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Abstract

To optimally design a geotechnical engineering structure, an iterative decision-making process is
required due to the prevailing uncertainty of the ground conditions. In this paper, the authors show
that such sequential decision making processes can be analyzed and optimized quantitatively, ex-
emplifying with the design of a surcharge for an embankment on soft soil. The paper proposes
a risk-based decision-theoretic approach to finding the optimal preloading sequence, i.e. finding
the optimal surcharge height and, when needed, adapting it to the observed settlement. Adopting
heuristics — a parametric description of preloading strategies — the approach balances the cost of
surcharge material against financial penalties related to project delays and insufficient overcon-
solidation, which causes damage due to creep. The result is a preloading strategy that optimally
accounts for information obtained from planned settlement measurements. The preloading plan-
ning problem is solved for different decision settings, going from optimizing a constant surcharge
height, to finding the optimal time for adjusting the surcharge. The findings highlight the potential
of using risk-based decision planning in geotechnical engineering, in particular in combination

with the observational method.
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1. Introduction

Design of geotechnical engineering structures implies decision making under uncertainty. The
reason is mainly a lack of knowledge about the prevailing ground conditions, but there are also
limitations in understanding and predicting the ground—structure interaction or temporal varia-
tions. Managing these uncertainties is essential to achieving a design of satisfactory quality with-
out unnecessary delays and at a reasonable cost. One approach to this challenge is to view the
geotechnical design and execution as a sequential decision problem, which has been studied in
other areas of engineering and decision making (e.g., Rosenstein & Barto, 2001; Memarzadeh
et al., [2014; Malings & Pozzi, [2016; |Papakonstantinou & Shinozuka, 2014; Bismut & Straub,
2021} |Wang et al., 2022). The aim is to find the sequence of decisions that minimize the expected
design and construction costs. In the ideal case, the analysis should also consider operational and
maintenance costs (Mendoza et al., 2021)).

A typical example of a geotechnical engineer’s decision under uncertainty is the design of em-
bankments on soft soil prone to consolidation settlements. The embankment load initiates a con-
solidation process toward a final long-term settlement, but neither the magnitude of this settlement,
nor the time until it is reached, can be well predicted by the engineer; despite geotechnical pre-
investigations being performed, there are typically considerable uncertainties regarding the soil’s
hydraulic conductivity and deformation properties. Unless this uncertainty is carefully managed
by a planned sequence of inspection decisions and mitigating actions during design and construc-
tion, unwanted costly consequences such as time delays or residual settlements after completion
of the superstructure may occur. The engineering challenge therefore essentially lies in find-
ing a cost-effective design solution, considering not only the technical requirements at the time
of project completion, but also the respective probabilities and costs of potential consequences
caused by an unsuccessful design.

One design alternative is to accelerate the consolidation by installing prefabricated vertical
drains (PVDs) and preloading the embankment with a surcharge load (Figure (1)) (Hansbol |1979;
Alonso et al., 2000; Walker & Indraratna, |2007; Indraratna et al., [2016; Geng & Yul 2017} Guo
et al., 2018; Nguyen et al., 2021)). If a large enough surcharge load is used for a sufficiently long
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time and unloaded correctly, project delay and residual settlements can be avoided.

Preloading stage After surcharge
removal

Surcharge Settlement S

————. ___\RT .......

Embankment AH . Surcharge
/ removed
Berms E—
GW v
Dry crust Settled

submerged crust

Figure 1: Preloading of an embankment with a surcharge of total height AH to accelerate consolidation. (GW: ground

water).

The cost of surcharge material can be high, e.g., due to limited availability. This entices the
engineer to optimize the cost of the surcharge against the risk of insufficient preloading. The
engineer can also consider increasing the height of the surcharge at a later time, in response to
observations of too slow settlement rates. However, this combination of having both sequential
decisions on the applied surcharge height and prevailing uncertainties in the outcomes makes this
a challenging optimization problem.

To the authors’ knowledge, this problem — nor any other geotechnical problem — has never
been formalized as a sequential decision problem. A few studies have however used other, simpler
decision theoretical analyses for other geotechnical applications: [Einstein et al.| (1978) showed an
early application of decision theoretical principles; Zetterlund et al.|(2011), Sousa et al.[(2017), and
Klerk et al. (2019) performed value of information analyses; and preposterior analyses were per-
formed by |Schweckendiek & Vrouwenvelder (2013)), |Spross & Johansson (2017), van der Krogt
et al.| (2022),|Lofman & Korkiala-Tanttu (2022), and |Spross et al.| (2022).

Probabilistic settlement analyses have recently been performed by e.g. Bari et al. (2016),
Bong & Stuedlein! (2018), and Lofman & Korkiala-Tanttu (2021). Addressing the design issue of

embankment preloading with PVDs, Spross & Larsson| (2021) specifically showed how a proba-
3
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bilistically evaluated initial surcharge height can be used in an observational method to limit the
probability of time delay and residual settlement in soft soil. Spross et al.|(2019) discussed how
settlement monitoring can be evaluated as a basis for a decision to increase the surcharge height.
The specific decision-theoretical problem was highlighted, but not solved.

In this paper, we propose a risk-based decision-theoretic approach to optimize the sequential
decisions involved in embankment preloading. The sequence of decisions on initial surcharge
height and later additions to the surcharge are optimized such that a desired settlement is achieved
at a minimal expected cost, which reflects whether the settlement is achieved within a fixed time-
frame. Construction delays as well as insufficient overconsolidation, which is a cause of residual
settlement, are explicitly penalized.

