section, we present the probabilistic model adopted to describe the evolution of soil112

settlement and resulting overconsolidation ratio, first under constant load then under multi stage113

loading. We extend the model described in Spross & Larsson (2021) to consider staged preloading,114
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for the case of a surcharge increase. This geotechnical model considers 1) how primary compres-115

sion settlement develops with time, due to the weight of the embankment and the surcharge, and 2)116

the effect of the unloading of the surcharge on the overconsolidation ratio (OCR). The parameters117

of the model are uncertain and are modeled as random variables. More detailed and complex mod-118

els of settlement and consolidation behavior for staged construction are available in the literature119

(see, e.g., Walker & Indraratna, 2009; Yin et al., 2022), but we have opted for model simplicity to120

facilitate a focus on the optimization problem.121

3.1. Settlement evolution122

3.1.1. Constant surcharge123

Under a constant load ∆σ and known soil properties, a settlement trajectory with time follows124

S(t) =U(t)S∞, (1)

where125

U(t) = 1− [1−Uv(t)][1−Uh(t)] (2)

is the spatially averaged degree of consolidation at time t, and S∞ is the predicted long-term pri-126

mary compression settlement under load ∆σ . The vertical consolidation component Uv(t) is ob-127

tained from Terzaghi’s consolidation theory. For the horizontal consolidation component Uh(t)128

we apply Hansbo’s well-established analytical PVD model (Hansbo, 1979), which considers the129

horizontal coefficient of consolidation, the PVD influence zone radius, as well as the effects of130

drain spacing, soil disturbance and well resistance. Due to the specific consolidation behaviour of131

soft clays, S∞ is predicted as (Larsson & Sällfors, 1986)132

S∞(∆σ) =
l

∑
i=1

hcl,i∆εi(∆σ), (3)

where hcl,i is the thickness of the i-th clay layer. ∆εi is the strain increase caused by the load ∆σ ,133

which depends on parameters evaluated from constant-rate-of-strain tests, including the precon-134

solidation pressure and soil moduli (Spross & Larsson, 2021).135
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In the performed analyses, the embankment and surcharge are assumed to be of the same136

material, hence the load ∆σ is proportional to the material unit weight and to its total height.137

3.1.2. Staged preloading138

If the surcharge is increased by ∆σadd after some preloading time, tadd , the adjusted settlement139

trajectory is modelled as:140

S(t) =

U(t)S∞(∆σ), for 0≤ t < tadd

U(t− tshi f t)S∞(∆σ +∆σadd), for t ≥ tadd.

(4)

The first part of the trajectory is equivalent to Equation (1). The second part contains, due to the141

load increase, a recalculated, larger long-term primary consolidation settlement S2,∞ = S∞(∆σ +142

∆σadd) following Equation (3) and a corresponding degree of consolidation U(t−tshi f t), for which143

a hypothetical zero degree of consolidation occurs at time tshi f t = tadd − t0. To determine t0, we144

note that the settlement curve is continuous at tadd , which results in the degree of consolidation:145

U(t0) =
U(tadd)S1,∞

S2,∞
, (5)

where U(t) is obtained from Equation (2). Figure 3 illustrates tshi f t and the resulting settlement146

curve for staged preloading.147

Figure 3: Effect of the added surcharge at time tadd on the settlement, where tshi f t = tadd− t0.
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3.2. Overconsolidation ratio148

3.2.1. Constant surcharge149

The effect of secondary consolidation is considered through the OCR. The secondary con-150

solidation is limited if the preloading achieves sufficient OCR in the middle of the clay stratum151

through unloading at time t (Alonso et al., 2000; Han, 2015). This quantity can be obtained as152

OCR(t) =
σ ′0 +U(t)∆σsur

σ ′0 +U(t)∆σemb
(6)

where σ ′0 is the initial vertical stress increase in the middle of the clay stratum, ∆σsur is the ver-153

tical stress caused by the preloaded embankment (i.e. including the surcharge), and ∆σemb is the154

remaining stress increase directly after the unloading of the surcharge (see Figure 1).155

3.2.2. Staged preloading156

The effect of the added load on the OCR at unloading depends on the preloading time of both157

the initial and any added load. To our knowledge, there are no validated analytical models for this158

issue. Therefore, we use the following reformulation of Equation (6) to capture the effect on the159

OCR at the unloading at time t, when it occurs after a previous load increase at time tadd:160

OCR(t) =
σ ′0 +U(t)∆σsur +∆U(t)∆σadd

σ ′0 +U(t)∆σemb
, (7)

where ∆U(t) =U(t− tshi f t)−U(tadd− tshi f t). Consequently, the effect on the OCR of the added161

load will depend on the degree of consolidation achieved along the recalculated settlement trajec-162

tory after the load has been added. The OCR for staged preloading is depicted in Figure 4.163

