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This study estimates and evaluates logit models of firms’ choice of transport chain and
shipment size to address questions relating to the implementation of a stochastic logistics
module in the freight model Samgods. We use the 2016 Swedish Commodity Flow Survey
combined with the new Samgods commodity classification and updated cost parameters. We
find that the multinomial logit (MNL) model predicts observed frequencies well, both for in-
and out-of-sample observations. Predicted tonnes are close to observed levels for most
commodities but far off for a few others. Mispredictions can be handled by adjusting predicted
shipment sizes. We find that a nested logit model does slightly better in predicting tonnes than
the MNL model. A comparison model that always selects the low-cost alternative is very
useful for predicting transport chains but predicts shipment sizes larger than observed. Our
robustness checks show that the estimated coefficients do not systematically predict worse
when applied to transport cost data that differ from those used in estimation. We also find that
a coarser classification of shipment sizes leads to less precise predictions while expanding the
choice set to differentiate between container and non-container options only includes
alternatives with a low probability of being selected. We end by discussing our results’
implications for implementing a stochastic logistics module.
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Summary in Swedish
Bakgrund och syfte

Ar 2013 borjade Trafikverket utveckla en stokastisk logistikmodul fér den nationella
godsmodellen Samgods. Logistikmodulen simulerar valet av trafikslag och sandningsstorlek
for saindningar mellan foretag i modellen. Tidigare har valet modellerats pa ett deterministisk
vis, dar allt gods mellan tva foretag antas fraktas med transportlosningen som har lagst
kostnad. En av nackdelarna med detta satt ar att det kan leda till osannolikt stora andringar
av anvandningen av de olika trafikslagen i modellen néar faktorer som paverkar kostnader
forandras. Detta ar ett problem inte minst eftersom Samgods anvéands for policyanalys. I en
stokastisk logistikmodul & andra sidan baseras valet pa en logit-formel som inte ger lika stora
forandringar i val av trafikslag nar kostnader d@ndras.

Den stokastisk logistikmodulen utgar precis som den deterministiska fran en matris med
godstransportefterfrdgan i ton mellan produktions- och konsumtionszonerna i Samgods.
Efterfragan fordelas sedan pa floden mellan foretag i tre olika storleksklasser och pa floden
mellan industrier i olika zoner. Den stokastiska logistikmodulen bestammer valet av
transportkedja och sandningsstorlek for dessa floden. Den anvander sig av 16 varugrupper
och modellerar valet av 14 stycken transportkedjetyper och 16 kategorier av
sandningsstorlekar.

Trafikverket har tagit flera steg for att utveckla en stokastisk logistikmodul men fortfarande
kvarstar flera frdgor som ror i) behovet av att anvanda uppdaterade datakallor vid estimering,
ii) olika logit-modellers lamplighet, iii) hur kénsliga logit-modellerna ar for forandringar i
estimeringsprocessen och iv) hur val dessa logit-modeller prognostiserar valet av trafikslag
och siandningsstorlek.

Syftet med denna studie &r att analysera dessa fragor. Vi anvander oss av
varuflodesundersokningen  (VFU) fran 2016 tillsammans med den senaste
varugruppsindelningen och kostnadsparametrar for att skatta logit-modeller 6ver foretagens
val av transportkedja och sdndningsstorlek. Vi jamfor olika modellspecifikationer med
varandra och jamfor modellernas prediktioner med de observerade valen i
varuflodesundersokningen. Vi undersoker sedan hur véra resultat paverkas av forandringar i
datamaterialet och antalet transportalternativ som féretagen antas kunna vilja.

Data

Vart huvudsakliga datamaterial bestar av den svenska varuflodesundersokningen fran 2016.
Den innehaller information om trafikslag, sindningsstorlek, varde, vikt, lasttyp, varugrupp
samt mottagande och avgdende ort for fem miljoner sandningar. Vi Oversdtter valet av
trafikslag i VFU:n till valet av en av de 14 kedjetyperna som anvands i den stokastiska
logistikmodulen.

Den andra datakallan utgors av berdknade transportkostnader for de kombinationer av kedjor
och sdndningsstorlekar som ér tillgangliga for sandningarna i varuflodesundersokningen. Vi
berdknar dessa kostnader genom att forst koppla avgang- och ankomstort for varje sanding



till respektive Samgodszon och sedan anvdnda den deterministiska logistikmodulen i
Samgods for berdkning av basta ruttval och tillhorande transportkostnader. Vi kopplar
kedjorna som finns foérprogrammerade i Samgods till de 14 kedjetyperna i den stokastiska
logistikmodulen. Slutresultatet dr ett datamaterial med information om fem miljoner
sandningar (sdasom varugrupp, lasttyp och varde) och kostnader for de transportalternativ
som finns tillgangliga for varje sandning.

Metod

I var huvudanalys anvéander vi oss av varufloédesundersdkningen och transportkostnaderna
for att skatta logit-modeller 6ver val av transportkedja och sandningsstorlek. Baserat pa de
skattade koefficienterna gor vi sedan prediktioner av antal séndningar for varje transportkedja
och sandningsstorlek samt mangden ton for varje transportkedja och jamfér dem med de
observerade vardena i varuflodesundersokningen. I en fordjupande analys undersoker vi hur
andringar i vara inputdata, kategorier av sandningsstorlekar och antalet alternativ paverkar
vara huvudresultat. Vi analyserar ocksd om vara resultat forandras om vi anvander oss av
andra typer av logit-modeller.

Véar huvudanalys utgérs av skattningar av multinomiala logit-modeller (MNL). I dessa
modeller krdvs en funktion som beskriver den matbara nyttan, Vg, som varje foretag antas
erhalla vid valet av en trafikkedja t och sandningsstorlek s:

Vst = B1x1 + Baxg + -+ + Brexy

dar x-viardena betecknar observerbara variabler sasom transportkostnader och transporttid.
Funktionen innehaller dven koefficienter f som beskriver hur nyttan av ett alternativ paverkas
av att en observerbar variabel forandras. Dessa koefficienter skattar vi i studien. Nar
nyttofunktionen for varje alternativ ar skattad kan sannolikheten att vélja ett av dessa
alternativ berdknas genom foljande logit-formel:

exp(Vst)

P(t,s) ==——"—
() Zs’,t’exp(vsm)

Denna formel anvander vi for att gora vara prediktioner. Som jamforelsemodell definierar vi
en beslutsregel som sadger att for varje sandning kommer det transportalternativ med lagst
transportkostnad C att anviandas med sannolikhet ett:

1om Cits < Cikl Vk, \2
0 annars

Pi(t,s) = {

Denna modell har likheter med beslutsregeln hos den deterministiska logistikmodulen i
Samgods som antingen allokerar allt eller inget av godset till varje transportalternativ.

Huvudresultat

Genom att jamfora prediktioner med observerade val i varuflodesundersokningen visar vi att
var jamforelsemodell med allt-eller-inget-allokering ger exakta prediktioner nar det kommer
till antalet sdandningar for de 14 kedjorna. Detta visar att principen om lagsta



transportkostnader forklarar vissa monster pa transportmarknaden vildigt val. A andra sidan
ger jamforelsemodellen prediktioner av sindningsstorlek som dr mycket hogre dn de som
observeras i varuflodesundersokningen .

Logit-modellen ger prediktioner av antalet sindningar per kedja och sandningsstorlek som ar
vildigt néra de observerade vdrdena. Aven prediktionerna av méngden ton r precisa for de
flesta av varugrupperna vilket visar att logit-modellen kan overtraffa jamforelsemodellen.
Logit-modellens prediktioner avviker dock kraftigt frdn observerade nivaer for ett fatal av
varugrupperna. Detta verkar inte bero pa att en sarskild kedja ar svar att gora prediktioner for
utan snarare dr det kombinationen av kedja och varugrupp som ar svarfangad.

Fordjupande analys

I flera ytterligare analyser fordjupar vi oss i vara huvudresultat. Vi visar att svarigheten att
gora prediktioner fOr ndgra av varugrupperna kan hanteras genom att inkludera en
justeringsfaktor for att skala upp eller ner mangden predikterade ton. Med andra ord &r det
svarare for logit-modellen att ge en god prognos av hur stora sdndningarna ar an vilka
transportkedjor som kommer att anvéandas.

I huvudanalysen anvéaner vi oss av ett set av valbara alternativ bestdende av 14 kedjor och 16
sandningsstorlekar. Vi visar att ndr vi expanderar setet till att besta av 14 kedjor med
containertransporter och 14 kedjor utan containertransporter (samt 16 stycken
sandningsstorlekar) inkluderas nya alternativ som har liknande transporttid och avstand men
lagre transportkostnader i genomsnitt. Skillnaden i genomsnittskostnader minskar markant
ndr vi fokuserar pa alternativ som valdes i varuflodesundersokningen. Det tyder pa att de
alternativ som bara inkluderades i det expanderade setet hade lag sannolikhet att bli valda av
foretagen anda.

Vi testar dven att minska antalet valbara sandningsstorlekar fran 16 till fem stycken och visar
att det leder till att de valbara alternativen har lagre kostnader i genomsnitt jamfort med det
ursprungliga antalet storlekar. Prediktionerna som baseras pa det ldgre antalet
sandningsstorlekar dr samre, vilket visar pa fordelen med att behalla en mer detaljerad
uppdelning av storlekarna. Dartill jaimfor vi var MNL-modell med en sa kallad néstlad logit-
modell som tillater mer komplexa substitutionsmonster mellan olika transportalternativ. Vi
finner att prognoserna baserade pa den nastlade logit-modellen &r nagot béttre.

Till sist visar vi att de koefficienter som vi skattat i huvudanalysen inte systematiskt ger samre
prediktioner nar de appliceras pa transportkostnader som skiljer sig nadgot fran de som anvants
vid skattningarna. Prediktionerna ar mer exakta for vissa kedjor och mindre exakta &n andra
jamfort med vara huvudresultat. Det visar att de skattade koefficienterna dr nagorlunda
robusta for mindre @ndringar i inputdata.

Konsekvenser for implementering av en stokastisk logistikmodul i Samgods

Ett av vara huvudsakliga bidrag &r att producera koefficienter som kan anvandas i logit-
formeln i den stokastiska logistikmodulen. Dessa koefficienter visas i appendix A. Nar vi
applicerar dessa pa sandningarna i varuflodesundersokningen ges prediktioner av antalet



sandningar och ton som for de flesta varugrupper Overensstimmer med de observerade
vardena.

Véra resultat visar att justeringar troligtvis maste goras om dessa koefficienter ska anvandas i
logit-formeln i den stokastiska logistikmodulen. I var analys behovde vi justera
sandningsstorleken upp och ner for de varugrupper dar prediktionerna var langt ifran de
observerade viardena. Ett alternativt tillvigagangssiatt ar att inkludera logaritmen av
skillnaden mellan observerade och predikterade vardet i modellspecifikationen for varje
transportkedja. Denna ansats anvandes vid utvecklingen av en stokastisk logistikmodul for
tva varugrupper i ett tidigare projekt (Abate et al. 2016).

De valbara transportalternativen i var analys och i den foreslagna stokastiska modulen utgors
av 14 kedjor och 16 sandningsstorlekar. Nar vi utdkar de valbara transportalternativen till att
inkludera bade containertransporter och icke-containertransporter inkluderas bara alternativ
som inte ar sarskilt relevanta for foretagens val i varuflodesundersokningen. Déaremot
forbattras kvaliteten i prediktionerna vilket dr en god anledning att se 6ver hur méanga valbara
alternativ som skall inga. Men fordelarna av att 6ka antalet alternativ bor vdagas mot den 6kade
bordan av att implementera och kora en sddan logistikmodul i Samgods.

Det finns flera tankbara forandringar i definitionen av den stokastiska logistikmodulens
komponenter, inte minst hur fordonstyperna i Samgods ska kopplas till varje transportkedja i
modulen och vilka kedjor och siandningsstorlekar som skall ingd. Om sadana forandringar
genomfors i framtiden ar det mdgjligt att pa olika siatt kombinera de redan skattade
koefficienterna for olika kedjor och sadndningsstorlekar utan att behdva skatta nya
koefficienter.

De koefficienter vi har skattat framstar som relativt robusta for alternativa varden pa
transportkostnaderna. Mindre férandringar hos de faktorer som bestimmer dessa varden bor
darfor vara oproblematiska. Skulle storre forandringar i inputdata (och transportkostnader)
genomforas i Samgods ar det mdojligt att justera koefficienterna for att ta hansyn till att
variablernas skala har férandrats, utan att behdva skatta nya koefficienter. Koefficienterna kan
justeras genom att multipliceras med en faktor lika med skillnaden mellan det gamla och nya
medelvardet for varje variabel.

