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This study estimates and evaluates logit models of firms’ choice of transport chain and 

shipment size to address questions relating to the implementation of a stochastic logistics 

module in the freight model Samgods. We use the 2016 Swedish Commodity Flow Survey 

combined with the new Samgods commodity classification and updated cost parameters. We 

find that the multinomial logit (MNL) model predicts observed frequencies well, both for in- 

and out-of-sample observations. Predicted tonnes are close to observed levels for most 

commodities but far off for a few others. Mispredictions can be handled by adjusting predicted 

shipment sizes. We find that a nested logit model does slightly better in predicting tonnes than 

the MNL model. A comparison model that always selects the low-cost alternative is very 

useful for predicting transport chains but predicts shipment sizes larger than observed. Our 

robustness checks show that the estimated coefficients do not systematically predict worse 

when applied to transport cost data that differ from those used in estimation. We also find that 

a coarser classification of shipment sizes leads to less precise predictions while expanding the 

choice set to differentiate between container and non-container options only includes 

alternatives with a low probability of being selected.  We end by discussing our results’ 

implications for implementing a stochastic logistics module.  
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Summary in Swedish  

Bakgrund och syfte 

År 2013 började Trafikverket utveckla en stokastisk logistikmodul för den nationella 

godsmodellen Samgods. Logistikmodulen simulerar valet av trafikslag och sändningsstorlek 

för sändningar mellan företag i modellen. Tidigare har valet modellerats på ett deterministisk 

vis, där allt gods mellan två företag antas fraktas med transportlösningen som har lägst 

kostnad. En av nackdelarna med detta sätt är att det kan leda till osannolikt stora ändringar 

av användningen av de olika trafikslagen i modellen när faktorer som påverkar kostnader 

förändras. Detta är ett problem inte minst eftersom Samgods används för policyanalys. I en 

stokastisk logistikmodul å andra sidan baseras valet på en logit-formel som inte ger lika stora 

förändringar i val av trafikslag när kostnader ändras.   

Den stokastisk logistikmodulen utgår precis som den deterministiska från en matris med 

godstransportefterfrågan i ton mellan produktions- och konsumtionszonerna i Samgods. 

Efterfrågan fördelas sedan på flöden mellan företag i tre olika storleksklasser och på flöden 

mellan industrier i olika zoner. Den stokastiska logistikmodulen bestämmer valet av 

transportkedja och sändningsstorlek för dessa flöden. Den använder sig av 16 varugrupper 

och modellerar valet av 14 stycken transportkedjetyper och 16 kategorier av 

sändningsstorlekar.  

Trafikverket har tagit flera steg för att utveckla en stokastisk logistikmodul men fortfarande 

kvarstår flera frågor som rör i) behovet av att använda uppdaterade datakällor vid estimering, 

ii) olika logit-modellers lämplighet, iii) hur känsliga logit-modellerna är för förändringar i 

estimeringsprocessen och iv) hur väl dessa logit-modeller prognostiserar valet av trafikslag 

och sändningsstorlek.  

Syftet med denna studie är att analysera dessa frågor. Vi använder oss av 

varuflödesundersökningen (VFU) från 2016 tillsammans med den senaste 

varugruppsindelningen och kostnadsparametrar för att skatta logit-modeller över företagens 

val av transportkedja och sändningsstorlek. Vi jämför olika modellspecifikationer med 

varandra och jämför modellernas prediktioner med de observerade valen i 

varuflödesundersökningen. Vi undersöker sedan hur våra resultat påverkas av förändringar i 

datamaterialet och antalet transportalternativ som företagen antas kunna välja.  

Data 

Vårt huvudsakliga datamaterial består av den svenska varuflödesundersökningen från 2016. 

Den innehåller information om trafikslag, sändningsstorlek, värde, vikt, lasttyp, varugrupp 

samt mottagande och avgående ort för fem miljoner sändningar. Vi översätter valet av 

trafikslag i VFU:n till valet av en av de 14 kedjetyperna som används i den stokastiska 

logistikmodulen.   