We use Spross & Larsson| (2021))’s probabilistic preloading model to describe the settlement
evolution. This model in based on |[Hansbo (1979)’s analytical PVD model and Larsson & Saill-
fors| (1986)’°s analytical settlement model, in which the soil deformation properties are evaluated
in constant-rate-of-strain tests. The probabilistic modelling of the soil properties is based on con-
cepts developed by Phoon & Kulhawy| (1999) and Miiller et al. (2014, 2016). We extended the
preloading model to allow simulation of soil settlement curves when the surcharge height is ad-
justed, thereby enabling modelling of the effect of sequential surcharge height decisions on the
settlement evolution.

The outcome of the analysis is a preloading strategy, which prescribes how much surcharge
to add conditional on settlement measurements. To tackle the added complexity of the optimiza-
tion that arises from including these measurements in the decision process, we adopt a heuristic
description of preloading strategies (Bismut & Straubl [2021). The optimization thereby yields
optimized heuristic parameter values. We also investigate the influence of the assumed cost model
on the obtained preloading plans.

The paper is structured as follows: Section [2|introduces the investigated embankment preload-
ing problem in further details. Section [3] presents the preloading model. Section f] summarizes
the proposed decision-theoretic framework and Section [5] introduces the key concept of heuristic
strategies. Section [6] present the specifics of the geotechnical and cost models in the numerical

investigations, followed by the presentation of the results in Section[7, We discuss possible exten-
4
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sions of the investigation and adaptations of the method in Section

2. Example application

To illustrate the proposed framework, we take the specific example introduced by Spross &
Larsson (2021). We consider a section of an embankment built for the construction of Swedisch
National Road 73, from southern Stockholm towards Nynidshamm. A cross section of the soil is

shown in Figure 2]

+71m Embankment\ Originalgrour\ld level
+5.9m v +6.2m

I ,,,,,,,,,,,, e

Dry crust GW+52m

Figure 2: Cross-section of the soil under the planned embankment (from |Spross & Larsson| (2021), CC-BY 4.0,

http://creativecommons.org/licenses/by/4.0/)

The considered engineering problem is the planning of the amount of surcharge loading the
embankment during an available preloading time, #,,,,, Within which an acceptable soil consolida-
tion is to be reached. The engineering questions are: 1) What surcharge height should be used? 2)
When is a load increase warranted during the preloading time, and if so, how much more should

be added?

3. Geotechnical model and design requirements

In this section, we present the probabilistic model adopted to describe the evolution of soil
settlement and resulting overconsolidation ratio, first under constant load then under multi stage
loading. We extend the model described in Spross & Larsson|(2021])) to consider staged preloading,
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for the case of a surcharge increase. This geotechnical model considers 1) how primary compres-
sion settlement develops with time, due to the weight of the embankment and the surcharge, and 2)
the effect of the unloading of the surcharge on the overconsolidation ratio (OCR). The parameters
of the model are uncertain and are modeled as random variables. More detailed and complex mod-
els of settlement and consolidation behavior for staged construction are available in the literature
(see, e.g.,|Walker & Indraratnal 2009; Yin et al., [2022), but we have opted for model simplicity to

facilitate a focus on the optimization problem.

3.1. Settlement evolution

3.1.1. Constant surcharge

Under a constant load Ao and known soil properties, a settlement trajectory with time follows

S(t) =U(t)Sw, (1)

where

U(t) =1—[1=Uy(0)][1 = Un(1)] (2)

is the spatially averaged degree of consolidation at time ¢, and S. is the predicted long-term pri-
mary compression settlement under load Ac. The vertical consolidation component U,(t) is ob-
tained from Terzaghi’s consolidation theory. For the horizontal consolidation component Uy (t)
we apply Hansbo’s well-established analytical PVD model (Hansbo, |1979), which considers the
horizontal coefficient of consolidation, the PVD influence zone radius, as well as the effects of
drain spacing, soil disturbance and well resistance. Due to the specific consolidation behaviour of

soft clays, S is predicted as (Larsson & Sillfors, |1986)

l
Se(AG) =Y heiAgi(AC), (3)
i=1

where K, ; is the thickness of the i-th clay layer. Ag; is the strain increase caused by the load Ao,
which depends on parameters evaluated from constant-rate-of-strain tests, including the precon-

solidation pressure and soil moduli (Spross & Larsson, 2021).
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In the performed analyses, the embankment and surcharge are assumed to be of the same

material, hence the load Ao is proportional to the material unit weight and to its total height.

3.1.2. Staged preloading

If the surcharge is increased by Ao, after some preloading time, ¢4, the adjusted settlement

trajectory is modelled as:

U(t)S«(AC), for 0 <t <ty
S(t) = 4)
U(l‘ — Z‘Sh,’ﬂ)Soo<AG +A6add)7 fort > t,44.

The first part of the trajectory is equivalent to Equation (I)). The second part contains, due to the
load increase, a recalculated, larger long-term primary consolidation settlement S .. = Seo(AC +
A0C,44) following Equation (3)) and a corresponding degree of consolidation U (t — ; ), for which
a hypothetical zero degree of consolidation occurs at time fy;;; = taqq — fo- To determine 7o, we
note that the settlement curve is continuous at 7,44, which results in the degree of consolidation:

U tadd ST o
Ulto) :%7

where U (¢) is obtained from Equation . Figure (3| illustrates 7y, and the resulting settlement

&)

curve for staged preloading.

t
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Figure 3: Effect of the added surcharge at time 7,44 on the settlement, where f,; r; = taqa — to.
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3.2. Overconsolidation ratio
3.2.1. Constant surcharge

The effect of secondary consolidation is considered through the OCR. The secondary con-
solidation is limited if the preloading achieves sufficient OCR in the middle of the clay stratum

through unloading at time # (Alonso et al., 2000; |[Han, 2015)). This quantity can be obtained as

o)+ U(t)Ac
OCR(t) = — (1)AGu (6)
oy + U (t)AGemp
where G(’) is the initial vertical stress increase in the middle of the clay stratum, Aoy, is the ver-
tical stress caused by the preloaded embankment (i.e. including the surcharge), and Ao, is the

remaining stress increase directly after the unloading of the surcharge (see Figure|I)).