Vi har i analysen genomfort skattningar och prediktioner for samtliga 16 varugrupper, men
det ar inte uppenbart att en stokastisk logistikmodul kravs for alla grupper. En anledning att
anvanda en stokastisk modul ar att forhindra osannolikt stora férandringar i efterfragan pa
olika transportkedjor. Men sadana forandringar lar inte uppsta for varugrupper dir en enstaka
kedja utgor hela marknaden. Vi visar att det bara ar for varugrupperna 1 (jordbruks-,
skogsbruksprodukter) och 2 (kol, gas och olja) som en kedja har mer &n 90 procent av mangden
ton som transporteras.

En anledning till att anvanda den deterministiska ansatsen ar svarigheten att modellera valet
av transportalternativ. I var huvudanalys visar vi att prediktionerna for varugrupperna 2, 3,
5 7 och 14 ar langt ifrdn de observerade vardena. Samtidigt gar det att justera
sandningsstorlekarna for att prediktionerna ska vara relativt precisa igen. Baserat pa detta



drar vi slutsatsen att fragor som ror implementeringen av en mixad logistikmodell (med bade
deterministisk och stokastisk modellering) vager tyngre vid beslutet om vilka varugrupper
som ska modelleras pa vilket satt.

Vi finner att prediktionerna baserade pa den nastlade logit-modellen ar nagot battre &n de
baserade pd MNL-modellen. P4 s& vis finns det fordelar med att basera den stokastiska
logistikmodulen pa en nastlad logit-modell, inte minst med tanke pa att vi anvande oss av en
relativt enkel nastlad modellspecifikation och att det sannolikt finns forbattringspotential.
Men den nastlade modellen stéller hogre krav pa berdkningsprestanda och enkelheten i MNL-
modellen &r ett starkt argument for att anvanda den i den stokastiska logistikmodulen.



Introduction

In 2013, the Swedish Transport Administration started the process to develop a stochastic
logistics module for the national freight transport model Samgods. The logistics module
includes the combined choice of shipment size and transport chain for firm-to-firm relations
in the model. The choice has previously been modelled in a deterministic way, where all
tonnes on a firm-to-firm relation is assigned to the transport solution with lowest cost.

One of the downsides with such selection rule is that it can lead to implausibly large swings
in modal shares following changes in the variables determining costs. This is a concern not
least because Samgods is used for policy analysis. The Swedish Transport Administration has
taken several steps towards the development of a so-called stochastic logistics module, where
the logistics choices are based on a logit-formula and coefficients are estimated on observed
choices by shippers. This way of modelling choices reduces the risk of sharp changes in modal

shares and has a stronger behavioral foundation.

Despite earlier work on this topic there remains several questions regarding the production of
logit-based coefficients that can be used in a stochastic logistics module. The purpose of this
study is to address these questions by estimating and evaluating logit models, produce
coefficient estimates that can be used in the implementation of a stochastic logistics module
and analyze how our results are affected by changes in the main analysis, including the size
of the choice set, weight class interval and new input data.

The study is outlined as follows. The following section gives a background to the proposed
stochastic module and previous projects. The subsequent sections describe the data and data
processing steps we take, outlays details of our estimation and evaluation method and the
results. The final section concludes.

Background

Overview of the stochastic logistics module

The logistics module in Samgods simulates the logistics decisions (regarding shipment size,
use of consolidation and distribution centres, mode- and vehicle/vessel type and loading unit
type) at the firm-to-firm level. The joint choice of shipment size and transport chain has
previously been modelled in a deterministic way, although changes implemented in version
1.2 of the model allow for not only one but two choices on each firm-to-firm relation. 2

A proposal for how a stochastic logistics module in Samgods would work has been outlined
in previous reports (Abate et al. 2014, 2016). As with the deterministic module, the starting
point is the matrix of freight transport demand between producer and consumer zones (a PC-
matrix). The matrix consists of estimated tonnes of goods to be transported from each origin
to each destination in a given year. The flows in the PC-matrix are disaggregated into flows
between three different size classes of firms (small, medium and large) and a group for
volumes to be sent in large shipments between industries.

2 Transport cost is set to follow a stochastic distribution so that realized transport cost may be above or below the
expected average cost. This creates the possibility that the second-best chain will have lower realized cost than the
best chain, although the latter has lower expected costs.



The proposed stochastic module also works at the firm-to-firm level to select the transport
chain and shipment size. It operates on 16 commodities and have a choice set that consists of
14 chain types and 16 shipment size categories. Each choice alternative is made up of a
combination of a chain type and a shipment size interval so there are 14 times 16 = 224
alternatives in total. Table 1 shows the dimensions of the proposed stochastic module.

No. Chain type No. Shipment size

1 Truck 1 0-50 kg

2 Vessel 2 51-200 kg

3 Rail 3 201-800 kg

4 Truck-Vessel 4 801-3000 kg

5 Rail-Vessel 5 3001-7500 kg

6 Truck-Truck-Truck 6 7501-12500 kg

7 Truck-Rail-Truck 7 12501-20000 kg

8 Truck-Ferry-Truck 8 20001-30000 kg

9 Truck-Vessel-Truck 9 30001-35000 kg

10  Truck-Air-Truck 10 35001-40000 kg

11  Truck-Ferry-Rail-Truck 11 40001-45000 kg

12 Truck-Rail-Ferry-truck 12 45001-100000 kg

13 Truck-Vessel-Rail-Truck 13 100001-200000 kg

14 Truck-Rail-Vessel-Truck 14 200001-400000 kg
15 400001-800000 kg
16 800001+ kg

Table 1. Overview of choice set

The choice model in the stochastic logistics module is given by the logit-formula. It says that
the probability that alternative k is selected for observation i among K different alternatives is

exp(Vix)
Pryk) = o)
' XX exp(Vix)
Vie = XuB

where V;; is called the representative utility of alternative k for observation i, that is specified
to depend on the set of variables X;;, and coefficients . In the stochastic logistics module, each
observation i would refer to a firm-to-firm flow of a particular commodity going from one
Samgods zone to another. The number of different alternatives K would be 224 at a maximum.

The logit-probability has several desirable features: it is necessarily between 0 and 1 and the
probabilities for all alternatives sum to 1. The association between the logit probability and
representative utility is S-shaped, as shown in Figure 1. This means that if the representative
utility is very low or very high compared to the alternatives, an increase in the utility of that
option (e.g. due to transport cost reductions) changes its choice probability by very little. This
feature is what reduces the swings in modal shares following changes in policy variables and
makes the logit-formula suitable to use in the logistics module in Samgods.
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Figure 1. Graph of logit curve

The first step in the stochastic logistics module is to reduce a longlist of some 100 transport
chains that are pre-defined in Samgods to the shortlist of the 14 chain types. The next step is
to calculate for each firm-to-firm relation on each OD-pair the probability that each alternative
(i.e. combination of chain type and shipment size) is chosen. This probability is given by the
logit-formula. The stochastic module then sums the tonnes-weighted probabilities over all
firm-to-firm relations to produce matrices containing the tonnes transported by mode between
origin and destination zones in Samgods. In a memo accompanying this study, we provide a
longer description of our suggested stochastic logistics module (Lindgren et al. 2019).

Previous literature

Implementation of the stochastic logistics module requires several decisions to be made
regarding the logit formula. This includes selecting one of the many different discrete choice
models that are based on the logit-formula; specifying how to model firms’” choice of which
mode to use and their decision of how much to ship; deciding which variables that should enter
the representative utility and their functional form as well as estimating their coefficients.

Some of these questions have been analyzed in previous work. Abate et al. (2014) estimated
and reviewed various econometric models of discrete choice that can be used to describe firms’
choice of shipment size and mode. They compared three types of discrete choice models; one
that only consider the mode choice decision, another of the joint choice of mode and discrete
shipment size choice and a third of the joint choice of mode and continuous shipment size
choice. Their conclusion was that converting shipment sizes into discrete categories gives other
behavioral responses but might be preferable when using large datasets such as the
Commodity Flow Survey. Thus, this is the approach we also take in this study.

Abate et al. (2016) estimated and implemented models of the joint choice of transport chain
and discrete shipment size. The logit models were estimated separately by commodity group
using the old commodity group classification. We follow their approach and estimate one logit
model per commodity group. They implemented a stochastic logistics module for two of the



commodity types based on the estimated coefficients. The authors showed that cost and time
elasticities produced by the stochastic module was closer to zero compared to elasticities based
on the deterministic module.

There remain several questions regarding the production of logit-based coefficients that can
be used in a stochastic logistics module. These broadly concern i) the need to base estimation
on updated data sources that are internally consistent, ii) the suitability of different logit model
specifications, iii) the sensitivity of logit model performance to changes in the estimation
process and iv) how well a logit-based formula works for predicting the transport chain and
shipment size choice.

This study analyses these questions. We use the 2016 Commodity Flow Survey for Sweden
together with the new Samgods commodity classification and cost parameters that have been
updated to the same year as the CFS to estimate discrete choice models of firms” joint choice
of shipment size and transport chain. We test various model specifications, make predictions
of modal shares using the best logit model and compare those against the observed choices in
the CFS. The resulting coefficients can be readily applied in the logit-formula in a future
stochastic logistics module. We then analyze how our results are affected by changes in the
main analysis, including the size of the choice set, weight class interval and new input data.

Data

Commodity Flow Survey

The main data source used in this project is the Swedish Commodity Flow Survey from 2016.
The data set contains records of some 5 million individual shipments to or from a company in
Sweden, with information about the origin, destination, value, weight, cargo type and
commodity class of the shipments.

The survey also contains information about the mode(s) used to transport each shipment. It
distinguishes between road, rail, sea and air transport and includes an additional category for
unknown modes. We translate the observed mode choice in the CFS to a choice of one of the
14 chains in the choice set of the proposed stochastic logistics module. The correspondence of
these sets is shown in table 2.

Chain 1 is truck and corresponds to shipments in the CFS that has recorded using only road
transportation. Chains 2 and 3 are direct transportation by vessel and sea and include CFS
shipments using only the corresponding mode (or in combination with an unknown mode).
Chain 4 (truck-vessel) and 5 (rail-vessel) consist of various combinations using either only road
and sea transportation or rail and sea transportation (in combination with an unknown mode

in some instances).

Chain 6 (truck-truck-truck) corresponds to CFS shipments recording road in combination with
an unknown mode. The information in the CFS makes it difficult to differentiate between chain
1 (truck) and 6 (truck-truck-truck). The latter chain consists of a leg with a small truck, followed
by consolidation in a larger truck and ends with a smaller truck on the last leg. This chain
cannot reliably be taken from the CFS as the survey does not distinguish between vehicle size.
In practice, the CFS combinations corresponding to chain 6 are rarely recorded in the CFS.

10



NO. Shortlist chaintype CFS combinations included (V=road, J=rail, S=sea, L=air, X=unknown)
1 Truck \Y,

2 Vessel S, SX,

3 Rail J, IX

4 Truck-Vessel SV, SVS, VS, VSX

5 Rail-Vessel JS, JSJ, JSX, SJ, XSJ

6 Truck-Truck-Truck VXV, VX, XV,

7 Truck-Rail-Truck JV, VJ, VIV, VIX

8 Truck-Ferry-Truck

9 Truck-Vessel-Truck VSV, VSVSV

10 Truck-Air-Truck All chains containing L

11 Truck-Ferry-Rail-Truck

12 Truck-Rail-Ferry-truck

13 Truck-Vessel-Rail-Truck SJV, SVJV, VSJ, VSV, VSJV, XSIV

14 Truck-Rail-Vessel-Truck VJS, VIS, VISJV, VISV, VISX, VIVS, VIVSV, VIX, JSJV, ISV, JVS

Table 2. Correspondence shortlist and CFS combinations

Chains 7 (truck-rail-truck) and 9 (truck-vessel-truck) is made up by shipments using road in
combination with rail or vessel respectively. Chains 13 (truck-vessel-rail-truck) and 14 (truck-
rail-vessel-truck) both consist of chains where road, rail and sea transportation are utilized.
We differentiate between the two chains by allocating shipments that use sea before rail
transportation to chain 13 and the opposite to chain 14. We link all shipments using air
transportation to chain 10 (truck-air-truck).

Unfortunately, the CFS does not allow the identification of ferries from vessels. We decided to
regard all records of sea transportation as a vessel so the chains containing ferries (8, 11, 12)
will not be coded as chosen in the data. This is motivated by vessels being the more common
mode than ferries and that identification of ferries based on e.g., shipment origin and

destination involves a degree of arbitrariness.