Den andra datakällan utgörs av beräknade transportkostnader för de kombinationer av kedjor 

och sändningsstorlekar som är tillgängliga för sändningarna i varuflödesundersökningen. Vi 

beräknar dessa kostnader genom att först koppla avgång- och ankomstort för varje sänding 
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till respektive Samgodszon och sedan använda den deterministiska logistikmodulen i 

Samgods för beräkning av bästa ruttval och tillhörande transportkostnader. Vi kopplar 

kedjorna som finns förprogrammerade i Samgods till de 14 kedjetyperna i den stokastiska 

logistikmodulen. Slutresultatet är ett datamaterial med information om fem miljoner 

sändningar (såsom varugrupp, lasttyp och värde) och kostnader för de transportalternativ 

som finns tillgängliga för varje sändning. 

Metod 

I vår huvudanalys använder vi oss av varuflödesundersökningen och transportkostnaderna 

för att skatta logit-modeller över val av transportkedja och sändningsstorlek. Baserat på de 

skattade koefficienterna gör vi sedan prediktioner av antal sändningar för varje transportkedja 

och sändningsstorlek samt mängden ton för varje transportkedja och jämför dem med de 

observerade värdena i varuflödesundersökningen. I en fördjupande analys undersöker vi hur 

ändringar i våra inputdata, kategorier av sändningsstorlekar och antalet alternativ påverkar 

våra huvudresultat. Vi analyserar också om våra resultat förändras om vi använder oss av 

andra typer av logit-modeller.  

Vår huvudanalys utgörs av skattningar av multinomiala logit-modeller (MNL). I dessa 

modeller krävs en funktion som beskriver den mätbara nyttan, 𝑉𝑠𝑡, som varje företag antas 

erhålla vid valet av en trafikkedja t och sändningsstorlek s:  

𝑉𝑠𝑡 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 

 

där x-värdena betecknar observerbara variabler såsom transportkostnader och transporttid. 

Funktionen innehåller även koefficienter 𝛽 som beskriver hur nyttan av ett alternativ påverkas 

av att en observerbar variabel förändras. Dessa koefficienter skattar vi i studien. När 

nyttofunktionen för varje alternativ är skattad kan sannolikheten att välja ett av dessa 

alternativ beräknas genom följande logit-formel:   

𝑃𝑖(𝑡, 𝑠) =
exp(𝑉𝑠𝑡)

∑ exp(𝑉𝑠′𝑡′)𝑠′,𝑡′
 

 

Denna formel använder vi för att göra våra prediktioner. Som jämförelsemodell definierar vi 

en beslutsregel som säger att för varje sändning kommer det transportalternativ med lägst 

transportkostnad C att användas med sannolikhet ett:  

𝑃𝑖(𝑡, 𝑠) = {
 1 𝑜𝑚  𝐶𝑖𝑡𝑠 < 𝐶𝑖𝑘𝑙  ∀𝑘, ∀𝑙

0 𝑎𝑛𝑛𝑎𝑟𝑠
 

Denna modell har likheter med beslutsregeln hos den deterministiska logistikmodulen i 

Samgods som antingen allokerar allt eller inget av godset till varje transportalternativ.   

Huvudresultat 

Genom att jämföra prediktioner med observerade val i varuflödesundersökningen visar vi att 

vår jämförelsemodell med allt-eller-inget-allokering ger exakta prediktioner när det kommer 

till antalet sändningar för de 14 kedjorna. Detta visar att principen om lägsta 



4 
 

transportkostnader förklarar vissa mönster på transportmarknaden väldigt väl. Å andra sidan 

ger jämförelsemodellen prediktioner av sändningsstorlek som är mycket högre än de som 

observeras i varuflödesundersökningen .  