3.2.2. Staged preloading
The effect of the added load on the OCR at unloading depends on the preloading time of both
the initial and any added load. To our knowledge, there are no validated analytical models for this
issue. Therefore, we use the following reformulation of Equation (6) to capture the effect on the
OCR at the unloading at time ¢, when it occurs after a previous load increase at time #,;,4:
_ 0y +U(t)ACsu + AU (1) AGuqq

OCR(t) = o1 U (1)Aum , (7)

where AU (t) = U (t — tspifs) — U(taga — tshift). Consequently, the effect on the OCR of the added

load will depend on the degree of consolidation achieved along the recalculated settlement trajec-

tory after the load has been added. The OCR for staged preloading is depicted in Figure {]

3.3. Uncertainties in the soil parameters

The presented soil consolidation model of Equations (1)) to (7)) depends on parameters for the
soil properties and PVD design. The soil properties are modeled as random variables with an
associated probability distribution either evaluated from constant-rate-of-strain (CRS) oedometer
tests, or assigned based on engineering judgment when data on variability were not available.
The parameters in Hansbo’s PVD model (Hansbo, 1979) are assumed constant. The complete

probabilistic model is described in detail by Spross & Larsson| (2021)) and is therefore omitted
8
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Figure 4: Effect of the surcharge added at time #,4, on the OCR, using Equation (@) with initial surcharge Aoy, corre-
sponding to height AHj for the first part of the curve until r = 36[weeks] and Equation (7)) with Ac,,, corresponding
to additional surcharge height AH;. The resulting curve is located below the one for the case where the total surcharge

(initial and additional) is applied directly at # = 0, with Equation (@)

for brevity, as the probabilistic soil characterization per se is not studied here. Random trajectory

settlements are depicted in Figure[5]

3.4. Settlement and OCR requirements

The risk-based planning framework for optimal preloading described in Section 4] requires the
definition of performance criteria, such that a preloading decision can be assessed in terms of
its success to reach the desired goals. These goals are here expressed in terms of sufficient soil

consolidation, through a settlement target s4¢¢:, and an OCR threshold, OCR;4/ger-

3.4.1. Settlement target
Due to the uncertainty associated with the ground properties, the long term settlement S..
caused by the load of the completed embankment, Ac,,,,, is also uncertain. To ensure an ac-

ceptable residual (post-construction) primary consolidation settlement, Spross & Larsson| (2021)
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Figure 5: 100 sample soil settlement trajectories for an initial surcharge hy = O[m] (no additional surcharge). One
such trajectory is highlighted in black. For each trajectory, the value of the long-term settlement S.. is obtained with
Equation (3). The histogram on the right shows the resulting distribution of S... The condition Pr(Se > Siarger) =
prr = 5% (see Section@ results in sy4rger = 1.27[m].

proposed that a target settlement, $;4,¢¢r, be attained during the preloading, such that

Pr(SN(AGemb> > Starget) = DFT, (8)

where ppr is an acceptable, fixed, probability. In the numerical investigations, it is set to 5% to
represent a serviceability limit state.

By generating sample values of Se(AG,,;,) from the defined probabilistic model and Equa-
tion (E[), Starger 18 Obtained as the quantile value corresponding to pp7 (Figure |§]) The value of
Starger 18 thereafter used in the decision framework described in Section @ to define penalty mech-

anisms.

3.4.2. OCR threshold

Residual secondary consolidation settlement (creep) can be significantly limited by ensuring

that the OCR after unloading is sufficiently high (Alonso et al., 2000; [Hanl, 2015). Here it is

required that OCR exceeds OCR;4rger = 1.10 in the middle of the soft soil stratum after unloading of
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the surcharge. This is in line with the general technical requirements and guidance for geotechnical

works issued by the Swedish Transport Administration! (2013a,b).

4. Optimal preloading strategies

To find the optimal preloading strategy, we rely on the decision analysis framework of Raiffa &
Schlaifer (1961), which formalized decision problems under uncertainty with varying information.
This enables the optimization of the surcharge decisions, which can be done in a sequential manner
based on measurements of the settlement. Further general information on sequential decision

making can be found in |[Kochenderfer (2015).

4.1. Elements of the decision analysis

A decision analysis under uncertainty is based on a probabilistic model of the system, a model
of the decision alternatives as well as a utility or cost function. These models are summarized in

the following.

4.1.1. Probabilistic model

A complete probabilistic model describing the evolution of the system is required. It must
account for the effects of actions affecting the system (see Section .1.2]below). This model must
also reflect the uncertainty in information collection, through a likelihood function (Bismut &
Straub), 2022)).

In the investigated engineering problem, we use the soil consolidation model described in Sec-
tion 3 Information on the state of the system is obtained as a measurement M;, of the settlement
S;, at time t1. The M;, is related to the true value of the settlement by an additive measurement

error €:

M, =S, +e ©9)

Here, we restrict the numerical investigation to error-free measurement, i.e., € = 0.

11
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4.1.2. Decision alternatives

The decision alternatives, i.e., the available mitigating actions and other planning decisions,
must be modeled. In the context of the preloading, these decision alternatives can include the
height of the initial surcharge, as well as the timing and amount of additional surcharge that is
applied later. The description of the available decision alternatives should also include operational

constraints that must be accounted for in the planning process.

4.1.3. Utility and cost

The effects of a decision are evaluated in terms of utility, which reflects the preferences of the
decision maker. Ultimately, the optimal decision is selected as the one that maximizes the expected
utility. Assuming a risk-neutral context, the utility can simply translate to costs associated with
the actions and the system performance. In this case, utility is expressed in monetary terms.