3.3. Uncertainties in the soil parameters164

The presented soil consolidation model of Equations (1) to (7) depends on parameters for the165

soil properties and PVD design. The soil properties are modeled as random variables with an166

associated probability distribution either evaluated from constant-rate-of-strain (CRS) oedometer167

tests, or assigned based on engineering judgment when data on variability were not available.168

The parameters in Hansbo’s PVD model (Hansbo, 1979) are assumed constant. The complete169

probabilistic model is described in detail by Spross & Larsson (2021) and is therefore omitted170
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Figure 4: Effect of the surcharge added at time tadd on the OCR, using Equation (6) with initial surcharge ∆σsur corre-

sponding to height ∆H0 for the first part of the curve until t = 36[weeks] and Equation (7) with ∆σadd corresponding

to additional surcharge height ∆H1. The resulting curve is located below the one for the case where the total surcharge

(initial and additional) is applied directly at t = 0, with Equation (6).

for brevity, as the probabilistic soil characterization per se is not studied here. Random trajectory171

settlements are depicted in Figure 5.172

3.4. Settlement and OCR requirements173

The risk-based planning framework for optimal preloading described in Section 4 requires the174

definition of performance criteria, such that a preloading decision can be assessed in terms of175

its success to reach the desired goals. These goals are here expressed in terms of sufficient soil176

consolidation, through a settlement target starget , and an OCR threshold, OCRtarget .177

3.4.1. Settlement target178

Due to the uncertainty associated with the ground properties, the long term settlement S∞179

caused by the load of the completed embankment, ∆σemb, is also uncertain. To ensure an ac-180

ceptable residual (post-construction) primary consolidation settlement, Spross & Larsson (2021)181
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Figure 5: 100 sample soil settlement trajectories for an initial surcharge h0 = 0[m] (no additional surcharge). One

such trajectory is highlighted in black. For each trajectory, the value of the long-term settlement S∞ is obtained with

Equation (3). The histogram on the right shows the resulting distribution of S∞. The condition Pr(S∞ > starget) =

pFT = 5% (see Section 3.4.1) results in starget = 1.27[m].

proposed that a target settlement, starget , be attained during the preloading, such that182

Pr(S∞(∆σemb)> starget) = pFT , (8)

where pFT is an acceptable, fixed, probability. In the numerical investigations, it is set to 5% to183

represent a serviceability limit state.184

By generating sample values of S∞(∆σemb) from the defined probabilistic model and Equa-185

tion (3), starget is obtained as the quantile value corresponding to pFT (Figure 5). The value of186

starget is thereafter used in the decision framework described in Section 4 to define penalty mech-187

anisms.188

3.4.2. OCR threshold189

Residual secondary consolidation settlement (creep) can be significantly limited by ensuring190

that the OCR after unloading is sufficiently high (Alonso et al., 2000; Han, 2015). Here it is191

required that OCR exceeds OCRtarget = 1.10 in the middle of the soft soil stratum after unloading of192
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the surcharge. This is in line with the general technical requirements and guidance for geotechnical193

works issued by the Swedish Transport Administration (2013a,b).194

4. Optimal preloading strategies195

To find the optimal preloading strategy, we rely on the decision analysis framework of Raiffa &196

Schlaifer (1961), which formalized decision problems under uncertainty with varying information.197

This enables the optimization of the surcharge decisions, which can be done in a sequential manner198

based on measurements of the settlement. Further general information on sequential decision199

making can be found in Kochenderfer (2015).200

4.1. Elements of the decision analysis201

A decision analysis under uncertainty is based on a probabilistic model of the system, a model202

of the decision alternatives as well as a utility or cost function. These models are summarized in203

the following.204

4.1.1. Probabilistic model205

A complete probabilistic model describing the evolution of the system is required. It must206

account for the effects of actions affecting the system (see Section 4.1.2 below). This model must207

also reflect the uncertainty in information collection, through a likelihood function (Bismut &208

Straub, 2022).209

In the investigated engineering problem, we use the soil consolidation model described in Sec-210

tion 3. Information on the state of the system is obtained as a measurement Mt1 of the settlement211

St1 at time t1. The Mt1 is related to the true value of the settlement by an additive measurement212

error ε:213

Mt1 = St1 + ε (9)

Here, we restrict the numerical investigation to error-free measurement, i.e., ε = 0.214
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4.1.2. Decision alternatives215

The decision alternatives, i.e., the available mitigating actions and other planning decisions,216

must be modeled. In the context of the preloading, these decision alternatives can include the217

height of the initial surcharge, as well as the timing and amount of additional surcharge that is218

applied later. The description of the available decision alternatives should also include operational219

constraints that must be accounted for in the planning process.220

4.1.3. Utility and cost221

The effects of a decision are evaluated in terms of utility, which reflects the preferences of the222

decision maker. Ultimately, the optimal decision is selected as the one that maximizes the expected223

utility. Assuming a risk-neutral context, the utility can simply translate to costs associated with224

the actions and the system performance. In this case, utility is expressed in monetary terms.225