Figure 2 shows the tonnes modal shares of the chains for each commodity based on the
shipments in the CFS 2016. Overall, there is substantial variation in chain types shares,
although direct road transportation (chain 1) is the most common choice for most commodity
groups. There are only two groups where a single chain constitutes more than 90 percent of
the market. Direct road transportation dominates in commodity group 1 (agriculture and
forestry products (excluding round wood) and fishing) while vessels (chain 2) has virtually all
of the market for transportation of group 2 (coal, crude petroleum and natural gas).

11
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Figure 2. Chain shares in tonnes, based on CFS 2016
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Samgods-based data

For our logit model estimations, we will use information about the cost, time and distance of
chosen and non-chosen alternatives facing each shipment in the CFS. We create these variables
using the existing logistics module in Samgods as follows. First, a regular model run is
performed with the deterministic model to determine the consolidation factors that will be
used in the cost calculations. These consolidation factors will be fixed during the steps that
will be described below. Second, we identify the Samgods zone of origin and destination for
each shipment in the CFS 2016. Samgods zones corresponds to municipalities in Sweden,
larger regions in the rest of Scandinavia and some European countries and to countries or
country-combinations in the rest of the World. We geocode the origin and destination using
the sender’s and receiver’s postal address or using the country code when the postal address

is unavailable or unreliable.

We then create a synthetic production-consumption-matrix for the Samgods zones based on
the observations in the CFS. We subsequently run a special version of the deterministic
logistics module where the cost-minimizing option per chain type is determined. This
procedure is run at a fixed annual shipment frequency of 1 and produces the best chain for
each of the chain types that are available for the particular origin- and destination-pair being
considered. For each of these best chains the route (and corresponding transport time, distance
and costs) and vehicle type being used are determined. This step therefore effectively
determines the set of available chains for each shipment in the CFS.

This step requires the use of cost parameters as input. The cost parameters that are currently
available in Samgods refer to the base years 2012 or 2014 while we which them to be related
to the same year as the CFS 2016 for internal consistency. We therefore update the cost
parameters to their 2016 level using price indices. Table 3 shows the indices used to adjust cost

parameters.
Cost Cost Mode Index (source) Adj.
category parameter factor
Vehicle All Road Swedish SPPI for road freight transportation® (SCB) 1,009
parameters Rail Swedish SPPI for land-based transportation® (SCB) 1,025
Sea Swedish SPPI for maritime freight transportation® 1,041
(SCB)
Air Swedish CPI (SCB) 1,009
Cargo Product value All Swedish CPI (SCB) 1,009
Inventory costs  All Service price index, group H: transport and handling 0,996
services (SCB)
Order costs All Service price index, group H: transport and handling 0,996
services (SCB)
Kiel Canal Link-based tax  Sea CPI EU28 (OECD) 1,023
Tax per Road and ralil Road CPI EU28 (OECD) 1,023
country rail tax Rail CPI EU28 (OECD) 1,023
and road
Toll links Toll link Road Swedish CPI (SCB) 1,009
Rail Swedish CPI (SCB) 1,009
Pilot fees Pilot fees Sea Swedish CPI (SCB) 1,009
Tax link Tax link Sea No update -

Note: 2 SPPI product group 49.41 °SPPI product group 49., ¢ SPPI product group 50.2

Table 3. Overview of cost parameters and indices
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Vehicle cost parameters are adjusted according to the Swedish Producer Price Index for
Services (SPPI) and consumer price index (CPI). Cargo-specific costs are adjusted according to
various price indices. The development of product values is assumed to be well-approximated
by that of the general consumption bundle. More detailed indices are available (e.g. producer
price index by product linked to sector (SPIN)) but their high-resolution makes them sensitive
to price shocks. Inventory and order costs are approximated by price of services for transport
and handling., Swedish and international taxes and fees are adjusted by the Swedish and EU-
level CPIs respectively.

The cost parameters covering product value, inventory costs and order costs are specific to a
single commodity group. The existing cost parameters follows the old commodity
classification in Samgods that consists of 35 groups, while our analysis is based on the 16
commodity groups used in Samgods version 1.2 (Vierth et al. 2017). We solve this by linking
the commodities and their costs from the old Samgods classification to the commodities in the
new classification based on the correspondence of sub-groups within each commodity.

Within the Commodity Flow Survey only the size of the observed shipment is available. The
annual volume on a specific firm-to-firm relation is not available from the Commodity Flow
Survey. For this reason, it is not possible to calculate the order and storage costs for the
observed transport flows. Therefore, the stochastic model is estimated on the transport costs
only, order and storage costs are not included in the estimation.

The transport costs are calculated for all combinations of the 16 shipment sizes and sub-modes
available in Samgods. We link the sub-modes to the 14 chain types in the choice set that the
proposed stochastic logistics module will operate on by creating a correspondence key.
Matching between the set of 14 chain types and the sub-modes is non-trivial because the
former is specified in terms of modes (truck, vessel, rail and air) while the sub-mode
combinations are given at the Samgods vehicle type level (e.g. feeder train, wagonload train).

NO. Shortlist chain type Principle for inclusion

1 Truck No transfers

2 Vessel No transfers to other modes

3 Rail No transfers to other modes

4 Truck-Vessel Vessel taken to be all sea modes apart from road and rail ferry

5 Rail-Vessel Vessel taken to be all sea modes apart from road and rail ferry

6 Truck-Truck-Truck Trucks in combination

7 Truck-Rail-Truck Any combination containing only truck and rail

8 Truck-Ferry-Truck Ferry taken to be road ferry (sub-modeNr P)

9 Truck-Vessel-Truck Vessel taken to be all sea modes apart from road and rail ferry
10 Truck-Air-Truck All chains including air

11 Truck-Ferry-Rail-Truck Includes one of only two chain types containing rail ferry (HQH)
12 Truck-Rail-Ferry-truck Includes one of only two chain types containing rail ferry (GHQH)
13 Truck-Vessel-Rail-Truck  Order of rail/vessel important, vessel taken to be all sea transports apart

from road and rail ferry
14 Truck-Rail-Vessel-Truck  Order of rail/vessel important, vessel taken to be all sea transports apart
from road and rail ferry

Table 4. Correspondence shortlist and Samgods transport chains
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Table 4 shows the principle for defining a sub-mode in Samgods as a particular chain in the
choice set. This means for instance that chain 1 (truck) consists of sub-modes that only uses
direct road (i.e., sub-modes A, B, X, C, S and c). Chain 2 (vessel) consists of sub-modes that
only use sea transportation without transfers to other modes (sub-modes J, KL, LK and M) and
so forth. The full correspondence key between chains and sub-modes is shown in Appendix
B.

When we calculate the costs representative for each chain type and more than one available
sub-mode can be linked to a chain, the sub-mode with the lowest cost is set to represent that
chain. In this way, for each shipment in the CFS there is information of the cost, time and
distance for all combinations of the 16 shipment sizes and 14 chains (or at least for all available
chains).

The procedure used to generate the costs involves several assumptions about the input data,
not least the cost parameters. In the analysis we test our results against an alternative cost
variable to assess the robustness of our procedure.

Methodology

In our main analysis we use the CFS in combination with estimated transport cost, distance
and time to estimate discrete choice models of the transport chain and shipment size choice.
The choice set consists of the 14 chain types and 16 shipment size categories included in the
choice set of the proposed logistics module.

Based on the available set of variables, we try different model specifications (variable
combinations and functional form) and choose the best model to make predictions. We end
our main analysis by comparing these predictions to observed levels in the CFS and quantify
the deviation of predictions to observed output. We then extend the analysis to investigate
whether variations in input data, weight class interval and size of choice set alter the main
results. We also examine if our findings are changed if we use choice models with other
assumptions about choice patterns.

Models

Our main model is the multinomial logit (MNL). It assumes that the representative utility of
choosing the combination of shipment size s and transport chain t for shipment i is

Vist = B1x1 + Baxz + -+ + Brxy

where fj is the coefficient on variable xj. Exactly which variables to be used will be
determined in our analysis. Under some distributional assumption about the unobserved
component of the utility (Train 2003), the probability that transport chain t and shipment size
s is used for shipment i is given by:

exp (Vist)

P(t,s) =
() = 5 W)
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This expression is the basis for which our predictions will be made and the formula that enters
the stochastic logistics module. As a benchmark to compare our logit model predictions to, we
define a mock-deterministic model that for each decision-maker selects the alternative with
lowest transport costs C:

1if Cits < Cipq Yk, VI
0 Otherwise

Pi(t,s) = {

This decision rule has the same all-or-nothing assignment found in the deterministic logistics
module, although the one used here is arguably coarser as it lacks feedback loops and does
not account for rail capacity constraints.

Estimation
Estimation follows the standard procedure for logit models. The probability that transport
chain t and shipment size s was actually chosen for shipment i can be expressed as

[ [P st
t,s

where [;;s = 1 if shipment i is transported using chain t and size s and 0 otherwise, and the
multiplication is over all chain and size-combinations available for shipment i. The probability
of all of the N shipments in the sample being transported by the chain and size actually chosen
is given by the likelihood

N

L(B) = 1_[ 1_[ P;(t,s)its
t,s

i=1

which depends on the vector of coefficients § through the logit-formula P;(t,s). The log-
likelihood is then:

N
LLB) = ) ) Jis XInPi(£, )
i=1 ts

and the estimator of f is the value the maximizes this function. To handle the large sample
size associated with 5 million shipments and up to 224 alternatives for each shipment, we
randomly sample 10 alternatives (including the chosen one) for each shipment.? The estimation
is run on a 20 percent random sample of each commodity group separately. Running
commodity-specific models facilitates the estimation procedure and produces commodity-
specific coefficients directly.

Variable Selection and Model Fit Evaluation

In principle, any variable set can be included in the utility specification in the logit model. The
included variables can in turn be specified in various functional forms, including linear, log-
linear and splines. They could also be set to be specific to one or more of the choice alternatives.

3 Sampling non-chosen alternatives with equal probability as is done here provides consistent estimates of the
coefficients (Train 2003).
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In this project, we first restrict the model specifications to be estimated and evaluated based
on two factors. First, all variables included in the model must also be possible to make
available in the Samgods model. Finding a model with high predictive accuracy is of limited
use if the coefficient cannot be applied in the logistics module of Samgods due to lack of data.
Second, we restrict attention to the variables available in the CFS 2016 and the alternative-
specific cost, time and distance variables estimated in Samgods. The table below shows the
variables and their functional form tested in the utility specification for some or all commodity

groups.
Variable Unit Functional form tested
Transport cost SEK/tonne Linear, scaled by shipment value, log,
Transport time Hours Linear
Value density SEK/kilogram Linear
Chain type Dummy (0/1) Linear
Shipment size Dummy (0/1) Linear

Table 5. Variables and their functional form tested in utility specification

Our choice of variables to include is based on the following procedure. First, we select the
number of chain and shipment size dummies to include for every commodity group. This
choice is based on the accuracy with which the coefficients were estimated and whether the
category was observed in the estimation sample. Coefficients for chain and shipment sizes that
are seldom chosen are difficult to estimate with precisions and these variables are therefore
left out of the model. Second, we select the number of cost variables to include in the model.
We let cost enter linearly and separately for each chain and keep the cost variable if the
coefficient has the expected negative sign. In the third step we estimate the coefficient on a
common transport time variable and keep the variable if the coefficient has the expected
negative sign. This procedure implies that the best model specification can vary between
commodity groups.*

Model Prediction Evaluation

We use the coefficients from our best logit models to make predictions both for the
observations used for estimation (i.e. in-sample predictions) and those not used for estimation
(out-of-sample predictions). We make separate predictions for each commodity group. In-
sample observations constitute 20 percent of all observations, which translates to between 840
and 1.6 million observations depending on the size of the commodity group.®

Our prediction targets are the number of shipments per transport chain and shipment size and
the tonnes by each transport chain and in total. These are standard measures of modal shares,
used in Samgods and straightforward to calculate in the validation data (CFS). The observed
frequency by transport chain t in the CFS is given by

4 An alternative way of selecting model specification is to use some measure of model fit, such as the log-likelihood
and Akaike/Bayesian Information Criteria. We tested this approach but found that the included variables
sometimes were very imprecisely measured and had coefficients with the unexpected sign. We argue that such
coefficients would be of little use in Samgods.