For the preloading example, we first quantify the cost Cy,; of adding a preloading surcharge
of height AH;. This cost should account for factors, such as material costs, mobilization costs,
material availability at the time of the decision, and the need of berms for slope stability. The
second cost component penalizes the project delay Cyejqy, Which expresses the fact that sufficient
settlement (s74r¢e/) has not been reached within a dedicated time period. In the example, this
penalty is expressed as a function of the additional time required for reaching s;4,¢¢; (Without fur-
ther preloading intervention). Finally, the third cost component Cocg quantifies the consequences
of residual secondary consolidation settlement (creep) caused by insufficient overconsolidation
at time of unloading (see Section [3.4.2)). Thus, the Cocr reflects a reduced serviceability of the
superstructure.

The total cost C;,; incurred at the completion of the preloading operation is the sum of the three

cost components:

Crot = ZCsur,i + Cdelay +Cocr (10)

If relevant, discounting can be used to reflect the decreasing value of an investment over time,
but this effect is however ignored here.
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4.2. Decision settings and influence diagrams

With the above elements specified, a decision setting (DS) is defined. A typical compact
graphical representation of a DS is the influence diagram (ID) (Jensen et al., 2007), which de-
picts the available decisions/actions and the utilities (costs). Round nodes represent uncertain
outcomes (which are described by the probabilistic model), square nodes are the decisions and
lozenge-shaped nodes are the utility. The nodes are connected by directed edges, which represent
stochastic, causal and monetary dependence. When the problem involves sequential decisions,
future information cannot influence past decisions.

The decision setting is usually determined by operational constraints, as well as the level of
complexity of the considered decision sequence. For this study we construct IDs for three different

decision settings.

DS #1: Surcharge applied att =0

In DS #1, we consider the case where the surcharge is applied only at the time of constructing
the embankment, i.e., at t = 0. The only decision variable is the height AHj of this surcharge.
The settlement at time ¢, S;, and the achieved overconsolidation ratio if unloaded at time ¢, OCR;,
are both probabilistic quantities, which depend on the applied surcharge as per the models of
Section[3

The overall decision process is summarized by the ID of Figure [f] The square node AH
indicates that first a value of AHy is chosen, at a cost Cyyr0(AHp). The now fixed AHy influences
the evolution of the settlement §; and the overconsolidation ratio at unloading OCRy;, as well
as the time #;4,¢,, When the target settlement is reached, defined as S(tmrget) = Starger- Monetary
consequences due to project delay and residual creep result from these quantities. The cost model

used to quantify the consequences is presented in Section[6.2]

DS #2 and DS #3: Surcharge applied at t = 0 and adjusted at time t,
DS #2 and DS #3 consider that there is an opportunity to add a surcharge of height AH; at
a fixed time #1, on top of the initial surcharge height AH;. The decision on how much to add is

based on a measurement M;, of the settlement at time #; (see Section [4.1.1). The overall decision

13
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Figure 6: Influence diagram for DS #1. Optimization of the initial surcharge. The interaction between the decision on

the initial surcharge height AHy and the geotechnical model is represented in a simplified manner.

267 process is summarized by the ID depicted in Figure [/l In DS #2, the time ¢, is fixed and cannot be

26s Influenced by the decision maker, whereas in DS #3, this time can be chosen and optimized.

1
i .I
)\@

Settlement
trajectory

Added surcharge AH, AH,,
(height) ' !

v v
Project Insufficient
Costs delay consolidation
Cdelay Cocr

! ,I Geotechnical model

In DS #2, t, is fixed to 36 weeks. In DS #3, it is chosen.

Figure 7: Influence diagram for DS #2 and DS #3. The interactions between the decisions on the initial and added

surcharge heights, AHy AH|, and the geotechnical model are represented in a simplified manner.
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4.3. Optimal decision making

The most desirable outcome of the decision process is the one with the lowest cost. Due to
the uncertain nature of the soil parameters, the outcomes of a sequence of decisions are uncertain,
hence so is the total cost. The optimal sequence of decisions is therefore that which result in the
minimum expected total cost (Raiffa & Schlaifer, |[1961). For DS #1, the optimal decision for AH

is therefore defined as:

AHy = argminE [C,, (AH))], (11)

where E [C;,;(AHp)] is the expected value of the total cost evaluated with Equation (10), when
an initial preloading surcharge of height AHj is applied. This expected total cost thus accounts
for the associated risk E[Cye1qy(AHp)] +E[Cocr(AHp)| of not achieving the desired settlement or
overconsolidation ratio within the available preloading time.

The formulation of the optimization problem is not as straightforward for DSs, where there
are one or more opportunities to adjust the surcharge after the initial surcharge is applied, i.e. DS
#2 and DS #3. In these sequential decision problems, the optimal actions depend on the past ob-
servations. Therefore, one must find the optimal function that maps past observations to actions.
In general, this type of problem is hard to solve and an exact solution becomes intractable with
increasing number of decision or observation steps (Papadimitriou & Tsitsiklisl [1987). Approxi-
mate solutions are possible, e.g., via partially observable Markovian decision processes (POMDP)
or reinforcement learning (Porta et al., 2005; Roy et al., 2005} |Silver & Veness, |[2010; Mnih et al.,
2013 Memarzadeh & Pozzi, 2016; Papakonstantinou et al.,|2018; /Andriotis & Papakonstantinou,
2019).