Logit-modellen ger prediktioner av antalet sändningar per kedja och sändningsstorlek som är 

väldigt nära de observerade värdena. Även prediktionerna av mängden ton är precisa för de 

flesta av varugrupperna vilket visar att logit-modellen kan överträffa jämförelsemodellen. 

Logit-modellens prediktioner avviker dock kraftigt från observerade nivåer för ett fåtal av 

varugrupperna. Detta verkar inte bero på att en särskild kedja är svår att göra prediktioner för 

utan snarare är det kombinationen av kedja och varugrupp som är svårfångad.  

Fördjupande analys 

I flera ytterligare analyser fördjupar vi oss i våra huvudresultat. Vi visar att svårigheten att 

göra prediktioner för några av varugrupperna kan hanteras genom att inkludera en 

justeringsfaktor för att skala upp eller ner mängden predikterade ton. Med andra ord är det 

svårare för logit-modellen att ge en god prognos av hur stora sändningarna är än vilka 

transportkedjor som kommer att användas.  

I huvudanalysen använer vi oss av ett set av valbara alternativ bestående av 14 kedjor och 16 

sändningsstorlekar. Vi visar att när vi expanderar setet till att bestå av 14 kedjor med 

containertransporter och 14 kedjor utan containertransporter (samt 16 stycken 

sändningsstorlekar) inkluderas nya alternativ som har liknande transporttid och avstånd men 

lägre transportkostnader i genomsnitt. Skillnaden i genomsnittskostnader minskar markant 

när vi fokuserar på alternativ som valdes i varuflödesundersökningen. Det tyder på att de 

alternativ som bara inkluderades i det expanderade setet hade låg sannolikhet att bli valda av 

företagen ändå.  

Vi testar även att minska antalet valbara sändningsstorlekar från 16 till fem stycken och visar 

att det leder till att de valbara alternativen har lägre kostnader i genomsnitt jämfört med det 

ursprungliga antalet storlekar. Prediktionerna som baseras på det lägre antalet 

sändningsstorlekar är sämre, vilket visar på fördelen med att behålla en mer detaljerad 

uppdelning av storlekarna. Därtill jämför vi vår MNL-modell med en så kallad nästlad logit-

modell som tillåter mer komplexa substitutionsmönster mellan olika transportalternativ. Vi 

finner att prognoserna baserade på den nästlade logit-modellen är något bättre.  

Till sist visar vi att de koefficienter som vi skattat i huvudanalysen inte systematiskt ger sämre 

prediktioner när de appliceras på transportkostnader som skiljer sig något från de som använts 

vid skattningarna. Prediktionerna är mer exakta för vissa kedjor och mindre exakta än andra 

jämfört med våra huvudresultat. Det visar att de skattade koefficienterna är någorlunda 

robusta för mindre ändringar i inputdata.  

Konsekvenser för implementering av en stokastisk logistikmodul i Samgods 

Ett av våra huvudsakliga bidrag är att producera koefficienter som kan användas i logit-

formeln i den stokastiska logistikmodulen. Dessa koefficienter visas i appendix A. När vi 

applicerar dessa på sändningarna i varuflödesundersökningen ges prediktioner av antalet 
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sändningar och ton som för de flesta varugrupper överensstämmer med de observerade 

värdena.  

Våra resultat visar att justeringar troligtvis måste göras om dessa koefficienter ska användas i 

logit-formeln i den stokastiska logistikmodulen. I vår analys behövde vi justera 

sändningsstorleken upp och ner för de varugrupper där prediktionerna var långt ifrån de 

observerade värdena. Ett alternativt tillvägagångssätt är att inkludera logaritmen av 

skillnaden mellan observerade och predikterade värdet i modellspecifikationen för varje 

transportkedja. Denna ansats användes vid utvecklingen av en stokastisk logistikmodul för 

två varugrupper i ett tidigare projekt (Abate et al. 2016).   