For the preloading example, we first quantify the cost Csur,i of adding a preloading surcharge226

of height ∆Hi. This cost should account for factors, such as material costs, mobilization costs,227

material availability at the time of the decision, and the need of berms for slope stability. The228

second cost component penalizes the project delay Cdelay, which expresses the fact that sufficient229

settlement (starget) has not been reached within a dedicated time period. In the example, this230

penalty is expressed as a function of the additional time required for reaching starget (without fur-231

ther preloading intervention). Finally, the third cost component COCR quantifies the consequences232

of residual secondary consolidation settlement (creep) caused by insufficient overconsolidation233

at time of unloading (see Section 3.4.2). Thus, the COCR reflects a reduced serviceability of the234

superstructure.235

The total cost Ctot incurred at the completion of the preloading operation is the sum of the three236

cost components:237

Ctot = ∑
i

Csur,i +Cdelay +COCR (10)

If relevant, discounting can be used to reflect the decreasing value of an investment over time,238

but this effect is however ignored here.239
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4.2. Decision settings and influence diagrams240

With the above elements specified, a decision setting (DS) is defined. A typical compact241

graphical representation of a DS is the influence diagram (ID) (Jensen et al., 2007), which de-242

picts the available decisions/actions and the utilities (costs). Round nodes represent uncertain243

outcomes (which are described by the probabilistic model), square nodes are the decisions and244

lozenge-shaped nodes are the utility. The nodes are connected by directed edges, which represent245

stochastic, causal and monetary dependence. When the problem involves sequential decisions,246

future information cannot influence past decisions.247

The decision setting is usually determined by operational constraints, as well as the level of248

complexity of the considered decision sequence. For this study we construct IDs for three different249

decision settings.250

DS #1: Surcharge applied at t = 0251

In DS #1, we consider the case where the surcharge is applied only at the time of constructing252

the embankment, i.e., at t = 0. The only decision variable is the height ∆H0 of this surcharge.253

The settlement at time t, St , and the achieved overconsolidation ratio if unloaded at time t, OCRt ,254

are both probabilistic quantities, which depend on the applied surcharge as per the models of255

Section 3.256

The overall decision process is summarized by the ID of Figure 6. The square node ∆H0257

indicates that first a value of ∆H0 is chosen, at a cost Csur,0(∆H0). The now fixed ∆H0 influences258

the evolution of the settlement St and the overconsolidation ratio at unloading OCR f in as well259

as the time ttarget when the target settlement is reached, defined as S(ttarget) = starget . Monetary260

consequences due to project delay and residual creep result from these quantities. The cost model261

used to quantify the consequences is presented in Section 6.2.262

DS #2 and DS #3: Surcharge applied at t = 0 and adjusted at time t1263

DS #2 and DS #3 consider that there is an opportunity to add a surcharge of height ∆H1 at264

a fixed time t1, on top of the initial surcharge height ∆H0. The decision on how much to add is265

based on a measurement Mt1 of the settlement at time t1 (see Section 4.1.1). The overall decision266
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4.3. Optimal decision making269

The most desirable outcome of the decision process is the one with the lowest cost. Due to270

the uncertain nature of the soil parameters, the outcomes of a sequence of decisions are uncertain,271

hence so is the total cost. The optimal sequence of decisions is therefore that which result in the272

minimum expected total cost (Raiffa & Schlaifer, 1961). For DS #1, the optimal decision for ∆H0273

is therefore defined as:274

∆H∗0 = argminE [Ctot(∆H0)] , (11)

where E [Ctot(∆H0)] is the expected value of the total cost evaluated with Equation (10), when275

an initial preloading surcharge of height ∆H0 is applied. This expected total cost thus accounts276

for the associated risk E[Cdelay(∆H0)]+E[COCR(∆H0)] of not achieving the desired settlement or277

overconsolidation ratio within the available preloading time.278

The formulation of the optimization problem is not as straightforward for DSs, where there279

are one or more opportunities to adjust the surcharge after the initial surcharge is applied, i.e. DS280

#2 and DS #3. In these sequential decision problems, the optimal actions depend on the past ob-281

servations. Therefore, one must find the optimal function that maps past observations to actions.282

In general, this type of problem is hard to solve and an exact solution becomes intractable with283

increasing number of decision or observation steps (Papadimitriou & Tsitsiklis, 1987). Approxi-284

mate solutions are possible, e.g., via partially observable Markovian decision processes (POMDP)285

or reinforcement learning (Porta et al., 2005; Roy et al., 2005; Silver & Veness, 2010; Mnih et al.,286

2013; Memarzadeh & Pozzi, 2016; Papakonstantinou et al., 2018; Andriotis & Papakonstantinou,287