To solve the general sequential decision problem, it is convenient to define preloading strate-
gies 8, which compactly prescribe the sequence of decisions. A strategy consists of a set of rules
which prescribes how much surcharge to add at any time as allowed by the DS. For example, for
DS #1, a strategy simply prescribes the surcharge height at time ¢ = 0; for DS #2, it prescribes the
surcharge height at time # = 0 and gives a rule at time #;, which can be based on settlement mea-

surements, to adjust the surcharge. In DS #3, the strategy additionally prescribes the time ¢ = #; at
15
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which to collect the settlement measurement and adjust the surcharge.
Generalizing the notation to any preloading strategy S, the expected total cost associated with

a preloading strategy 8 is thus evaluated as:
E [Cror(8)] = E[Cyur(8)] + E[Cuelay(S)] + E[Cocr(8))- (12)

The optimal preloading problem exposed in Section d.3]is equivalent to finding the preloading

strategy that minimizes the expected total cost:

8" = arnginE [Crot(8)] (13)

In general, E[C,(8)] cannot be evaluated analytically. A Monte Carlo (MC) approximation
can instead be obtained using the geotechnical model of Section [3] The latter enables the gener-

(k)

ation of ny;c random settlement trajectories, S (k), and OCR at unloading OCR Fin? obtained from
surcharge sequences AHO(k), AH l(k), etc., with 1 <k < nyyc. A total cost can be computed for each
of these trajectories as per Equations (I0), (16), (I8) and (I9). The MC approximation of the

expected total cost of a preloading strategy & is therefore

nyc
E [Cro( _—Zcmt( Y, 0cR})) (14)

The estimate improves with the number of samples ny;c.

5. Heuristics for optimal preloading strategies

The problem of finding the best strategy is equivalent to finding the best sequence of decision
and an exact solution to Equation (I3)) is still intractable in general. To address this challenge, we
reduce the space of possible strategies that are considered in the optimization, following [Bismut &
Straub| (2022)). Since strategies are sets of rules, the proposed approach considers only strategies,
which are described by specific sets of rules. We call these heuristics. The heuristic chosen for
this approach is typically formulated with simple statements (the rules), in which a number of
parameters W = [wy;w»;...;w,] intervene. For example, we define the following heuristic for DS

#2:
16
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Figure 8: Three sample trajectories for a strategy parametrized with Heuristic 2A (Section , with hp = 0.95m,

hi = 1.04m and s;;, = 0.77m. The time at which the curves intersect with the level s,44es cOrresponds to #4,ge;. For

Imax = T2[weeks], we see that only one of these trajectories satisfies fqrger < tmax and does not lead to project delay.

— The initial surcharge AHj is ho;

— The additional surcharge AH| at time ¢#; = 36 weeks is /i if the measured settlement at this

time is lower than a threshold s;;,.

The parameters w for this heuristic are hg, h; and s;,. In this DS, #; is fixed to 36 weeks. A

preloading strategy following this heuristic, assigned chosen parameters hg = 0.94m, h; = 1.04m

and sy, = 0.77m, will react to different trajectories as shown in Figure [§] The total cost incurred

will depend on a) the strategy and b) the settlement occurring.

The expected costof a strategy with fixed parameters can be estimated with Equation (I4).

For a given heuristic, there is a set of parameter values that optimize the expected cost. We call

the associated strategy the optimal heuristic strategy. Thus, for a given heuristic and associated

parameters W = [w;wy;...;w,], the preloading problem is reduced to finding

w" = argminE [C;; (8(W))]

17
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As the heuristic formulation of the optimization problem operates in a restricted strategy space,
it yields a sub-optimal preloading strategy. However, the heuristic parametrization enables the
inclusion of operational constraints and provides easily interpretable strategies. Furthermore, the
definition of preloading strategies with heuristics makes sense from the point of view of geotech-
nical engineering practice, as most preloading strategies would indeed be defined with such simple
rules. In addition, several heuristics can be compared and the better-performing strategy selected.
In the numerical investigations we discuss the impact of different heuristic choices, in particular
the impact of increasing the number of heuristic parameters.

The optimal parameter values w* are the solution of a noisy optimization problem where the
objective function is expressed as an expected value (Rubinstein & Kroese, [2004), for which no
analytical expression exists. The crudest approach to this problem is to search among preselected
values of heuristic parameters (for instance on a grid), estimate the expected cost with Equa-
tion (I4) at each point with a sufficiently high number of samples )¢ and finally select the most
cost-efficient strategy. The disadvantages of this approach are that the search is restricted to a
finite number of strategies; equal computational budget, ny;c, is attributed to all parameter values,
including those that are sub-optimal and yield a high expected cost; and for a high number n of
heuristic parameters the grid search leads to an infeasible compuational effort.

. A more efficient approach is a sampling-based optimization, such as presented in
[Al which was previously developed for this purpose in Bismut & Straub (2021)) and based on
the cross-entropy (CE) method (Rubinstein & Kroese, 2004). An initial sampling density over
the heuristic parameters w is chosen, for instance a multivariate Gaussian distribution. At each
iteration and until convergence is reached (see Figure[9) — or until a maximum number of iterations
is exceeded — ng sample sets of parameter values are generated from the sampling density. For
each sample set, the expected cost of the associated strategy is evaluated with ny;c samples. The
sample sets are ranked in increasing order of expected cost. The parameters of the CE sampling
density for the next iteration are fitted to the top ncg sample sets, the elite samples. We have
previously demonstrated this method on other sequential decision planning problems (Bismut &
Straub, 2021; Bismut et al., 2022). The method stands out for the simplicity of its implementation

and robustness.
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Figure 9: Convergence of heuristic parameters in the CE optimization for Heuristic 2A defined in Section|6.3.2

6. Numerical investigations

6.1. Probabilistic model setup
The probabilistic model setup is described in Spross & Larsson|(2021). The settlement target

is computed for pr7 = 0.05, and is obtained as $;qrge; = 1.27[m).

6.2. Cost model
The Cy,; corresponds to the cost of adding surcharge of height AH;. It increases with the total
surcharge height, and accounts for the cost of berms needed to ensure slope stability (see Figure/[I).

It is evaluated from the cost of total surcharge height H;;:

Hior - Csur if Hip < 1m
Csur<Htot) = (16)

1.25-H;p - ¢y Otherwise.