De valbara transportalternativen i vår analys och i den föreslagna stokastiska modulen utgörs 

av 14 kedjor och 16 sändningsstorlekar. När vi utökar de valbara transportalternativen till att 

inkludera både containertransporter och icke-containertransporter inkluderas bara alternativ 

som inte är särskilt relevanta för företagens val i varuflödesundersökningen. Däremot 

förbättras kvaliteten i prediktionerna vilket är en god anledning att se över hur många valbara 

alternativ som skall ingå. Men fördelarna av att öka antalet alternativ bör vägas mot den ökade 

bördan av att implementera och köra en sådan logistikmodul i Samgods.  

Det finns flera tänkbara förändringar i definitionen av den stokastiska logistikmodulens 

komponenter, inte minst hur fordonstyperna i Samgods ska kopplas till varje transportkedja i 

modulen och vilka kedjor och sändningsstorlekar som skall ingå. Om sådana förändringar 

genomförs i framtiden är det möjligt att på olika sätt kombinera de redan skattade 

koefficienterna för olika kedjor och sändningsstorlekar utan att behöva skatta nya 

koefficienter.   

De koefficienter vi har skattat framstår som relativt robusta för alternativa värden på 

transportkostnaderna. Mindre förändringar hos de faktorer som bestämmer dessa värden bör 

därför vara oproblematiska. Skulle större förändringar i inputdata (och transportkostnader) 

genomföras i Samgods är det möjligt att justera koefficienterna för att ta hänsyn till att 

variablernas skala har förändrats, utan att behöva skatta nya koefficienter. Koefficienterna kan 

justeras genom att multipliceras med en faktor lika med skillnaden mellan det gamla och nya 

medelvärdet för varje variabel.  

Vi har i analysen genomfört skattningar och prediktioner för samtliga 16 varugrupper, men 

det är inte uppenbart att en stokastisk logistikmodul krävs för alla grupper. En anledning att 

använda en stokastisk modul är att förhindra osannolikt stora förändringar i efterfrågan på 

olika transportkedjor. Men sådana förändringar lär inte uppstå för varugrupper där en enstaka 

kedja utgör hela marknaden. Vi visar att det bara är för varugrupperna 1 (jordbruks-, 

skogsbruksprodukter) och 2 (kol, gas och olja) som en kedja har mer än 90 procent av mängden 

ton som transporteras.  

En anledning till att använda den deterministiska ansatsen är svårigheten att modellera valet 

av transportalternativ. I vår huvudanalys visar vi att prediktionerna för varugrupperna 2, 3, 

5, 7 och 14 är långt ifrån de observerade värdena. Samtidigt går det att justera 

sändningsstorlekarna för att prediktionerna ska vara relativt precisa igen. Baserat på detta 
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drar vi slutsatsen att frågor som rör implementeringen av en mixad logistikmodell (med både 

deterministisk och stokastisk modellering) väger tyngre vid beslutet om vilka varugrupper 

som ska modelleras på vilket sätt.  

Vi finner att prediktionerna baserade på den nästlade logit-modellen är något bättre än de 

baserade på MNL-modellen. På så vis finns det fördelar med att basera den stokastiska 

logistikmodulen på en nästlad logit-modell, inte minst med tanke på att vi använde oss av en 

relativt enkel nästlad modellspecifikation och att det sannolikt finns förbättringspotential. 

Men den nästlade modellen ställer högre krav på beräkningsprestanda och enkelheten i MNL-

modellen är ett starkt argument för att använda den i den stokastiska logistikmodulen. 
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Introduction 

In 2013, the Swedish Transport Administration started the process to develop a stochastic 

logistics module for the national freight transport model Samgods. The logistics module 

includes the combined choice of shipment size and transport chain for firm-to-firm relations 

in the model. The choice has previously been modelled in a deterministic way, where all 

tonnes on a firm-to-firm relation is assigned to the transport solution with lowest cost.  