2019).288

To solve the general sequential decision problem, it is convenient to define preloading strate-289

gies S, which compactly prescribe the sequence of decisions. A strategy consists of a set of rules290

which prescribes how much surcharge to add at any time as allowed by the DS. For example, for291

DS #1, a strategy simply prescribes the surcharge height at time t = 0; for DS #2, it prescribes the292

surcharge height at time t = 0 and gives a rule at time t1, which can be based on settlement mea-293

surements, to adjust the surcharge. In DS #3, the strategy additionally prescribes the time t = ti at294
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which to collect the settlement measurement and adjust the surcharge.295

Generalizing the notation to any preloading strategy S, the expected total cost associated with

a preloading strategy S is thus evaluated as:

E [Ctot(S)] = E[Csur(S)]+E[Cdelay(S)]+E[COCR(S)]. (12)

The optimal preloading problem exposed in Section 4.3 is equivalent to finding the preloading296

strategy that minimizes the expected total cost:297

S∗ = argmin
S

E [Ctot(S)] (13)

In general, E [Ctot(S)] cannot be evaluated analytically. A Monte Carlo (MC) approximation298

can instead be obtained using the geotechnical model of Section 3. The latter enables the gener-299

ation of nMC random settlement trajectories, S(k)
t , and OCR at unloading OCR(k)

f in, obtained from300

surcharge sequences ∆H(k)
0 , ∆H(k)

1 , etc., with 1≤ k ≤ nMC. A total cost can be computed for each301

of these trajectories as per Equations (10), (16), (18) and (19). The MC approximation of the302

expected total cost of a preloading strategy S is therefore303

E [Ctot(S)]'
1

nMC

nMC

∑
k=1

Ctot

(
S
(k)
t ,OCR(k)

f in

)
(14)

The estimate improves with the number of samples nMC.304

5. Heuristics for optimal preloading strategies305

The problem of finding the best strategy is equivalent to finding the best sequence of decision306

and an exact solution to Equation (13) is still intractable in general. To address this challenge, we307

reduce the space of possible strategies that are considered in the optimization, following Bismut &308

Straub (2022). Since strategies are sets of rules, the proposed approach considers only strategies,309

which are described by specific sets of rules. We call these heuristics. The heuristic chosen for310

this approach is typically formulated with simple statements (the rules), in which a number of311

parameters w = [w1;w2; ...;wn] intervene. For example, we define the following heuristic for DS312

#2:313
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Figure 8: Three sample trajectories for a strategy parametrized with Heuristic 2A (Section 6.3.2), with h0 = 0.95m,

h1 = 1.04m and sth = 0.77m. The time at which the curves intersect with the level starget corresponds to ttarget . For

tmax = 72[weeks], we see that only one of these trajectories satisfies ttarget < tmax and does not lead to project delay.

– The initial surcharge ∆H0 is h0;314

– The additional surcharge ∆H1 at time t1 = 36 weeks is h1 if the measured settlement at this315

time is lower than a threshold sth.316

The parameters w for this heuristic are h0, h1 and sth. In this DS, t1 is fixed to 36 weeks. A317

preloading strategy following this heuristic, assigned chosen parameters h0 = 0.94m, h1 = 1.04m318

and sth = 0.77m, will react to different trajectories as shown in Figure 8. The total cost incurred319

will depend on a) the strategy and b) the settlement occurring.320

The expected costof a strategy with fixed parameters can be estimated with Equation (14).321

For a given heuristic, there is a set of parameter values that optimize the expected cost. We call322

the associated strategy the optimal heuristic strategy. Thus, for a given heuristic and associated323

parameters w = [w1;w2; ...;wn], the preloading problem is reduced to finding324

w∗ = argminE [Ctot(S(w))] (15)
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As the heuristic formulation of the optimization problem operates in a restricted strategy space,325

it yields a sub-optimal preloading strategy. However, the heuristic parametrization enables the326

inclusion of operational constraints and provides easily interpretable strategies. Furthermore, the327

definition of preloading strategies with heuristics makes sense from the point of view of geotech-328

nical engineering practice, as most preloading strategies would indeed be defined with such simple329

rules. In addition, several heuristics can be compared and the better-performing strategy selected.330

In the numerical investigations we discuss the impact of different heuristic choices, in particular331

the impact of increasing the number of heuristic parameters.332

The optimal parameter values w∗ are the solution of a noisy optimization problem where the333

objective function is expressed as an expected value (Rubinstein & Kroese, 2004), for which no334

analytical expression exists. The crudest approach to this problem is to search among preselected335

values of heuristic parameters (for instance on a grid), estimate the expected cost with Equa-336

tion (14) at each point with a sufficiently high number of samples nMC and finally select the most337

cost-efficient strategy. The disadvantages of this approach are that the search is restricted to a338

finite number of strategies; equal computational budget, nMC, is attributed to all parameter values,339

including those that are sub-optimal and yield a high expected cost; and for a high number n of340

heuristic parameters the grid search leads to an infeasible compuational effort.341