> Appendix A shows the number of observations used in estimation for each commodity group.
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N
N(t) = Z Iy
i=1

where [;; is an indicator equal to 1 if shipment i uses transport chain t and 0 otherwise.
Similarly, the observed frequency by shipment size s in the CFS is

N
NG) = D ke
i=1

where [ is an indicator equal to 1 if shipment size s is chosen and 0 otherwise. Our predicted
transport chain frequency is obtained as follows. For each shipment, the logit and mock-
deterministic model predicts the probability that the combination of transport chain t and
shipment size s is chosen: P;(t,s). These formulas are shown above. Summing over the 16
shipment sizes alternatives within a shipment gives the probability that transport chain t is
used for shipment i:

16
PO = ) A(L9)
s=1

Summing over all N observations gives the predicted frequency using transport chain t:

N 16

HCEDIPWICD

i=1s=1

Analogously, our predicted frequency using shipment size s is obtained by summing the
probabilities P;(t, s) over the 14 transport chains and N observations

N 14
OEIWACH!
i=1t=1

=)

The observed tonnes by transport chain t in the CFS is given by

N
Q) = Zlit X w;
i=1

where I;; again is the indicator equal to 1 if shipment i uses transport chain t and 0 otherwise,
and w; is the observed shipment weight. Our prediction of tonnes by each transport chain is
obtained as follows. We first sum over the shipment sizes to get the probability that transport
chain t is used for shipment i

16
PO = ) A6)
s=1
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We introduce tonnes by multiplying the probability that the combination of chain t and size s
is chosen by the weight of shipment size s. Because each size refers to a weight interval, we
use the midpoint of each interval as the actual weight. (For instance, the weight used in interval
20-30 tonnes is 25 tonnes). Letting § be the average weight in interval s, s=1, 2, ..., 16, the
predicted tonnes by transport chain t of shipment i is

16
Q;(t) = Pi(t,s) X3

Finally, we sum over all N shipments to get the predicted tonnes by transport chain t:

N 16

0t) = ZZ Pi(t,s) X5

i=1s=1

The way our predictions are calculated will have an impact on the final results. As will be
shown, the choice of weight used to predict shipment size can be adjusted to reach the desired
tonne level targets for commodities for which the initial prediction was poor.

We present our results graphically. We also evaluate the predictive performance of the logit
models by calculating the root mean squared errors (RMSE):

1
RMSE = /ﬁz ez,

where &, = Q.(t) — Q.(t) is the deviation of the predicted tonnes from observed tonnes for
chain t and commodity c. We calculate the RMSE for each commodity and for each transport
chain. The RMSE is a standard measure frequently used to measure the difference between
observed and predicted values. It is always non-negative and the closer the RMSE is to zero,
the more accurate is the prediction.

Main Results

Model specification
The best model specification was for each commodity group c to set representative utility
equal to the following;:

Tc Sec Tc
Vg = z Opdy + Z usds + Z B:(Costy X d;) + 6Timeg;
t=1 s=1 t=1

where d; is a dummy equal to 1 for transport chain t and 0 otherwise, d; is a dummy equal to
1 for shipment size s and 0 otherwise, Costs; and Timeg, are the transport cost and time of
chain-size combination st respectively. T, and S, is the number of chain constant and shipment
size constants included for commodity c. 7. is the number of chain-specific cost coefficients for
commodity c.
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This means that a separate coefficient was estimated on each transport chain constant, each
shipment size constant and for the cost variable for each chain. The coefficient on transport
time was set to be the same for all alternatives and entered the specification only for one
commodity group. Note that none of the coefficients depend on the attribute of the shipment,
except of course on the commodity group. Transport cost and time enters linearly in the utility
specification as using a logarithmic specification of cost did not improve the fit in the cases we
tried. Table 6 summarizes the specification for each of the 16 models.

Commodity # chain constants # size constants # Cost-by-chain Transport time # parameters
1 1 15 No No 16
2 3 2 No (common cost) No 6
3 6 15 4 No 25
4 6 15 6 No 27
5 5 1 2 No 7
6 7 15 5 No 27
7 1 14 1 No 16
8 7 15 5 No 27
9 4 15 2 No 21
10 7 15 6 No 28
11 7 9 0 No 16
12 6 15 6 No 27
13 3 11 No No 14
14 2 12 2 No 16
15 1 15 1 No 17
16 2 8 1 Yes 12

Table 6. Summary of model specifications

The complete estimation results for the best logit models are shown in appendix A. Direct road
transportation (chain 1) is preferred in almost all commodity groups, holding all other
attributes constant. The highest weight category is preferred relative the lowest for shipments
of commodity group 2 (coal, petroleum, natural gas), 3, (ores and mining products) and 15
(round wood) whereas the opposite is true for the other groups. The coefficient on transport
cost differs both between transport chains and commodity groups, showing that utility weight
put on cost indeed is different across chains and commodities. The coefficient on transport
time enters the utility function only for commodity group 16 (air freight).

Model prediction

We next turn to our analysis of the predictive performance of our models. Figure 3 shows the
predicted and observed frequency for each of the 14 chain types. The commodity group is
indicated at the top of every figure. For each group, the left window shows the predictions for
observations not used in the estimation and the right window for in-sample observations. The
scale of the y-axis is the same within commodity groups but differs between them. Blue bars
show the frequencies observed in the CFS, red bars show the frequencies predicted by the logit
model and green bars the predictions from the mock-deterministic model.

Chain 1 (direct road transportation) dominates the market for almost all commodities while
chain 9 (truck-vessel-truck) is also frequently used for many commodities. In-sample
frequencies are lower than out-of-sample frequencies since in-sample observations constitute
some 20 percent of all observations within each commodity group.

In-sample predictions by the logit model are very close to observed levels. This is due to the
inclusion of constants for chains and shipment size, which leads to close to perfect predictions
of observed frequencies. In-sample predictions by the mock-deterministic model is also close
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to observed levels, indicating that the alternative offering the lowest cost per tonne tends to be
chosen in practice.

Out-of-sample predictions by the logit and mock-deterministic models are also close to
observed levels but do not perform as well as the in-sample predictions. This is likely to be a
result of modal shares being different in-sample compared to out-of-sample, perhaps due to
sampling variation. The overall pattern is that both the logit model and the mock-deterministic
model do well in predicting transport chain frequencies.

Figure 4 shows the results for predicted and observed frequencies calculated for each of the 16
shipment sizes. There is a clear variety in observed shipment sizes across commodity groups.
A natural benchmark is weight class 10 or lower, which corresponds to below-truck-weight of
40 tonnes. For some commodity groups (4, 5, 11, 13 and 16), almost all shipments fall between
0-50 kg (weight class 1).* Groups 3, 6, 8, 9, 12 and 14 have more even distribution of sizes.
Commodity group 2 stand out as having a shipment size distribution heavily skewed to the
right.

The performance of the logit and mock-deterministic models are similar for in-sample
predictions compared to out-of-sample predictions, probably owing to the similarity in
patterns between samples. However, there is a clear difference in the predictive performance
of the logit model compared to the mock-deterministic model. The frequencies predicted by
logit model are very close to the observed ones, again most likely because of the inclusion of
shipment size constants. The mock-deterministic model tends to predict large shipment sizes
and is therefore accurate for commodity group 2 where this is the case, and off for groups that
tend to use lighter shipments (4, 5, 11, 13 and 16). This is consistent with transport cost per

tonne on average being lower for larger shipment sizes.

6 Commodity group number and names are 1 (Products of agriculture, hunting, and forestry; fish and other fishing products. Not
timber); 2 (Coal and lignite; crude petroleum and natural gas); 3 (Metal ores and other mining and quarrying products; peat); 4
(Food products, beverages and tobacco); 5 (Textiles and textile products; leather and leather products); 6 (Wood and products of
wood and cork (except furniture); pulp, paper and paper products; printed matter and recorded media); 7 (Coke and refined
petroleum products); 8 (Chemicals, chemical products, and man-made fibers; rubber and plastic products; nuclear fuel); 9 (Other
non-metallic mineral products); 10 (Basic metals; fabricated metal products, except machinery and equipment); 11 (Machinery
and equipment; medical, precision and optical instruments); 12 (Transport equipment); 13 (Furniture; other manufactured goods);
14 (Secondary raw materials; municipal wastes and other wastes); 15 (Timber); 16 (Air freight (fractions of some of the commodity
groups). A list of commodities and their number is found in Appendix C.
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Figure 3. Observed and predicted frequency, by chain, commodity and sample group
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Figure 4. Observed and predicted frequency, by weight class, commodity and sample group
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We now turn to our predictions of tonnes for each chain. Figure 6 shows the predicted and
observed tonnes for each chain and in total. Blue bars show the tonne levels as observed in the
CFS and red bars show the levels predicted by the logit model. The left window shows the
predictions for out-of-sample observations and the right window for observations used in the
estimation.

We have also calculated predictions based on our mock-deterministic model. However, this
model severely over-predicts the tonne levels for the transport chains. This makes a visual
analysis of the accuracy of our logit model very difficult. Figure 5 illustrates this point. The left
graph contains the observed levels and the predictions both from the logit and mock-
deterministic model (in green) for commodity group 8. It is difficult to assess the accuracy of
the logit model. The right figure omits the prediction from the mock-deterministic which aids
the visual interpretation of our results. In the remainder of the analysis we discuss our logit
model results.

Commodity 8 Commodity 8
- In sample - Out-of-sample In sample Out-of-sample
2 3
5 ¢

8 8 38 8
< = T T
8 8

N N

o 2
3 2
x o

8 8 ] S
¢ ¢ & &
[ Em - -

&t & 0 o
L] =g £ £
v " “E %
@ @ - -

2 g
1 7
1 3

S S ~ ~
b 3 5 5
H H

| | 8 8

= 2

- J . 1 - o1 |
1 4 6 7 8 9 10 13 14Total 1 4 8 7 8 9 10 13 14 Total
- Observed - Logit Mode| - Observed - Logit Mode| o- o-
B Octerministi o — o 14 6 7 8 9 10 13 14Total 14 6 7 8 8 10 13 14Total
[N Observed NN Logit Model| [ NN Observed NN Logit Model

Figure 5. Predictions against observed levels, with and without deterministic model

Just as for the frequencies, several commodity groups are dominated by one or two chain
types. In most cases this is direct road transportation (chain type 1). Chain type 9 (truck-vessel-
truck) also tends to have high shares of the market.

Prediction errors for individual chain types within commodity groups are similar for in-
sample and out-of-sample observations. This is a by-product of modal shares being similar for
observations used in estimation compared to the rest of the observations. The exception is
commodity group 14 for which the modal shares are very different for the estimation sample
compared to the rest of the observations. This makes the out-of-sample forecasts inaccurate
for this group. The difference in modal shares is likely due to the very low sample size of
commodity group 14 which makes sampling variability large.

In-sample predictions are relatively accurate for commodity groups 1, 4, 6, 8, 9, 10, 12 and 14-
16. The MNL model captures both the shares and the tonne levels of the chain types for these
groups. Predictions for commodity groups 2, 3, 5 and 7 are inaccurate — the model
overpredicts for commodity 5 and underpredicts for the other groups.
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Figure 6. Observed and predicted tonnes by commodity and chain type
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To summarize the accuracy of predicted tonnes by our logit model we calculate the root mean
squared errors for in-sample and out-of-sample predictions. Figure 7 shows RMSE for each
chain (i.e. calculated over commodities) to the left and for each commodity (i.e. calculated over
chains) to the right.

The logit model predicts poorly for chains 1 (truck), 9 (truck-vessel-truck) and 14 (truck-rail-
vessel-truck) and is off target for the total levels as well. The other chains have relatively low
prediction deviations. Commodity groups 2, 3, 7 and 11 stand out as being difficult to make
predictions for. These groups contain large deviations for chains 1, 9 and 14, as can be seen in
figure 6. The inaccuracy for these categories depends partly on the fact that there are large
volumes for transport chains in these commodity groups and that RMSE tends to increase with
observed volumes.

One concern with our models is that the inclusion of the many constants for chains and
shipment size leads to over-fitting. This would imply very good predictions in-sample but not
out-of-sample. Figure 7 shows that in-sample predictions are more accurate than out-of-
sample predictions but there is not a very large difference between in- and out- of sample
predictions as measured by the RMSE.

Out-of-sample In-sample QOut-of-sample In-sample
© ©
< <
w w
(2] (2]
= =
14 14
o4 o

1 4 6 7 8 9 10 13 14 Total 1 4 6 7 8 9 10 13 14 Total 123467 8 9101112131416 1234678 9101112131416
Chain Chain Commodity Commodity

Figure 7. Root mean squared error by chain and commodity
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Additional results
This section presents the results from a set of additional analyses made to investigate how
changes in the main analysis impact the results.

Effect of size of choice set

The choice set in the proposed stochastic logistics module and our analysis consists of 14 chain
types and 16 shipment sizes. These dimensions have been developed and analyzed in previous
projects where they gave reasonable results (Windisch et al. 2010; Abate et al. 2014, 2016).