The cost attributed to each increase AH; of surcharge on top of existing surcharge H;,; is computed

as

Csur,i(AHi> - (Csur<Ht0t +AHi) - Csur<Hl0t)) 'fadd,i (17)
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where the factor f,44; > 1 accounts for additional costs incurred by increasing the surcharge at a
later time ¢ > 0. Note that the cost of the remaining embankment material is not included here, as
it is the same for all possible scenarios.

In the model, project delay occurs when the settlement trajectory either does not meet s;qrger

within the available preloading time #,,qx (frarger > tmax) OF 1S unable to meet s;q,ge; at all (fgrger >

t1im) (see Figure[8)). The associated penalty is

0 if ttarget < tmax
Cdelay (ttarget) = (18)
Cdelay - (MIN(tjim, tiarger) — tmax) ~ Otherwise,

where cy./4y represents the penalty per week of delay.
Finally, the penalty associated with residual creep settlement in the completed structure due to

insufficient OCR (see Section [3.4.2)) is evaluated with the logistic function

c
COCR(OCRfin) = Oli)I;S—OCRf;n (19)
1 +exp (_W)

where OCRy;y, is the OCR at unloading at time f;q,ger OF 15, if the settlement target has not been

achieved in time. This smoothed step function approaches cocg when OCR s, < 1.05, and O when
OCRyi, > 1.1.
The cost factors cgyr, C4e1ay and cocg for the initial numerical investigation are given in Table E}

The effect of varying these factors is shown in Section

6.3. Heuristic parametrizations

We investigate the following heuristics for the different DSs. The heuristic parameters for each

defined heuristic are indicated in bold.

6.3.1. DS #I
As explained in Section [4.2] the optimization for this setting only consists in optimizing the
initial surcharge height AH, thus the corresponding heuristic, with single heuristic parameter Ay,

is simply
20



Table 1: Parameters of the cost model

Cost factor Value
Csur 3.45-105[SEK /m)
Cdelay 3-10°[SEK /week]

COCR 2- 107 [SEK]
fada.0 1
Jadd 1 1
Heuristic 1: hg > 0
1. AHp = hy.

385

;86 0.3.2. DS #2

387 For DS #2, we investigate the performance of two different heuristics in approximating the

sss  optimal preloading strategy. A preloading strategy described with Heuristic 2A specifies the initial
ss0 surcharge height, and adjusts it by adding a surcharge height if the measured settlement is lower

390 than a threshold.

Heuristic 2A: hg >0, hy >0, sgp >0
1. Attime ¢ = 0, add surcharge of height AHy = hy.

2. Obtain measurement m,, at time t; = 36[weeks].

3. If m;; < stn, add surcharge AH; = hy. Otherwise AH; = 0.

391

302 With Heuristic 2B, the strategy adjusts the height of the added surcharge based on the differ-
303 ence d between the measured settlement and the threshold. This height adjustment is defined by
304 a sigmoid function varying between 0 and maximum added height 4, characterized by a curve

305 steepness a. When a = 0, this sigmoid function is a step function.

21



Heuristic 2B:hg >0, h; >0, s, >0, a <0
1. At time t = 0, add surcharge of height AHjy = hy.
2. Obtain measurement m;, at time t; = 36weeks.

3. Compute d = my, — Stn

(
0 d<a
2
2hy (612;; a<d<0
4. Add surcharge AH| = 2 .
(1—2(‘12—;) )hl 0<d<-a
\hl d > —a
396 J
se7 6.3.3. DS #3
308 Heuristic 3 is the same as 2B, with the additional freedom to choose the time #; at which the

390 settlement is measured and the surcharge height is adjusted. The #; is thus an additional heuristic

4

o

o parameter.

Heuristic 3: hg >0, hy >0, sy > 0,2 <0, t; € {1,2,3, ..., t;ax}
1. Attime ¢t = 0, add surcharge of height AHy = hy
2. Obtain measurement n1,, at time tg.

3. Compute d = m;, — Stn

)
0, d<a
2
2h1<d2—aa , a<d<0
4. Add surcharge AH| = < 2
(1—2(”’—:‘) )hl, 0<d<-a
h17 d>-a

401
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6.4. Computational setup

For the CE method, we fix ncg = 100, ng = 30 and nyc = 10. On a 8-core CPU 3.2GHz
machine, optimizing the heuristic parameters for a given heuristic takes ca. 4min. The expected

cost of the resulting optimized strategy is evaluated with ny;c = 10* samples.

7. Results

We apply the CE method to obtain the optimal parameter values and associated expected costs
for the different DSs and heuristics defined above, assuming the cost model of Table[I] The results

are summarized in Table

Table 2: Optimal heuristic parameters and associated expected costs

DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 | Heuristic 2A  Heuristic 2B | Heuristic 3
ho [m] 1.05 0.98 0.96 0.95
hy [m] - 1.06 1.08 1.81
S [m] - 0.71 0.73 0.37
a [m] - - —0.15 —0.28
f [weeks] - 36(*) 36(*) 20
Expected cost [10°SEK] 8.11 6.54 6.29 6.06
Std. dev. cost [10°SEK] 7.4 6.3 6.0 5.6

(*)Value is not optimized but fixed

The expected costs of the optimal heuristic strategies obtained for each of the DS decrease
from DS #1 to DS #3. This is in agreement with the fact that DS #1 is more restrictive in terms
of available actions than DS #2, and in turn DS #2 is more restrictive (because the adjustment
time is fixed) than DS #3. Table [2] also reports the estimated standard deviation of the total cost.
For the investigated heuristics, the coefficient of variation of the total cost for the optimal strategy
varies around 95%. The standard error of the MC estimates of the expected costs is therefore 1%,
which ensures a sufficient accuracy to rank the heuristics according to the estimated expected cost
of their optimal strategies.