A more efficient approach is a sampling-based optimization, such as presented in Appendix342

A, which was previously developed for this purpose in Bismut & Straub (2021) and based on343

the cross-entropy (CE) method (Rubinstein & Kroese, 2004). An initial sampling density over344

the heuristic parameters w is chosen, for instance a multivariate Gaussian distribution. At each345

iteration and until convergence is reached (see Figure 9) – or until a maximum number of iterations346

is exceeded – nS sample sets of parameter values are generated from the sampling density. For347

each sample set, the expected cost of the associated strategy is evaluated with nMC samples. The348

sample sets are ranked in increasing order of expected cost. The parameters of the CE sampling349

density for the next iteration are fitted to the top nCE sample sets, the elite samples. We have350

previously demonstrated this method on other sequential decision planning problems (Bismut &351

Straub, 2021; Bismut et al., 2022). The method stands out for the simplicity of its implementation352

and robustness.353
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Figure 9: Convergence of heuristic parameters in the CE optimization for Heuristic 2A defined in Section 6.3.2.

6. Numerical investigations354

6.1. Probabilistic model setup355

The probabilistic model setup is described in Spross & Larsson (2021). The settlement target356

is computed for pFT = 0.05, and is obtained as starget = 1.27[m].357

6.2. Cost model358

The Csur,i corresponds to the cost of adding surcharge of height ∆Hi. It increases with the total359

surcharge height, and accounts for the cost of berms needed to ensure slope stability (see Figure 1).360

It is evaluated from the cost of total surcharge height Htot :361

Csur(Htot) =

Htot · csur if Htot ≤ 1m

1.25 ·Htot · csur otherwise.
(16)

The cost attributed to each increase ∆Hi of surcharge on top of existing surcharge Htot is computed362

as363

Csur,i(∆Hi) = (Csur(Htot +∆Hi)−Csur(Htot)) · fadd,i (17)
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where the factor fadd,i ≥ 1 accounts for additional costs incurred by increasing the surcharge at a364

later time t > 0. Note that the cost of the remaining embankment material is not included here, as365

it is the same for all possible scenarios.366

In the model, project delay occurs when the settlement trajectory either does not meet starget367

within the available preloading time tmax (ttarget > tmax) or is unable to meet starget at all (ttarget >368

tlim) (see Figure 8). The associated penalty is369

Cdelay(ttarget) =

0 if ttarget ≤ tmax

cdelay · (min(tlim, ttarget)− tmax) otherwise,
(18)

where cdelay represents the penalty per week of delay.370

Finally, the penalty associated with residual creep settlement in the completed structure due to371

insufficient OCR (see Section 3.4.2) is evaluated with the logistic function372

COCR(OCR f in) =
cOCR

1+ exp
(
−1.075−OCR f in

4.5·10−3

) (19)

where OCR f in is the OCR at unloading at time ttarget or tlim if the settlement target has not been373

achieved in time. This smoothed step function approaches cOCR when OCR f in < 1.05, and 0 when374

OCR f in > 1.1.375

The cost factors csur, cdelay and cOCR for the initial numerical investigation are given in Table 1.376

The effect of varying these factors is shown in Section 7.1.377

6.3. Heuristic parametrizations378

We investigate the following heuristics for the different DSs. The heuristic parameters for each379

defined heuristic are indicated in bold.380

6.3.1. DS #1381

As explained in Section 4.2, the optimization for this setting only consists in optimizing the382

initial surcharge height ∆H0, thus the corresponding heuristic, with single heuristic parameter h0,383

is simply384
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Table 1: Parameters of the cost model

Cost factor Value

csur 3.45 ·106[SEK/m]

cdelay 3 ·105[SEK/week]

cOCR 2 ·107[SEK]

fadd,0 1

fadd,1 1

Heuristic 1: h0 ≥ 0

1. ∆H0 = h0.
385

6.3.2. DS #2386

For DS #2, we investigate the performance of two different heuristics in approximating the387

optimal preloading strategy. A preloading strategy described with Heuristic 2A specifies the initial388

surcharge height, and adjusts it by adding a surcharge height if the measured settlement is lower389

than a threshold.390

Heuristic 2A: h0 ≥ 0, h1 ≥ 0, sth ≥ 0

1. At time t = 0, add surcharge of height ∆H0 = h0.

2. Obtain measurement mt1 at time t1 = 36[weeks].

3. If mt1 < sth, add surcharge ∆H1 = h1. Otherwise ∆H1 = 0.
391

With Heuristic 2B, the strategy adjusts the height of the added surcharge based on the differ-392

ence d between the measured settlement and the threshold. This height adjustment is defined by393

a sigmoid function varying between 0 and maximum added height h1, characterized by a curve394

steepness a. When a = 0, this sigmoid function is a step function.395

21



Heuristic 2B: h0 ≥ 0, h1 ≥ 0, sth ≥ 0, a≤ 0

1. At time t = 0, add surcharge of height ∆H0 = h0.

2. Obtain measurement mt1 at time t1 = 36weeks.

3. Compute d = mt1− sth

4. Add surcharge ∆H1 =



0 d ≤ a

2h1

(
d−a
2a

)2

a≤ d ≤ 0(
1−2

(
d−a
2a

)2
)

h1 0≤ d ≤−a

h1 d ≥−a

.