One concern is that aggregating transport chains into 14 types will mask important differences
in choices patterns between the individual chains. One particular issue is that the choice of
transportation solution for shipments using container transportation will be different from
that for shipments in non-container cargos. This concern is partly motivated by the differences
in price-elasticities for different train types in Samgods.

We test the size of choice set by comparing two different sets; the original choice set with 14
chains and an expanded choice set with 28 chains that differentiates between container and
non-container options. Both sets have 16 shipment sizes. We compare the cost, time and
distance variables generated by these two sets as well as the coefficients and predictions from
logit models estimated on the sets.

We restrict our analysis to shipments of a single commodity group. We select commodity 6
(Wood, pulp, paper) as it has one of the highest shares of container usage (20%) in the CFS
2016. Differentiating between container and non-container choice is not likely to make a
difference for shipments that only use one or the other load unit.

The method used to produce the expanded choice set follows that of the original one. Matching
between observed choices in the CFS 2016 and the short list of chains is as before with the only
exception that we now take into account the recorded load unit for the shipments in the CFS.
A shipment is considered being transported in a container if it is registered as load unit 21-24
or 3 (containers, swap bodies and other exchangeable loading units) in the CFS. The matching
rate is somewhat reduced, from 78,000 shipments to 75,000 shipments, when we also have to
account for load unit. We again sample ten alternatives (including the chosen one) for each
shipment.

Table 7 shows summary statistics for transport cost, time and distance produced under the
different choice sets. Columns 1 and 2 show the statistics for all alternatives. The averages,
standard deviation and min-max values are similar and sometimes identical for time and
distance. Average costs are lower in the choice set that differentiates between container and
non-container options. Columns 3 and 4 show statistics only for alternatives recorded as
chosen in the CFS. These are even more similar than those for columns 1 and 2, suggesting that
expanding the choice set only leads to more alternatives that have higher costs on average (and
are not likely to be chosen).
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(1) (2 3 4
Expanded set, Original set, Expanded set, Original set,
all alt. all alt. chosen alt. chosen alt.
Cost (SEK/tonne) Mean 3,840 5,363 1,903 1,802
St. dev 19,799 24,603 15,646 15,358
Min 66 66 69 69
Max 640,711 640,711 578,559 578,559
Time (hrs) Mean 43 41 39 45
St. dev 147 142 141 164
Min 0 0 0 0
Max 2,128 2,084 1,843 1,212
Distance (KM) Mean 1,509 1,486 1,363 1,377
St. dev 3,642 3,367 3,897 3,836
Min 1 1 1 1
Max 26,426 26,426 26,070 25,740

Table 7. Comparison of choice sets for commodity 6

We estimate logit models on each of the choice sets using identical model specifications and
compare the coefficients. Ideally, we would like the coefficients to be identical so that our
selected choice set in the original analysis does not affect the coefficients entering the logistics

module.

Table 8 shows the result. Column 1 displays the coefficients (and column 2 the standard errors)
for the sample using the expanded choice set. Columns 3 shows the coefficients (and column
4 the standard errors) based on the original choice set. Column 5 presents the difference in

coefficients for each variable and column 6 tests if they have the same sign.

Expanded choice set Original choice set Difference Sign (1) =
1)-(3) Sign (3)
(1) (2 ) (4) (5) (6)
Coeff. S.E. Coeff. S.E.

Chain 1 7.98™ (0.16) 7.61™ (0.14) 0.37 Yes
Chain 4 4.41™ (0.19) 6.36™ (0.30) -1.95 Yes
Chain 6 0.45 (0.30) -0.42 (0.29) 0.87 No
Chain 7 4.39™ (0.16) 4.18™ (0.15) 0.21 Yes
Chain 9 3.22™ (0.16) 4.59™ (0.15) -1.37 Yes
Chain 10 0.94™ (0.16) 0.60™ (0.16) 0.34 Yes
Chain 13 -0.59 (1.06) -0.75 (0.96) 0.16 Yes
Size 2 -1.95™ (0.053) -1.78™ (0.052) -0.17 Yes
Size 3 211" (0.053) -1.83™ (0.053) -0.28 Yes
Size 4 -1.68" (0.050) -1.53" (0.049) -0.15 Yes
Size 5 -2.28™ (0.055) -2.05™ (0.055) -0.23 Yes
Size 6 -2.88" (0.065) 257" (0.064) -0.31 Yes
Size 7 -2.60" (0.060) 227" (0.058) -0.33 Yes
Size 8 -1.79™ (0.053) -1.49™ (0.052) -0.3 Yes
Size 9 -3.26" (0.072) -2.99" (0.071) -0.27 Yes
Size 10 -3.18™ (0.071) -2.91™ (0.070) -0.27 Yes
Size 11 -4.26™ (0.095) -3.99™ (0.094) -0.27 Yes
Size 12 -3.01™ (0.069) -2.69™ (0.067) -0.32 Yes
Size 13 -5.64™ (0.16) -5.39™ (0.17) -0.25 Yes
Size 14 -6.11™ (0.19) -5.83™ (0.20) -0.28 Yes
Size 15 -6.22" (0.21) -6.06™ (0.21) -0.16 Yes
Size 16 -6.15™ (0.20) -5.87" (0.20) -0.28 Yes
Chain 1 x cost -0.0012™ (0.000035) -0.0012™ (0.000036) 0 Yes
Chain 4 x cost -0.00040™ (0.000038) -0.0014™ (0.00011) 0.001 Yes
Chain 7x cost -0.00049™ (0.000046) -0.00059™ (0.000054) 0.0001 Yes
Chain 9 x cost -0.00048™ (0.000052) -0.00099™ (0.000068) 0.00051 Yes
Chain 13 x cost -0.00058 (0.00068) -0.00081 (0.00077) 0.00023 Yes
N 148,810 154,600
LL -12830.3 -12414.6
Parameters 27

Standard errors in parentheses, “p < 0.05, ™ p < 0.01, ™ p < 0.001

Table 8. Coefficient comparison for commodity 6
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The model shows that direct road transportation (chain 1) and road in combination with vessel
(chain 4 and 9), rail (chain 7) or air (chain 10) has a statistically significant positive impact on
utility. The smallest shipment size tends to be preferred over larger. Reassuringly, for almost
every variable, the sign of the coefficient from one estimation is the same as the one from the
other estimation. Magnitudes are also similar across coefficients suggesting that whether the
choice set is expanded or not matters little for the final coefficients. The cost coefficients for the
expanded choice set are somewhat larger in size, possibly as a response to lower average costs.

For the implementation of a stochastic logistics module, we are interested in the predictive
performance of these two sets of coefficients. We therefore use the same prediction approach
as in the main analysis for these two sets. The only difference is that we now make predictions
over the expanded set of choices. Graphical results are shown in figure 8 and suggest that the
predictive performance is improved when using the expanded choice set.
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Figure 8. Comparing predictions for expanded and original choice sets

Effect of changing weight class interval

The choice set in our analysis consists of 16 shipment sizes. We test the effect of changing
weight classes by first defining an alternative interval based on the existing one. We divide the
weights into multiples of a truck-load (40 tonnes). This classification follows existing truck
capacity limits and is easily compared to the original weight class interval.

We test the choice of weight class interval by comparing two different sets; the original choice
set with 16 shipment size and the reduced set with 5 shipment sizes. Both sets have 14 chain
types. Table 9 summarizes these sets. We compare the cost, time and distance variables
generated by these two sets as well as the coefficients and predictions from logit models
estimated on the sets. We again focus solely on commodity group 6. Matching rate is slightly
higher with the broader weight class interval, 99.1% compared to 97% for the original weight
class interval.
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Original weight class interval Reduced weight class interval
0-50 kg 1 0-10 000 kg
51-200 kg

201-800 kg

801-3000 kg

3001-7500 kg

7501-12500 kg 2 10 0001 kg-20 000 kg
12501-20000 kg

20001-30000 kg 3 20 001-40 000 kg
30001-35000 kg

35001-40000 kg

40001-45000 kg 4 40 001-400 000 kg
45001-100000 kg

100001-200000 kg

200001-400000 kg

400001-800000 kg 5 400 001+ kg

16 800001+ kg
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Table 9. Overview of original and reduced weight class interval

Table 10 shows summary statistics for transport cost, time and distance produced under the
different sets. Columns 1 and 2 shows the statistics for all alternatives. Transport time and
distance are virtually unaffected by the merging of interval from 16 to 5 categories. But average
and maximum costs are lower with this interval. The same holds true for chosen alternatives
only in columns 3 and 4. One explanation is that the composition of chains (and thus transport
time and distance) remains the same, while the shipment sizes for the available alternatives
increase and bring down average cost per tonne. Altogether, this indicates that a coarser
interval produces lower transport cost overall and for chosen alternatives.

(1) (2 (3) (4)
Original interval, Reduced interval, Original interval, Reduced interval,
all alternatives all alternatives chosen alt. chosen alt.
Cost Mean 4,922 3,437 1,802 1,181
(SEK/tonne) St. dev 19,693 13,799 15,358 10,829
Min 66 66 69 68
Max 640,711 561,814 578,559 499,662
Time (hrs) Mean 30 30 45 44
St. dev 98 96 164 161
Min 0 0 0 0
Max 7,907 1,212 1,212 1,212
Distance (KM)  Mean 1,241 1,240 1,377 1,368
St. dev 2,355 2,355 3,836 3,766
Min 1 1 1 1
Max 26,426 26,426 25,740 25,740
Observations 8,668,576 2,708,930 78,019 81,022

Table 10. Cost, time and distance by weight class interval

We estimate logit models on each set using identical model specifications and compare the
coefficients. Table 11 shows the results. The coefficients exhibit the same patterns overall,
although some of the cost coefficients based on the reduced interval have a positive sign. We
again perform predictions for the commodity group based on the updated weight class
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interval. The results are shown in figure 9. The reduced weight class interval overpredicts the
road transportation. These shipments are very small but predicted as too large. This shows the
need to keep a more fine-grained weight interval in the logit application

Reduced interval Original interval Difference Sign (1) =
1)-3) Sign (3)
@) @ @3) (@) (5) (6)
Coeff. S.E. Coeff. S.E.

Chain 1 7.37" (0.071) 7.91™ (0.072) -0.54 Yes
Chain 4 3.10™ (0.14) 7.50™ (0.15) 4.4 Yes
Chain 6 0.32" (0.12) 0.20 (0.12) 0.12 Yes
Chain 7 4.16™ (0.089) 4.64™ (0.075) -0.48 Yes
Chain 9 2.07" (0.082) 407" (0.078) 2 Yes
Chain 10 0.50™ (0.071) 0.51™ (0.074) .0.01 Yes
Chain 13 -2.29™ (0.59) -0.78 (0.40) 151 Yes
Size 2 -2.04™ (0.030)
Size 3 -2.25™ (0.031)
Size 4 -1.83™ (0.029)
Size 5 -2.41™ (0.032)
Weight (10-20t) -2.27" (0.022)
Size 6 -3.18™ (0.038)
Size 7 -2.68™ (0.034)
Weight (20-40t) -1.14™ (0.016)
Size 8 -1.82™ (0.031)
Size 9 -3.52™ (0.041)
Size 10 -3.48™ (0.040)
Weight (40-400t) -2.50™ (0.024)
Size 11 -4.49™ (0.053)
Size 12 -2.93™ (0.038)
Size 13 -5.92™ (0.089)
Size 14 -5.91™ (0.091)
Weight (+400t) -5.10™ (0.066)
Size 15 -6.26™ (0.10)
Size 16 -6.00™ (0.091)
Chain 1 x cost -0.00094"™ (0.000025) -0.0011™ (0.000019) 0.00016 Yes
Chain 4 x cost 0.00025™ (0.000076) -0.0018™ (0.000053) 0.00205 No
Chain 7x cost -0.00043™ (0.000088) -0.00064™ (0.000026) 0.00021 Yes
Chain 9 x cost 0.00094™ (0.000076) -0.0013™ (0.000049) 0.00224 No
Chain 13 x cost 0.00043 (0.00052) -0.00053" (0.00023) 0.00096 No
N 663080 663080
I -35637.7 -39873.8
k 16 27

Standard errors in parentheses " p < 0.05, ” p < 0.01, ™ p < 0.001
Table 11. Coefficient comparison by weight class interval
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Figure 9. Comparison of weight class interval

Effect of changing weight used to predict shipment size

Our prediction of tonnes per transport chain has so far been based on the formula

N 16

Q:(®) = zZPi(t,s) XS

i=1s=1

where § is the average weight in interval s, s=1, 2, ..., 16. Here we investigate alternative ways
a weight class interval is coded as a weight. Specifically, we add a factor F to the formula used
to predict tonnes levels:

N 16

0® = ) Y Ats)x (X F)

i=1s=1

We focus on commodity groups 2,3 and 5 since the tonnes were poorly predicted for these
groups. We set the factor F to obtain more accurate levels. We use a scaling factor of 80 for
commodity 2, 25 for commodity group 3 and 1/320 for commodity group 5. For example, this
means that for commodity 2, the predicted weight associated with interval 20-30 kg is rescaled
from 25 kg to 2000 kg.