The optimal initial surcharge prescribed by Heuristic 1 in DS #1 is higher than the initial

surcharge prescribed in DS #2 and DS #3. This shows that the heuristics chosen for DS #2 and DS
23
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#3 exploit the fact that measurement information enables an optimized adjustment of surcharge.

For DS #2, we note that Heuristic 2B performs better than Heuristic 2A in terms of expected
cost; hence the smoothed step function for the selection of the adjusted load is a better heuristic
than the simple step function.

Figure [I0] depicts the breakdown of the costs for each optimal heuristic strategy. We observe
that Heuristic 3 yields a lower risk of delay than Heuristic 2A and 2B and a lower expected total
cost, even though it applies on average a higher total surcharge. Therefore, the choice of time
11 to adjust the surcharge plays a significant role in efficiently controling the settlement. The
expected penalty associated with insufficient OCR is here negligible in comparison with the other

cost components, for all heuristics.

6
10 10 ‘

Il Heuristic 1
I Heuristic 2A | |
[ ]Heuristic 2B
[ ]Heuristic 3

| Tl Ilﬂﬂ |

Total Initial Added Delay OCR

Expected cost [SEK]

Figure 10: Breakdown of the expected cost of the optimal strategies for the different DSs and heuristic.

Figure |11] illustrates the effect of adjusting the surcharge at time #; = 36 on the settlement
trajectory, following the optimal strategy for Heuristic 2A. The distribution of the settlement at
time #,,4y is obtained from 10* sample trajectories for both the case where only the initial surcharge
is applied and not adjusted at t = 36 weeks and the case where the surcharge is adjusted according
to the optimal strategy. With the load adjustment action, the settlement trajectories that already
reach the target at ¢,,,, with the sole initial load are unaffected, while a portion of trajectories which
would not have achieved $;4rger at tqx are now compliant, i.e., the probability Pr(S;,,. < Siarger)
decreases by enabling the adjustment of the surcharge. Most of the corrected trajectories will
nevertheless incur a delay penalty, which is optimal under the assumed cost model of Table ]

The effect of the different heuristics on the final settlement at time #,,,, and on the OCR at
24
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Figure 11: Distribution of settlement at f,,,,, for the optimal strategy for DS #2, Heuristic 2A, obtained from 10* sample
settlement trajectories. The first histogram represents the distribution of the settlement if only the initial surcharge of
height g = 0.95m is applied. The second histogram shows the distribution of the settlement obtained by adjusting

the surcharge at t+ = 36 weeks, as prescribed by the strategy (see Table EP Starger 18 also indicated.

unloading is depicted in Figures[I2a] and [[2b] Heuristics 2A, 2B and 3 can be distinguished from
Heuristic 1, where the preloading is only added at # = 0. The uncertainty in the settlement reduces
when the surcharge is adjusted based on the measured settlement, and the probability that S;
is larger than s;4,¢.; increases from Heuristic 1 to Heuristic 3. It is worth noting that the optimal
strategies for Heuristics 2A, 2B and 3 result in a larger probability that the OCR at unloading is
smaller than the critical value 1.1, compared to Heuristic 1, hence these heuristics can balance
both penalties associated with insufficient settlement and OCR against the applied surcharge in a

more efficient manner.

7.1. Sensitivity to the cost model

We vary the parameters cye1qy and cocg and fuqq,1 of the cost model (Table E[) Figure |E|
compares the expected cost functions for DS #1 for the original cost model of Table [T] against
the case where the delay penalty factor c4eqy 1s doubled and the case where the consequences for
insufficient OCR are increased 10-fold. Varying f.qq,1 does not affect the expected costs within
DS #1. We note that the location of the minimum expected cost is not as sensitive to an increased
penalty for insufficient OCR as with an increased factor cge;qy, Which results in a higher initial

surcharge.
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Figure 12: Distribution of (a) settlement achieved at #,,,, and (b) of the OCR at unloading for the optimal heuristic
strategies (see Table[2). The area of the histograms to the left of the dotted line represents for each optimal heuristic

strategy, in (a) the probability Pr(S;,,,. < Starger), and in (b) the probability Pr(OCRi, < 1.1).

Tables [3] to [5] report the optimal heuristic parameters and expected costs for the various cost
models. The expected costs for the different heuristics, under different cost models still follow the
cost ranking observed for the original cost model in Table [2]

Increasing the surcharge penalty f,44,1 in Table @ notably results in a later optimal addition of
the surcharge in Heuristic 3, in comparison to the optimal strategy for Heuristic using the original
cost model, as shown in Table 2] For the increased OCR penalty in Table [5] the coefficient of
variation of the total cost when applying the optimal heuristic strategies is significantly lower than

for the original cost model, around 80%.
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Figure 13: Expected costs for DS #1 as a function of AHy = hy: (a) for the original cost model ; (b) for an increased

factor cgejqy = 6- 10° SEK/week ; and (c) for an increased factor cocg = 108SEK.

8. Discussion

8.1. Designing the strategies

The preloading problem is re-formulated as a sequential decision problem, with different de-
cision settings. Preloading strategies are described through heuristics with associated parameters.