396

6.3.3. DS #3397

Heuristic 3 is the same as 2B, with the additional freedom to choose the time t1 at which the398

settlement is measured and the surcharge height is adjusted. The t1 is thus an additional heuristic399

parameter.400

Heuristic 3: h0 ≥ 0, h1 ≥ 0, sth ≥ 0, a≤ 0, t1 ∈ {1,2,3, ..., tmax}

1. At time t = 0, add surcharge of height ∆H0 = h0

2. Obtain measurement mt1 at time t1.

3. Compute d = mt1− sth

4. Add surcharge ∆H1 =



0, d ≤ a

2h1

(
d−a
2a

)2

, a≤ d ≤ 0(
1−2

(
d−a
2a

)2
)

h1, 0≤ d ≤−a

h1, d ≥−a.

.

401
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6.4. Computational setup402

For the CE method, we fix nCE = 100, nE = 30 and nMC = 10. On a 8-core CPU 3.2GHz403

machine, optimizing the heuristic parameters for a given heuristic takes ca. 4min. The expected404

cost of the resulting optimized strategy is evaluated with nMC = 104 samples.405

7. Results406

We apply the CE method to obtain the optimal parameter values and associated expected costs407

for the different DSs and heuristics defined above, assuming the cost model of Table 1. The results408

are summarized in Table 2.409

Table 2: Optimal heuristic parameters and associated expected costs

DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 Heuristic 2A Heuristic 2B Heuristic 3
h0 [m] 1.05 0.98 0.96 0.95
h1 [m] - 1.06 1.08 1.81
sth [m] - 0.71 0.73 0.37
a [m] - - −0.15 −0.28
t1 [weeks] - 36(∗) 36(∗) 20
Expected cost [106SEK] 8.11 6.54 6.29 6.06
Std. dev. cost [106SEK] 7.4 6.3 6.0 5.6
(∗)Value is not optimized but fixed

The expected costs of the optimal heuristic strategies obtained for each of the DS decrease410

from DS #1 to DS #3. This is in agreement with the fact that DS #1 is more restrictive in terms411

of available actions than DS #2, and in turn DS #2 is more restrictive (because the adjustment412

time is fixed) than DS #3. Table 2 also reports the estimated standard deviation of the total cost.413

For the investigated heuristics, the coefficient of variation of the total cost for the optimal strategy414

varies around 95%. The standard error of the MC estimates of the expected costs is therefore 1%,415

which ensures a sufficient accuracy to rank the heuristics according to the estimated expected cost416

of their optimal strategies.417

The optimal initial surcharge prescribed by Heuristic 1 in DS #1 is higher than the initial418

surcharge prescribed in DS #2 and DS #3. This shows that the heuristics chosen for DS #2 and DS419
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#3 exploit the fact that measurement information enables an optimized adjustment of surcharge.420

For DS #2, we note that Heuristic 2B performs better than Heuristic 2A in terms of expected421

cost; hence the smoothed step function for the selection of the adjusted load is a better heuristic422

than the simple step function.423

Figure 10 depicts the breakdown of the costs for each optimal heuristic strategy. We observe424

that Heuristic 3 yields a lower risk of delay than Heuristic 2A and 2B and a lower expected total425

cost, even though it applies on average a higher total surcharge. Therefore, the choice of time426

t1 to adjust the surcharge plays a significant role in efficiently controling the settlement. The427

expected penalty associated with insufficient OCR is here negligible in comparison with the other428

cost components, for all heuristics.429

Figure 10: Breakdown of the expected cost of the optimal strategies for the different DSs and heuristic.

Figure 11 illustrates the effect of adjusting the surcharge at time t1 = 36 on the settlement430

trajectory, following the optimal strategy for Heuristic 2A. The distribution of the settlement at431

time tmax is obtained from 104 sample trajectories for both the case where only the initial surcharge432

is applied and not adjusted at t = 36 weeks and the case where the surcharge is adjusted according433

to the optimal strategy. With the load adjustment action, the settlement trajectories that already434

reach the target at tmax with the sole initial load are unaffected, while a portion of trajectories which435

would not have achieved starget at tmax are now compliant, i.e., the probability Pr(Stmax < Starget)436

decreases by enabling the adjustment of the surcharge. Most of the corrected trajectories will437

nevertheless incur a delay penalty, which is optimal under the assumed cost model of Table 1.438