The effect of rescaling the weights are shown in figure 10. The original predictions are shown
on the left side and the predictions based on the adjusted weight interval on the right side. The
adjusted predictions show a high degree of consistency with the observed levels. This shows
that the inaccuracy of the initial predictions for commodity groups 2,3 and 5 is not due to
incorrect modal shares, these are fairly accurately predicted, but that the shipment sizes are
poorly predicted.

This result shows that it is more difficult to predict how much firms will ship than which chain
they will use. But it is not obvious that the weight class interval used in the analysis is
inappropriate and should be adjusted since the existing one works well for the other
commodity groups.

35



Unadjusted predictions Adjusted predictions

Commodity 2

Out-of-sample In sample

Commodity 2

Out-of-sample In sample

150,000

100,000

Tonne (100s)
5,000,000,000 10,000,000,00015,000,000,000

Tonne (100s)

50,000
N

N B I i

1 4 6 7 8 9 1013 14Total 1 4 6 7 8 9 10 13 14 Total 146 TChB‘ 9 10 13 14 1406 TC:A § 10 13 14
Chain Chain ain ain
[N Observed NN Logit Model | | bcerved NN Logit Mode
Commodity 3 Commodity 3
Out-of-sample In sample - Out-of-sample In sample
P 3 |
3 2
Q o~
b5 g
S |
8 g
= ~
-3 -2
z- 25,
23 =8
o 2 oo
£8 £8]
& 2g
[=
3 g
(=3 =
g8 I b=
2
ol m L - L ol I R __.I.I
14 6 7 B 9 1013 14Total 1 4 6 7 8 9 10 13 14 Total 1 4 6 7 8 9 1013 14Total 1 4 6 7 8 9 10 13 14Total
Chain Chain Chain Chain
| NN Observed NN Logit Model | BN Observec NN Logit Model |
Commodity 5 Commodity 5
Qut-of-sample In sample Out-of-sample In sample
g
o 3
g o
] 2
g g
8o 38
g e
@ = @
£ Eo
= S
2 |
n ) | [
I nll I [ | o J ' 1
12345678 910121314lotal 1 2 3 4 5 6 7 8 9101213 14otal 12345678 910121314otal 12 3 4 56 7 8 9 101213 14otal
Chain Chain Chain Chain
‘- Observed _ Logit Model | |- Observed _ Logit Model ‘

Figure 10. Comparison of original and adjusted predictions by commodity

Nested Logit Model Results

The multinomial logit model that was used in the main analysis implies that an improvement
for one alternative in, say, transport cost, will reduce the probabilities for all the other
alternative by the same percentage. To be specific, for two options j and k, the ratio of their
probabilities is
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P(j) _ e(XiB) /3, (XiB) ~ e(X;B)
P(k) B e(XkB)/Zle(XlB) a e(Xkl?)

The relative probability of choosing j over k does not depend on any other alternatives. The
nested logit relaxes this assumption and may therefore produce more realistic choice patterns.
The model partitions the alternatives into nests in a way that i) the ratio of choice probabilities
within a nest are independent of the attributes or existence of all other alternatives and ii) the
ratio of choice probabilities for alternatives in different nests depend on the attributes of other
alternatives in the two nests.

The nested logit model implies that the probability of shipment i is being transported by chain
t and shipment size s within nest N is given by:

Pin(t,s) = (P;(t,s)|N) X P;(N)

where (P;(t, s)|N) is the probability of choosing alternative t,s, given that nest N is chosen and
P;(N) is the probability of choosing an alternative in nest N. Because the nested logit is a
generalization of the multinomial logit, it will mechanically fit any set of estimation data at
least as good as the MNL in terms of log-likelihood. However, it need not predict as well as
the logit model, e.g. in the case of over-fitting the model.

We estimate the nested logit model above and compare the coefficients with the baseline MNL.
We select to estimate the model on commodity group 14 and estimate the model on all
observations (as opposed to a 20% sub-sample, like before). We specify one nest for direct road
transport (using any of the shipment sizes) and another for using multimodal transportation.
We let the probability of using direct transportation, P;(N), depend on the ratio of shipment
value to shipment weight. The probability of using transport chain t,s, given the choice of nest,
(P;(t,s)|N), is specified as a function of chain type and size dummies.

Table 13 compares the coefficient estimates from our baseline MNL in column 1 and nested
logit model in column 2. The coefficients determining the choice of shipment size and chain
type are almost always of identical sign but vary in size. The nested logit is preferred according
to the log-likelihood, shown in the bottom panel. But the information criteria, AIC and BIC,
give inconclusive evidence as to which model is preferred.

Figure 11 shows the observed tonnes and the predicted tonnes by the MNL model and nested
logit respectively. Neither model is able to predict the large amount of freight moved by chain
type 9 (truck-vessel-truck), although the coefficient on this constant is positive and sizeable in
both models. The nested logit does better in predicting the levels transported by chain type 1
(truck) — it deviates from the observed levels by 36 % compared to the 59 % for the baseline
MNL. The nested model predicts worse than the baseline MNL for the other two chain types
(truck-vessel and truck-rail-truck) but the tonnes lifted by these chains are very small and the
deviations are not significant in terms of absolute levels.

Overall, this analysis illustrates that a nested logit specification can predict at least as well as
the baseline MNL. It does come with greater computational requirements and the simplicity
of the MNL is a strong argument for using it in our analysis.
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MNL Nested Difference Sign (1) =
(1-(3) Sign (3)
(P;(t,s)|N) (1) (2 (3) (4) (5) (6)
Coeff. S.E. Coeff. S.E.
Chain 1 21.65 (0.02) 27.87 (0.04) -6,22 Yes
Chain 4 21.86 (0.00) 22.40 (0.01) -0,54 Yes
Chain 6 0.0951 (0.00) -3.647 (-0.00) 3,7421 No
Chain 7 17.74 (0.01) 22.81 (0.03) -5,07 Yes
Chain 9 20.09 (0.01) 25.89 (0.03) -5,8 Yes
Chain 10 -0.0102 (-0.00) -4.759 (-0.00) 4,7488 Yes
Chain 13 0.0387 (0.00) -3.968 (-0.00) 4,0067 No
Size 2 0.299 (0.55) 0.692 (1.55) -0,393 Yes
Size 3 0.453 (0.88) 0.682 (1.55) -0,229 Yes
Size 4 0.545 (1.17) 0.728 (1.76) -0,183 Yes
Size 5 2.831™ (8.51) 2.527™ (5.08) 0,304 Yes
Size 6 3.601™ (11.21) 3.052™ (5.24) 0,549 Yes
Size 7 1.814™ (5.20) 1.735™ (4.14) 0,079 Yes
Size 8 3.271™ (10.51) 2.755™ (5.01) 0,516 Yes
Size 9 2.435™ (7.48) 2.075™ (4.47) 0,36 Yes
Size 10 2.482™ (7.45) 2.089™ (4.44) 0,393 Yes
Size 11 0.750 (1.68) 0.572 (1.29) 0,178 Yes
Size 12 -0.957 (-1.23) -0.423 (-0.68) -0,534 Yes
Size 13 -0.674 (-0.87) -0.852 (-0.92) 0,178 Yes
Size 14 -1.315 (-1.25) -1.230 (-1.10) -0,085 Yes
P;(N)
Value/Weight 0.00225 (0.17)
Thirect 0.688™ (5.10)
Tehain 1.599™ (5.14)
Observations 6140 6140
Lok-likelihood -511.8 -501.1
AIC 1063.6 1048.2
BIC 1198.1 1202.8
Table 12. MNL and nested logit results
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Figure 11. MNL and nested logit predictions against observed
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New cost and time data cost data

A relevant question is how useful the coefficients produced in the main analysis are if changes
are made to the process that generates the data. Cost, time and distance for the choice
alternatives were clearly generated using specific values on the input parameters. Transport
cost could therefore change if input values are updated or if alterations are made to the LOS-
matrices. The estimated coefficients should ideally predict well even for smaller changes to the
level of the cost variable.

We test the robustness of our estimated coefficients to changes in input data in the following
manner. We first create an alternative cost function that produces alternative-specific transport
costs that are similar but not identical to those used in the main analysis. We then use the
estimated coefficients from the main analysis to make two sets of predictions — one based on
the original cost variable and another based on the alternative cost variable. We end by
comparing the predictions from the two variable sets against the observed levels. Large
differences are concerning since it suggests that future changes in variables heavily influence
the predictive accuracy of the coefficients.

Our alternative cost function for each alternative is given by
Costf{s = Distance;s X ap + Nig X g

where Distance, is equal to the kilometers between origin and destination using chain ts as
calculated in Samgods. a; is a cost-factor for chain t, N; is the number of transshipment points
for the chain and f is the assumed unit cost per transshipment for shipment size s. We set the
cost-factor a; to be the ratio of average cost to average distance for each of the four modes,
based on the cost that were generated for the main analysis. (These are 3.8 for road, 2.5 for rail,
3 for sea and 5.8 for air transportation). If more than one mode is used in a chain, the cost-
factor is a weighted average of the mode-specific factors. This means that a chain that uses all
modes would have a, = (3.8 + 2.5 + 3 + 5.8)/4. We set the unit cost per transshipment S
proportional to the shipment size s by letting it equal Sy = 40s.This value produces
alternative costs that are on average similar to the original values.

We restrict our analysis to commodity group 10. Table 14 shows summary statistics for the
alternative cost and original cost. Columns 1 and 2 show the statistics for all alternatives. These
are indeed relatively similar on average but there is more variation in the original cost set.
Columns 3 and 4 show the statistics only for alternatives that were chosen in the CFS.

(2) 2 (3) (4)
Original interval, Reduced interval, | Original interval, = Reduced interval,
all alternatives all alternatives chosen alt. chosen alt.

Cost Mean 8,123 9,685 7,256 15,743
(SEK/tonne)

St. dev 14,467 41,984 13, 954.3 69,967.9

Median 9.5 12.6 9.5 13.4

Min 3,58 760 2,087 753.6

Max 150,657 642,483 113,576 642,483
Observations 685,330 685,330 68,533 68,533

Table 13. Cost by weight interval
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In the next step we apply the coefficients from the main analysis to the alternative cost variable
to determine whether the prediction differs. Let C° be the original cost variable and C# the
alternative cost variable. Using the coefficient estimated in the main analysis, f and y, we now

make two sets of predictions:

Po(t, S) — exp(ﬁCO + y,xts)
2 exp(BCO +y'x))

P 5y = SXPBCA+ 75
T S ep(BCT ')

where the only component that differ between the predictions is the cost variables. As before,
we predict tonnes by summing over observations and shipment sizes:

N 16

Qo(v) = ZZPO(t,s) X §

i=1s=1
N 16

Q4(v) = ZZ PA(t,s) X§

i=1s=1

Figure 12 shows the results from the predictions. The blue bar shows the observed tonnes for
each of the chain types, Q(t), the red bars are the predictions based on the original costs.
Q9(t), and the green bars the predictions using the alterantive costs Q4(t). For out-of-sample
observations, the predictions based on alterantive costs are closer to observed levels for chains
1,7,9 and 14 while the predictions using the original costs performs better for the other chains.
Predictions using the alternative costs are thus not systematically worse (or better) than the
original, giving some support to the robustness of our estimated coefficients to changes in data
inputs.

Original and alternative costs
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Figure 12. Predictions based on original and alternative cost
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Conclusions

As part of the Swedish Transport Administration’s plan to implement a stochastic logistics
module in the national freight transport model Samgods, the aim of this study has been to
estimate and evaluate discrete choice models, produce coefficients estimate that can be used
in the implementation of a stochastic logistics module and analyze how such implementation
should be conducted.

Predictive performance

The mock-deterministic model that for each shipment selects the low-cost option with
probability one is still very useful when predicting the chain type. It follows the chain
frequency observed in the CFS very closely, showing that the minimum-cost-principle can
capture certain mode choice patterns very well.

On the other hand, the mock-deterministic model predicts choices of shipment sizes that are
larger than observed. This holds true for virtually all commodity groups. The model is only
accurate for shipments of coal, petroleum and natural gas where these large sizes actually are
observed. This feature makes the predicted tonnes per chain by the mock-deterministic model

very inaccurate.