We observe that the more flexibility in decision the heuristic provides, the more cost efficient the
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Table 3: Optimal heuristic parameters with an increased surcharge addition penalty factor fy44,1 = 1.3

DS #1 DS #2 DS #3
Parameter Unit Heuristic 13*) | Heuristic 2A  Heuristic 2B | Heuristic 3
ho [m] 1.05 0.97 0.91 0.95
h [m] - 1.02 1.19 1.86
Sth [m] - 0.69 0.64 0.61
[m] - - —0.27 —0.40
1 [weeks] - 36(*) 360 40
Expected cost [10°SEK] 8.11 6.97 6.92 6.84
Std. dev. cost [10%SEK] 7.4 7.0 6.9 6.8
(*)Value is not optimized but fixed
(*)Values from Table
Table 4: Optimal heuristic parameters for increased cgerqy = 6 10°[SEK/week]
DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 | Heuristic 2A  Heuristic 2B | Heuristic 3
ho [m] 1.38 0.96 0.95 0.97
h [m] - 1.25 1.35 2.4
Sth [m] - 0.81 0.73 0.40
a [m] - - —0.23 —0.44
f [weeks] - 360) 360 23
Expected cost [10°SEK] 10.23 7.90 7.85 7.34
Std. dev. cost [10°SEK] 11.28 10.0 10.1 9.0
(*)Value is not optimized but fixed
Table 5: Optimal heuristic parameters for increased cocg = 108[SEK]
DS #1 DS #2 DS #3
Parameter Unit Heuristic 1 | Heuristic 2A  Heuristic 2B | Heuristic 3
ho [m] 1.14 1.09 1.07 0.99
h [m] - 0.85 2.48 2.63
Sth [m] - 0.71 0.55 0.53
a [m] - - —0.44 —0.51
f [weeks] - 360*) 36(%) 39
Expected cost [10°SEK] 8.17 7.26 7.04 6.67
Std. dev. cost [10°SEK] 8.5 5.6 5.5 5.8

*JValue is not optimized but fixed
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resulting optimal heuristic strategy is.

Other heuristics than those proposed can be investigated, and might result in lower expected
costs. For example, one might replace the sigmoid function of Heuristic 2B by another func-
tion. As settlement measurement is typically available at weekly intervals, a heuristic could be
formulated such that the adjusted surcharge at time #; depends on an observed trend. In this case,
how the measurements are processed for the purpose of decision-making, hence the trend predic-
tion model, belongs to the definition of the heuristic. Ultimately, one could define a heuristic to
address the problem where continuous settlement measurement is available, with near-real-time
decision support.

The advantage of the heuristic approach to the planning of preloading decisions is that the
resulting strategies are interpretable, since the decision rules are explicitly defined through the
chosen heuristic. This also also entails that the heuristic can encode geotechnical expertise. The
flexibility in the formulation of the decision setting through the influence diagrams and the cost
functions also enables the analyst to integrate additional constraints. For instance, the uncertainty
in the availability of preloading material could be explicitly modeled, such that there is a certain
probability of obtaining the requested material at a given point in time. We note that the coefficient
of variation of the total cost is large, around 100%. If the decision-maker wanted to prioritize
strategies that reduced this variability, a risk-averseness behavior could be included in the objective

function of Equation (13).

8.2. Integration with the observational method

The decision-theoretical framework described in this paper is suitable to apply in combination
with the observational method, which was first defined as a design approach by [Peck! (1969) and
today is accepted into design codes like Eurocode 7 (CEN EN 1997-1:2004). The observational
method implies that the geotechnical engineer establishes a monitoring plan with thresholds that
trigger prepared design changes specified in an action plan, thereby adjusting the initial design to
fit better to the actual ground conditions.

In the context of a sequential decision problem, such thresholds and design changes can be

formulated as heuristics, allowing the geotechnical engineer not only to compare conceptually
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different options of monitoring and action plans, but also to optimize their included threshold val-
ues and specified actions. The evaluated decision settings in this paper illustrate this clearly: the
heuristics 2A, 2B and 3 can be seen as three different options of monitoring and action plans, while
Table [2| specifies the optimized heuristics for the plans and also shows their respective expected
costs. Such risk-based optimization of monitoring and actions plans is a considerable leap forward
to the current practice, where monitoring and action plans usually are defined based on determin-

istic analyses, although probabilistic approaches are emerging (e.g.,[Spross & Gasch, 2019).

9. Conclusion

We have formalized a geotechnical problem as a sequential decision problem, and proposed
a heuristic approach to finding optimal strategies. We applied this framework to an embankment
preloading problem and highlighted how the decision setting, chosen heuristics and cost model
affect the optimal preloading strategies. With this probabilistic framework, the preloading deci-
sions are quantitatively optimized under uncertainty. This framework is not limited to embank-
ment design and construction, but is designed as a decision tool to be extended to a vast range
of geotechnical engineering applications, especially those to which the observational method is

applied.

Appendix A. Cross entropy optimization algorithm

Algorithm [I] describes the steps of the CE method used for the optimization of the heuristic
parameters. The algorithm also applies a smoothing operation, which is not described here, to
prevent convergence to local minima (refer to Kroese et al.| (2006) for more details). The optimal
cost is obtained with Equation evaluated in S(w").

The sampling density is here chosen as a truncated normal for positive (or negative) param-
eters. For integer parameters, the sampled value is rounded to the nearest integer. The updated
distribution parameters A* of the multivariate truncated normal distribution are the mean and co-
variance of the elite samples.

The CE samples obtained can also be used to surrogate the expected cost function, for example

using Gaussian process regression (Bismut et al., 2022)).
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Algorithm 1: Cross entropy method applied to noisy optimization

input: CE sampling density P(-|\*), initial sampling distribution parameter A*, number of
CE samples per iteration ncg, number of elite samples ng, number of sample
settlement trajectories ny;c, maximum number of iterations 7,,y.
11+ 0;

2 while [ < n,,,,; do

3 for m < 1 to ncg do

4 generate random heuristic parameter values w(") from sampling density P(-|A%);
5 generate ny¢ settlement trajectories and measurement following strategy S(W(’"));
6 evaluate the expected total life-cycle cost g, with ny;c samples (Equation );

7 end

8 sort (w1, .., w(cE)) in increasing order of g,;

9 fit the distribution parameter A\* to the ng elite samples;

10 [+ 1+1;

1 end

12 W* <— mean of P(-|\*);

13 return w*
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