The effect of the different heuristics on the final settlement at time tmax and on the OCR at439
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Figure 11: Distribution of settlement at tmax for the optimal strategy for DS #2, Heuristic 2A, obtained from 104 sample

settlement trajectories. The first histogram represents the distribution of the settlement if only the initial surcharge of

height h0 = 0.95m is applied. The second histogram shows the distribution of the settlement obtained by adjusting

the surcharge at t = 36 weeks, as prescribed by the strategy (see Table 2). starget is also indicated.

unloading is depicted in Figures 12a and 12b. Heuristics 2A, 2B and 3 can be distinguished from440

Heuristic 1, where the preloading is only added at t = 0. The uncertainty in the settlement reduces441

when the surcharge is adjusted based on the measured settlement, and the probability that Stmax442

is larger than starget increases from Heuristic 1 to Heuristic 3. It is worth noting that the optimal443

strategies for Heuristics 2A, 2B and 3 result in a larger probability that the OCR at unloading is444

smaller than the critical value 1.1, compared to Heuristic 1, hence these heuristics can balance445

both penalties associated with insufficient settlement and OCR against the applied surcharge in a446

more efficient manner.447

7.1. Sensitivity to the cost model448

We vary the parameters cdelay and cOCR and fadd,1 of the cost model (Table 1). Figure 13449

compares the expected cost functions for DS #1 for the original cost model of Table 1 against450

the case where the delay penalty factor cdelay is doubled and the case where the consequences for451

insufficient OCR are increased 10-fold. Varying fadd,1 does not affect the expected costs within452

DS #1. We note that the location of the minimum expected cost is not as sensitive to an increased453

penalty for insufficient OCR as with an increased factor cdelay, which results in a higher initial454

surcharge.455
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(a)

(b)

Figure 12: Distribution of (a) settlement achieved at tmax and (b) of the OCR at unloading for the optimal heuristic

strategies (see Table 2). The area of the histograms to the left of the dotted line represents for each optimal heuristic

strategy, in (a) the probability Pr(Stmax < starget), and in (b) the probability Pr(OCR f in < 1.1).

Tables 3 to 5 report the optimal heuristic parameters and expected costs for the various cost456

models. The expected costs for the different heuristics, under different cost models still follow the457

cost ranking observed for the original cost model in Table 2.458

Increasing the surcharge penalty fadd,1 in Table 3 notably results in a later optimal addition of459

the surcharge in Heuristic 3, in comparison to the optimal strategy for Heuristic using the original460

cost model, as shown in Table 2. For the increased OCR penalty in Table 5, the coefficient of461

variation of the total cost when applying the optimal heuristic strategies is significantly lower than462

for the original cost model, around 80%.463
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(a) (b)

(c)

Figure 13: Expected costs for DS #1 as a function of ∆H0 = h0: (a) for the original cost model ; (b) for an increased

factor cdelay = 6 ·105 SEK/week ; and (c) for an increased factor cOCR = 108SEK.

8. Discussion464

8.1. Designing the strategies465

The preloading problem is re-formulated as a sequential decision problem, with different de-466

cision settings. Preloading strategies are described through heuristics with associated parameters.467

We observe that the more flexibility in decision the heuristic provides, the more cost efficient the468
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Table 3: Optimal heuristic parameters with an increased surcharge addition penalty factor fadd,1 = 1.3

DS #1 DS #2 DS #3
Parameter Unit Heuristic 1(∗∗) Heuristic 2A Heuristic 2B Heuristic 3
h0 [m] 1.05 0.97 0.91 0.95
h1 [m] - 1.02 1.19 1.86
sth [m] - 0.69 0.64 0.61
a [m] - - −0.27 −0.40
t1 [weeks] - 36(∗) 36(∗) 40
Expected cost [106SEK] 8.11 6.97 6.92 6.84
Std. dev. cost [106SEK] 7.4 7.0 6.9 6.8
(∗)Value is not optimized but fixed
(∗∗)Values from Table 2

Table 4: Optimal heuristic parameters for increased cdelay = 6 ·105[SEK/week]

DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 Heuristic 2A Heuristic 2B Heuristic 3
h0 [m] 1.38 0.96 0.95 0.97
h1 [m] - 1.25 1.35 2.4
sth [m] - 0.81 0.73 0.40
a [m] - - −0.23 −0.44
t1 [weeks] - 36(∗) 36(∗) 23
Expected cost [106SEK] 10.23 7.90 7.85 7.34
Std. dev. cost [106SEK] 11.28 10.0 10.1 9.0
(∗)Value is not optimized but fixed

Table 5: Optimal heuristic parameters for increased cOCR = 108[SEK]

DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 Heuristic 2A Heuristic 2B Heuristic 3
h0 [m] 1.14 1.09 1.07 0.99
h1 [m] - 0.85 2.48 2.63
sth [m] - 0.71 0.55 0.53
a [m] - - −0.44 −0.51
t1 [weeks] - 36(∗) 36(∗) 39
Expected cost [106SEK] 8.17 7.26 7.04 6.67
Std. dev. cost [106SEK] 8.5 5.6 5.5 5.8
(∗)Value is not optimized but fixed
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resulting optimal heuristic strategy is.469

Other heuristics than those proposed can be investigated, and might result in lower expected470

costs. For example, one might replace the sigmoid function of Heuristic 2B by another func-471

tion. As settlement measurement is typically available at weekly intervals, a heuristic could be472

formulated such that the adjusted surcharge at time t1 depends on an observed trend. In this case,473

how the measurements are processed for the purpose of decision-making, hence the trend predic-474

tion model, belongs to the definition of the heuristic. Ultimately, one could define a heuristic to475

address the problem where continuous settlement measurement is available, with near-real-time476

decision support.477

The advantage of the heuristic approach to the planning of preloading decisions is that the478

resulting strategies are interpretable, since the decision rules are explicitly defined through the479

chosen heuristic. This also also entails that the heuristic can encode geotechnical expertise. The480

flexibility in the formulation of the decision setting through the influence diagrams and the cost481

functions also enables the analyst to integrate additional constraints. For instance, the uncertainty482

in the availability of preloading material could be explicitly modeled, such that there is a certain483

probability of obtaining the requested material at a given point in time. We note that the coefficient484

of variation of the total cost is large, around 100%. If the decision-maker wanted to prioritize485

strategies that reduced this variability, a risk-averseness behavior could be included in the objective486

function of Equation (13).487

8.2. Integration with the observational method488

The decision-theoretical framework described in this paper is suitable to apply in combination489

with the observational method, which was first defined as a design approach by Peck (1969) and490

today is accepted into design codes like Eurocode 7 (CEN EN 1997-1:2004). The observational491

method implies that the geotechnical engineer establishes a monitoring plan with thresholds that492

trigger prepared design changes specified in an action plan, thereby adjusting the initial design to493

fit better to the actual ground conditions.494

In the context of a sequential decision problem, such thresholds and design changes can be495

formulated as heuristics, allowing the geotechnical engineer not only to compare conceptually496
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different options of monitoring and action plans, but also to optimize their included threshold val-497

ues and specified actions. The evaluated decision settings in this paper illustrate this clearly: the498

heuristics 2A, 2B and 3 can be seen as three different options of monitoring and action plans, while499

Table 2 specifies the optimized heuristics for the plans and also shows their respective expected500

costs. Such risk-based optimization of monitoring and actions plans is a considerable leap forward501

to the current practice, where monitoring and action plans usually are defined based on determin-502

istic analyses, although probabilistic approaches are emerging (e.g., Spross & Gasch, 2019).503

9. Conclusion504

We have formalized a geotechnical problem as a sequential decision problem, and proposed505

a heuristic approach to finding optimal strategies. We applied this framework to an embankment506

preloading problem and highlighted how the decision setting, chosen heuristics and cost model507

affect the optimal preloading strategies. With this probabilistic framework, the preloading deci-508

sions are quantitatively optimized under uncertainty. This framework is not limited to embank-509

ment design and construction, but is designed as a decision tool to be extended to a vast range510

of geotechnical engineering applications, especially those to which the observational method is511

applied.512

Appendix A. Cross entropy optimization algorithm513

Algorithm 1 describes the steps of the CE method used for the optimization of the heuristic514

parameters. The algorithm also applies a smoothing operation, which is not described here, to515

prevent convergence to local minima (refer to Kroese et al. (2006) for more details). The optimal516

cost is obtained with Equation (14) evaluated in S(w∗).517

The sampling density is here chosen as a truncated normal for positive (or negative) param-518

eters. For integer parameters, the sampled value is rounded to the nearest integer. The updated519

distribution parameters λ∗ of the multivariate truncated normal distribution are the mean and co-520

variance of the elite samples.521

The CE samples obtained can also be used to surrogate the expected cost function, for example522

using Gaussian process regression (Bismut et al., 2022).523
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Algorithm 1: Cross entropy method applied to noisy optimization
input: CE sampling density P(·|λ∗), initial sampling distribution parameter λ∗, number of

CE samples per iteration nCE , number of elite samples nE , number of sample

settlement trajectories nMC, maximum number of iterations nmax.

1 l← 0;

2 while l < nmax do

3 for m← 1 to nCE do

4 generate random heuristic parameter values w(m) from sampling density P(·|λ∗);

5 generate nMC settlement trajectories and measurement following strategy S(w(m));

6 evaluate the expected total life-cycle cost qm with nMC samples (Equation (14));

7 end

8 sort (w(1), ..,w(nCE)) in increasing order of qm;

9 fit the distribution parameter λ∗ to the nE elite samples;

10 l← l +1;

11 end

12 w∗← mean of P(·|λ∗);

13 return w∗
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