When it comes to predicted frequencies of the logit models, we find that in-sample predictions
are very close to observed levels. This is likely due to the inclusion of constants for chains and
shipment size, which leads to close to perfect predictions. One concern is that including a large
set of chain and shipment size constant leads to overfitting. Reassuringly though, the out-of-
sample predictions are also accurate.

When it comes to predicted tonnes by the logit model, there is a high degree of consistency
between observed and predicted tonnes for most groups. The predictive performance of our
baseline model is superior to the mock-deterministic model. This illustrates how a logit-based
model can outperform all-or-nothing assignment.

However, predictions are very poor for a few groups (2,3,5, 11 and 13). The difficulties do not
appear to be caused by a particular chain being used for these groups. The chains observed
vary across these groups and the same chains are accurately predicted in other groups. Rather,
it appears that it is the group-chain-combination that is difficult to predict.

Additional analyses

We also make a set of additional analyses that test if the suitability of our coefficients depends
on a range of changes in the procedure used in the main analysis. We show that the inaccuracy
of predictions for some of the commodity groups can be handled by recoding the implied
weight of each predicted weight class interval. The adjusted predictions show a high degree
of consistency with the observed levels. This shows that the inaccuracy of the initial
predictions is not due to incorrect modal shares but that the shipment sizes are poorly
predicted for these commodity groups.

This confirms that it seems to be more difficult to predict how much firms will ship than which
chain they will use. But it is not obvious that the weight class interval used in the analysis is

41



inappropriate and should be adjusted since the existing one works well for the other
commodity groups.

Reducing the weight class interval from 16 to five categories produces lower transport cost
overall and for chosen alternatives. Coefficients estimated on the alternative interval are
similar to those from the original interval, although some have the incorrect sign. Predicted
tonnes based on the alternative weight class interval overpredicts the levels for road
transportation severely. This illustrates the benefit of keeping the more fine-grained weight
class interval in the logit application.

We show that an expanded choice set that differentiates between container and non-container
options leads to inclusion of additional alternatives that are similar in terms of transport time
and distance but have lower transport cost on average. The difference in average costs is
substantially reduced when we restrict attention to alternatives recorded as chosen in the CFS.
This suggest that the alternatives included only in the expanded choice set have a relatively
low probability of being selected anyway. Predictions are improved when using the expanded
choice set, which is possibly a mechanic effect of using more fine-grained alternatives in
combination with size- and chain-specific constants.

We compare our baseline multinomial logit to a nested logit model and show that the
coefficients are almost always of identical sign but vary in size. The nested logit does slightly
better in predicting tonnes.

Finally, we show that our estimated coefficients do not systematically predict worse when
applied to a set of alternative-specific transport costs that are slightly different than those used
in the main estimation. The predictions based on alternative cost function are more accurate
for some chains and less accurate for others, compared to the original predictions. This gives
some support to the robustness of our estimated coefficients.

Implications for implementing a stochastic module in Samgods

We have found that the best model specification includes constants that are specific for chain
types and for weight classes, transport cost that enters separately for each chain type and a
general measure of transport time. All coefficients vary across commodity groups. Our main
output is the set of coefficients that can be used as a basis for the logit-formula in the stochastic
logistics module. The estimates are provided in Appendix A. Applying these to the
Commodity Flow Survey gives predictions that overall are in line with the observed
frequencies and tonnes.

Our results show that several adjustments may have to be made when applying these
coefficients in the logistics module of Samgods. In our application, a rescaling of the predicted
tonnes was needed for some of the commodity groups to achieve better predictions. We varied
the weight associated with each weight interval and used to observed tonnes as target. An
alternative approach is to include the logarithm of observed over predicted tonnes of each
chain in the model specification of the logit model, estimate and predict iteratively until the
target has been reached. This was the procedure used when a stochastic logistics module was
developed for two commodity groups in a previous project (Abate et al. 2016).
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The choice set in our analysis and the proposed stochastic logistics module consists of 14 chain
types and 16 shipment sizes. Expanding the choice set to differentiate between container and
non-container option does not seem to include options that are relevant for shippers in the CFS
anyway. The transport alternative considered in the original choice set thus tends to be more
relevant for the choice. Prediction accuracy did improve with a more fine-grained choice set,
which makes it worth to consider alternative dimensions of the choice set. However, the
benefits of an expanded choice set should be weighed against the increase in work needed for
implementing and running such logistics module.

There are several thinkable changes to be made to the dimension of the choice set in the
stochastic module, not least the way Samgods vehicle types maps to each transport chain and
which chains and shipment weights to be included. If such changes are made it is possible to
combine (e.g., by averaging or replacing) the estimated coefficients for different chain types.
This is particularly relevant for the three chains in the choice set containing ferry
transportation and for which no coefficients were estimated in this study. These could
potentially be proxied by the coefficient estimates for vessel transportation — e.g. coefficients
for chain 8 (truck-ferry-truck) is approximated by those for chain 9 (truck-vessel-truck).

Our estimated coefficients appear relatively robust to alternative transport cost. Small changes
to input factors determining these data should therefore not be a concern. This result is partly
due to the many constants in our model specification which makes the impact of new transport
cost on choice probabilities smaller. Should larger changes to input factors (and transport
costs) occur, it is possible to scale the coefficients at a later point to account for the fact that
variables scale has been changed. The coefficients can be adjusted by scaling each coefficient
by a factor equal to the average difference between the old and the new variable. If this is not
sufficient to produce reasonable coefficients, new coefficients could be estimated using the
new data.

We have estimated and evaluated discrete choice models for all of the 16 commodity groups
available in the next version of Samgods. However, it is not obvious that a stochastic module
is appropriate or needed for all groups. One of the main reasons for using a stochastic module
is to reduce the occurrences of large changes in the choice of transport solution when an
underlying choice parameter (e.g. transport cost) is changed. But such consideration is less
important for commodities for which there is virtually no competition between modes.

For most commodity groups there is variation in the tonnes shares based on the 14 chains and
the CFS. Only for commodity group 1 (agriculture and forestry products (excluding round
wood) and fishing) and 2 (coal, crude petroleum and natural gas) has a single chain more than
90 percent of the market. Another reason for opting for a deterministic approach for some
commodities is that the mode choice is difficult to predict using a stochastic approach. The
results from the main analysis shows that the predicted tonnes for commodities 2, 3, 5, 7 and
14 are very far from the observed levels. However, we showed that the model predicted shares
accurately for these groups and the predicted value of shipment weight can be adjusted to
align the predicted tonnes with the observed levels. Based on this, we conclude that although
some commodities were harder to predict than others and have limited variation in modal
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choice, there are issues concerning implementation of a mixed logistics module (i.e. with both
stochastic and deterministic modelling) that should be given more weight in the decision to
continue model some commodities deterministically.

Finally, we find that the nested logit does slightly better in predicting tonnes. Given that the
nested logit formulation we used was fairly simple and that model fit and performance
therefore probably can be improved upon, this type of model could also be used in the
implementation of a stochastic logistics module. It does come with greater computational
requirements and the simplicity of the MNL is one argument for using it in implementation
and future work.
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Appendix A: MNL Coefficients

Commodity ) 2) ?3) 4)
Coeff. SE Coeff. SE Coeff. SE Coeff. SE
Chain 1 8.90™ (0.41) 3.56™ (1.04) 5.81™ (0.20) 13.9™ (0.41)
Chain 4 -1.04" (0.51) 10.0™ (1.04)
Chain 6 1.01 (1.46)
Chain 7 0.83 (1.24) 0.60™ 0.17) 10.7™ (0.43)
Chain 8
Chain 9 2.69™ (0.28) 8.42™ (0.42)
Chain 10 -4.54™ (1.13) 2.20” (0.71)
Chain 13 0.61 (0.60) 2.21™ 0.47)
Chain 14
Size 2 -1.07™ (0.072) 0.035 (0.32) -1.70™ (0.021)
Size 3 -0.37™ (0.059) 0.029 (0.31) -2.35™ (0.026)
Size 4 0.64™ (0.050) 0.50 (0.29) -2.85™ (0.028)
Size 5 0.52"™ (0.052) 0.53 (0.28) -3.69™ (0.031)
Size 6 -0.100 (0.057) 1.25™ 0.27) -4.75™ (0.039)
Size 7 -0.10 (0.057) 2.16™ (0.26) -4.91™ (0.041)
Size 8 0.0045 (0.056) 1.39™ (0.26) -4.78™ (0.041)
Size 9 -0.23™ (0.058) 1.58™ (0.26) -5.97™ (0.056)
Size 10 0.39™ (0.052) 1.47™ (0.26) -4.82™ (0.041)
Size 11 -0.25™ (0.057) 1.95° (0.81) 1.23™ (0.26) -6.09™ (0.058)
Size 12 -3.09™ (0.16) 1.93™ (0.26) -7.00™ (0.084)
Size 13 -4.91™ (0.38) -1.52™ (0.42) -9.54™ (0.22)
Size 14 -5.77" (0.55) 271" (0.64) -10.8™ (0.40)
Size 15 -6.87™ (1.00) -2.53™ (0.57) -11.9™ (0.60)
Size 16 -6.18™ (0.71) 5.19™ 0.77) 1.97™ (0.26) -10.7™ (0.40)
Chain 1 x -0.0041™ (0.00025) -0.0019™ (0.000040)
cost
Chain 4 x -0.0022"™ (0.00027)
cost
Chain 6 x -0.0023™ (0.00046) -0.00015 (0.00019)
cost
Chain 7x -0.0040™ (0.00018)
cost
Chain 8 x -0.0017" (0.00055)
cost
Chain 9 x -0.0015™ (0.000077)
cost
Chain 10 x - (0.0000035)
cost 0.0000022
Chain 13 x
cost
Cost -0.0050™ (0.00 -0.0025 (0.0015)
13)
Time
Com. 1 2 3 4
Obs 146,340 840 19,100 1,618,860
LL -12013.1 -33.5 -2237.2 -53433.1
Parameters 16 6 25 27
Standard errors in parentheses: “p < 0.05, “ p < 0.01, ™ p < 0.001
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Commmaodity 5 6 7 8

Coeff. SE Coeff. SE Coeff. SE Coeff. SE
Chain 1 17.2™" (1.51) 7.61™ (0.14) 7.30™ (0.20) 8.42™ (0.28)
Chain 4 10.7 (1.47) 6.36™ (0.30) 4.12™ (0.34)
Chain 6 -0.42 (0.29) 0.30 (0.43)
Chain 7 4.18™ (0.15) 5.05™ (0.32)
Chain 9 11.8™ (1.40) 4.59™ (0.15) 5.82™ (0.27)
Chain 10 8.98™ (1.37) 0.60™ (0.16) 2.15™ (0.28)
Chain 13 -0.75 (0.96) 1.68" (0.78)
Size 1 10.3™ (0.45)
Size 2 -1.78™ (0.052) 0.93" (0.33) -1.81™ (0.076)
Size 3 -1.83™ (0.053) 1.03" (0.32) -2.20™ (0.083)
Size 4 -1.53™ (0.049) 1.76™ (0.28) -2.35™ (0.086)
Size 5 -2.05™ (0.055) 1.76™ (0.28) -3.18™ (0.10)
Size 6 -2.57" (0.064) 1.88™ (0.28) -3.59™ (0.11)
Size 7 -2.27" (0.058) 7.13™ (0.25) -2.67" (0.095)
Size 8 -1.49™ (0.052) -0.49 (0.45) -3.35™ (0.11)
Size 9 -2.99™ (0.071) -2.07" (0.75) -4.58™ (0.15)
Size 10 -2.91™ (0.070) -2.41" (0.75) -4.38™ (0.14)
Size 11 -3.99™ (0.094) -3.23™ (0.84) -3.78™ (0.12)
Size 12 -2.69™ (0.067) -3.90™ (1.09) -5.13™ (0.17)
Size 13 -5.39™ (0.17) -3.61™ (1.08) -7.87" (0.52)
Size 14 -5.83™ (0.20) -1.81" (0.56) -8.63™ (0.72)
Size 15 -6.06™ (0.21) 3.38™ (0.26) -7.29™ (0.39)
Size 16 -5.87" (0.20) -7.69™ (0.51)
Chain 1 x cost -0.0013™ (0.00012) -0.0012™  (0.000036) -0.0031™ (0.00029) -0.00086™  (0.000043)
Chain 4 x cost -0.00069" (0.00024) -0.0014™ (0.00011) -0.00093™ (0.00014)
Chain 7x cost -0.00059™  (0.000054) -0.00084™ (0.00011)
Chain 9 x cost -0.00099™  (0.000068) -0.0010™ (0.000075)
Chain 13 x -0.00081 (0.00077) -0.00096 (0.00054)
cost
Obs 111,254 154,600 225,480 79,150
LL -331.2 -12414.6 -1471.2 -4927.6
Parameters 7 27 16 27

Standard errors in parentheses: “p < 0.05, ™ p < 0.01, ™ p < 0.001
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Com. 9 10 11 12

Coeff. SE Coeff. SE Coeff. SE Coeff. SE
Chain 1 9.87™ (0.74) 5.46™ (0.085) 9.28™ (0.71) 11.0™ (1.01)
Chain 4 0.76™ (0.15) 6.46™ (0.71) 8.51™ (1.08)
Chain 6 0.52" (0.25) 1.62" (0.80)
Chain 7 4.19™ (0.89) 3.72™ (0.10) 2.19" (0.76) 7.30™ (1.11)
Chain 9 5.54™ (0.74) 2.37 (0.082) 6.21™ (0.71) 8.84™ (1.00)
Chain 10 0.31 (0.41) -0.20" (0.062) 7.62™ (0.71) 6.19™ (1.02)
Chain 13 1.35 (1.18) 1.84 (1.23) 8.72" (2.79)
Size 2 -0.83™ (0.10) -1.29™ (0.045) -0.37"  (0.033) -1.04™ (0.065)
Size 3 -0.75™ (0.10) -1.57™ (0.048) -0.68™  (0.036) -0.98™ (0.068)
Size 4 -0.19" (0.092) -1.87™ (0.052) -1.45™  (0.049) -1.53™ (0.074)
Size 5 -0.30" (0.095) -2.33™ (0.058) -2.41™  (0.074) -2.04™ (0.083)
Size 6 -0.46™ (0.10) -2.65™ (0.064) -3.44™ (0.11) -2.65™ (0.092)
Size 7 -0.21" (0.095) -2.70™ (0.065) -3.81™ (0.14) -2.99™ (0.10)
Size 8 -0.78™ (0.11) -2.10™ (0.057) -4.98™ (0.25) -3.43™ (0.12)
Size 9 -1.39™ (0.12) -4.09™ (0.10) -6.45™ (0.50) -6.43™ (0.33)
Size 10 -1.23™ (0.11) -4.14™ (0.10) -7.83™ (21.00) -7.19™ (0.46)
Size 11 -1.76™ (0.13) -5.19™ (0.15) -3.98™ (0.13)
Size 12 -2.09™ (0.15) -3.50™ (0.084) -6.50™ (0.32)
Size 13 -5.57™ (0.59) -6.74™ (0.31) -7.33™ (0.46)
Size 14 -6.72™ (1.01) -7.17™ (0.36) -7.12™ (0.42)
Size 15 -6.65™ (1.01) -7.86™ (0.50) -9.04™ (1.01)
Size 16 -4.40™ (0.34) -6.16™ (0.23) -7.94™ (0.59)
Chain 1 x cost -0.00074™  (0.00013) -0.00073™  (0.000028) -0.00063™ (0.000045)
Chain 4 x cost -0.00070™  (0.000087) -0.00063™ (0.000093)
Chain 6 x cost -0.00042™  (0.000080)
Chain 7x cost -0.00070 (0.00054)  -0.0012™ (0.000067) -0.0031™ (0.00068)
Chain 9 x cost -0.00037™  (0.000027) -0.00045™ (0.000027)
Chain 10 x cost -0.0000048™  (0.0000016)
Chain 13 x cost -0.0042" (0.0015) -0.0027 (0.0015)
Obs 50,140 137,790 215,130 80,560
LL -3589.8 -11113.9 -21773 -5649.2
Parameters 21 28 16 27

Standard errors in parentheses: " p < 0.05, ™ p < 0.01, ™ p < 0.001

47



Com. 13 14 15 16
Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Chain 1 5.55™ (0.12) 717" (1.11) 7.94™ (0.12) 9.30™ (0.29)
Chain 6
Chain 7 2.56 (2.90)
Chain 9 267" (0.13)
Chain 10 2.11™ (0.13) 3.43™ (0.23)
Chain 13
Size 1 10.6™ (0.40)
Size 2 0.32™ (0.059) 0.68 (1.19) 1.36™ (0.17) 8.05™ (0.40)
Size 3 -0.14° (0.066) 0.45 (1.19) 1.09™ (0.20) 7.65™ (0.40)
Size 4 -0.86™ (0.083) -0.85 (1.70) 1.63™ (0.21) 6.56™ (0.40)
Size 5 -1.95™ (0.12) 3.11™ (0.71) 2.43™ (0.20) 4.75™ (0.42)
Size 6 -3.65™ (0.24) 2.99™ (0.69) 2.38™ (0.20) 412" (0.44)
Size 7 -4.28™ (0.34) 1.21 (0.78) 2.49™ (0.21) 3.73™ (0.45)
Size 8 -2.18™ (0.14) 2.96™ (0.65) 2.45™ (0.21) 3.73™ (0.43)
Size 9 -5.13™ (0.51) 1.89” (0.72) 171" (0.21)
Size 10 -4.20™ (0.34) 2.50™ (0.69) 2.65™ (0.21)
Size 11 0.63 (0.97) 3.25™ (0.21)
Size 12 -6.61™ (1.00) 2.20™ (0.21)
Size 13 -5.79™ (0.71) -1.65™ (0.25)
Size 14 -2.73™ (0.31)
Size 15 -0.97 (1.32) -3.74™ (0.41)
Size 16 -0.92 (1.26) -1.12™ (0.24)
Chain 1 x cost -0.0051™ (0.0011) -0.0035™  (0.00031) -0.0017™  (0.000067)
Chain 7 x cost -0.0041 (0.0048)
Time -0.085™ (0.019)
Obs 57,320 1,320 406,390 113,010
LL -4250 -113.3 -24463.8 -3004.4
Parameters 14 16 17 12

Standard errors in parentheses: " p < 0.05, ™ p < 0.01, ™ p < 0.001
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Appendix B: Correspondence key
Shortlist chaintypes to Samgods chaintypes

SHORTLIST CHAINTYPE

SAMGODS CHAINTYPES

NO. Description Sub-ModeNr Description

A Heavy lorry

1 Truck B Light Lorry
C Light Lorry
c Extra heavy lorry
J Direct Sea

5 Vessel KL Feeder vessel-Long-Haul vessel
LK Long-Haul vessel-Feeder vessel
M Direct Sea
GH Feeder train-Wagonload train
Gh Feeder train-Long wagonload train
GHG Feeder train-Wagonload train-Feeder train
HG Wagonload train-Feeder train

3 Rail hG Long wagonload train-Feeder train
| System train
i Long system train
T System train
U System train
f Long Wagonload train
Al Heavy lorry-Direct Sea
AKL Heavy lorry-Feeder vessel-Long-Haul vessel
AV Heavy lorry-IWW
CM Heavy lorry-Direct Sea

4 Truck-Vessel JA Direct Sea-Heavy lorry
LKA Long-Haul vessel-Feeder vessel-Heavy lorry
MC Direct Sea-Heavy lorry
VA IWW-Heavy lorry
WB IWW-Light Lorry
GHM Feeder train-Wagonload train-Direct Sea
GHMI Feeder train-Wagonload train-Direct Sea-System train
GHMT Feeder train-Wagonload train-Direct Sea-System train
GHMU Feeder train-Wagonload train-Direct Sea-System train
IM System train-Direct Sea
iM Long system train-Direct Sea

5 Rail-Vessel IMHG System train-Direct Sea-Wagonload train-Feeder train
MHG Direct Sea-Wagonload train-Feeder train
Mi Direct Sea-Long system train
MT Direct Sea-Long system train
MU Direct Sea-Long system train
™ System train-Direct Sea
TMGH System train-Direct Sea-Feeder train-Wagonload train
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UM System train-Direct Sea
UMGH System train-Direct Sea-Feeder train-Wagonload train
HM Wagonload train-Direct Sea
MH Direct Sea-Wagonload train
BS Light Lorry-Consolidated heavy lorry
BSB Light Lorry-Consolidated heavy lorry-Light Lorry
SB Consolidated heavy lorry-Light Lorry
cB Extra heavy lorry-Light Lorry
6 Truck-Truck-Truck cS Extra heavy lorry-Consolidated heavy lorry
cC Extra heavy lorry-Heavy lorry
Bc Light Lorry-Extra heavy lorry
XA Extra heavy lorry-Heavy lorry
AX Heavy lorry-Extra heavy lorry
ADA Heavy lorry-Kombi train-Heavy lorry
AdA Heavy lorry-Long kombi train-Heavy lorry
CGH Heavy lorry-Feeder train-Wagonload train
CGHC Heavy lorry-Feeder train-Wagonload train-Heavy lorry
CH Heavy lorry-Wagonload train
Ch Heavy lorry-Long wagonload train
ch Extra heavy lorry-Long wagonload train
ChC Heavy lorry-Long wagonload train-Heavy lorry
- Truck-Rail-Truck CHG Heavy lorry-Wagonload train-Feeder train
CHGC Heavy lorry-Wagonload train-Feeder train-Heavy lorry
GHC Feeder train-Wagonload train-Heavy lorry
HC Wagonload train-Heavy lorry
hC Long wagonload train-Heavy lorry
hc Long wagonload train-Extra heavy lorry
HGC Wagonload train-Feeder train-Heavy lorry
XdX Extra heavy lorry-Kombi train-Extra heavy lorry
cH Extra heavy lorry-Wagonload train
XF Extra heavy lorry-Wagonload train
3 Truck-Ferry-Truck APA Heavy lorry-Road Ferry-Heavy lorry
CPC Heavy lorry-Road Ferry-Heavy lorry
AJA Heavy lorry-Direct Sea-Heavy lorry
AVA Heavy lorry-IWW-Heavy lorry
9 Truck-Vessel-Truck | cmC Heavy lorry-Direct Sea-Heavy lorry
CWC Heavy lorry-IWW-Heavy lorry
cWc Extra heavy lorry-IWW-Extra heavy lorry
BR Light Lorry-Plane
10 Truck-Air-Truck BRB Light Lorry-Plane-Light Lorry
RB Plane-Light Lorry
11 Truck-Ferry-Rail-Truck | HQH Wagonload train-Rail Ferry-Wagonload train
12 Truck-Rail-Ferry-truck | GHQH Feeder train-Wagonload train-Rail Ferry-Wagonload train
13 Truck-Vessel-Rail-Truck AJDA Heavy lorry-Direct Sea-Kombi train-Heavy lorry
CMI Heavy lorry-Direct Sea-System train
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CMT

Heavy lorry-Direct Sea-System train

CcMU Heavy lorry-Direct Sea-System train
LKDA Long-Haul vessel-Feeder vessel-Kombi train-Heavy lorry
MHGC Direct Sea-Wagonload train-Feeder train-Heavy lorry
AJdX Heavy lorry-Direct Sea-Kombi train-Extra heavy lorry
ADJA Heavy lorry-Kombi train-Direct Sea-Heavy lorry
ADJDA Heavy lorry-Kombi train-Direct Sea-Kombi train-Heavy lorry
ADKL Heavy lorry-Kombi train-Feeder vessel-Long-Haul vessel
CGHM Heavy lorry-Feeder train-Wagonload train-Direct Sea

14 Truck-Rail-Vessel-Truck CUM Heavy lorry-System train-Direct Sea
IMC System train-Direct Sea-Heavy lorry
TMC System train-Direct Sea-Heavy lorry
uMcC System train-Direct Sea-Heavy lorry
XdJA Extra heavy lorry-Kombi train-Direct Sea-Heavy lorry
CHM Heavy lorry-Wagonload train-Direct Sea
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Appendix C: Commodity groups

Code Name NST 2007
Products of agriculture, hunting, and forestry; fish and other fishing .

01 products. Not timber 01 excl. timber

02 Coal and lignite; crude petroleum and natural gas 02

03 Metal ores and other mining and quarrying products; peat 03

04 Food products, beverages and tobacco 04

05 Textiles and textile products; leather and leather products 05
Wood and products of wood and cork (except furniture); pulp,

06 o ’ 06
paper and paper products; printed matter and recorded media

07 Coke and refined petroleum products 07

08 Chemicals, chemical products, and man-made fibers; rubber and 08
plastic products; nuclear fuel

09 Other non metallic mineral products 09

10 Basic metals; fabricated metal products, except machinery and 10
equipment

11 Machinery and equipment; medical, precision and optical 11
instruments

12 Transport equipment 12

13 Furniture; other manufactured goods 13

14 Secondary raw materials; municipal wastes and other wastes 14

15 Timber 01, part of

16 Air freight (fractions of some of the commodity groups)
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