One of the downsides with such selection rule is that it can lead to implausibly large swings 

in modal shares following changes in the variables determining costs. This is a concern not 

least because Samgods is used for policy analysis. The Swedish Transport Administration has 

taken several steps towards the development of a so-called stochastic logistics module, where 

the logistics choices are based on a logit-formula and coefficients are estimated on observed 

choices by shippers. This way of modelling choices reduces the risk of sharp changes in modal 

shares and has a stronger behavioral foundation.  

Despite earlier work on this topic there remains several questions regarding the production of 

logit-based coefficients that can be used in a stochastic logistics module.  The purpose of this 

study is to address these questions by estimating and evaluating logit models, produce 

coefficient estimates that can be used in the implementation of a stochastic logistics module 

and analyze how our results are affected by changes in the main analysis, including the size 

of the choice set, weight class interval and new input data. 

The study is outlined as follows. The following section gives a background to the proposed 

stochastic module and previous projects. The subsequent sections describe the data and data 

processing steps we take, outlays details of our estimation and evaluation method and the 

results. The final section concludes.  

Background 

Overview of the stochastic logistics module 

The logistics module in Samgods simulates the logistics decisions (regarding shipment size, 

use of consolidation and distribution centres, mode- and vehicle/vessel type and loading unit 

type) at the firm-to-firm level. The joint choice of shipment size and transport chain has 

previously been modelled in a deterministic way, although changes implemented in version 

1.2 of the model allow for not only one but two choices on each firm-to-firm relation. 2 

A proposal for how a stochastic logistics module in Samgods would work has been outlined 

in previous reports (Abate et al. 2014, 2016). As with the deterministic module, the starting 

point is the matrix of freight transport demand between producer and consumer zones (a PC-

matrix). The matrix consists of estimated tonnes of goods to be transported from each origin 

to each destination in a given year. The flows in the PC-matrix are disaggregated into flows 

between three different size classes of firms (small, medium and large) and a group for 

volumes to be sent in large shipments between industries.  

 
2 Transport cost is set to follow a stochastic distribution so that realized transport cost may be above or below the 

expected average cost. This creates the possibility that the second-best chain will have lower realized cost than the 

best chain, although the latter has lower expected costs. 
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The proposed stochastic module also works at the firm-to-firm level to select the transport 

chain and shipment size. It operates on 16 commodities and have a choice set that consists of 

14 chain types and 16 shipment size categories. Each choice alternative is made up of a 

combination of a chain type and a shipment size interval so there are 14 times 16 = 224 

alternatives in total. Table 1 shows the dimensions of the proposed stochastic module.  

No. Chain type No. Shipment size  

1 Truck 1 0-50 kg 

2 Vessel 2 51-200 kg 

3 Rail  3 201-800 kg 

4 Truck-Vessel 4 801-3000 kg 

5 Rail-Vessel 5 3001-7500 kg 

6 Truck-Truck-Truck 6 7501-12500 kg 

7 Truck-Rail-Truck 7 12501-20000 kg 

8 Truck-Ferry-Truck 8 20001-30000 kg 

9 Truck-Vessel-Truck 9 30001-35000 kg 

10 Truck-Air-Truck 10 35001-40000 kg 

11 Truck-Ferry-Rail-Truck 11 40001-45000 kg 

12 Truck-Rail-Ferry-truck 12 45001-100000 kg 

13 Truck-Vessel-Rail-Truck 13 100001-200000 kg 

14 Truck-Rail-Vessel-Truck 14 200001-400000 kg 

  15 400001-800000 kg 

  16 800001+ kg 

Table 1. Overview of choice set 

The choice model in the stochastic logistics module is given by the logit-formula. It says that 

the probability that alternative k is selected for observation i among K different alternatives is  

𝑃𝑟𝑖(𝑘) =
exp( 𝑉𝑖𝑘)

∑ exp( 𝑉𝑗𝑘)𝐾
𝑗

 

𝑉𝑖𝑘 = 𝑿𝒊𝒌𝜷̂ 

where 𝑉𝑖𝑘 is called the representative utility of alternative k for observation i, that is specified 

to depend on the set of variables 𝑋𝑖𝑘 and coefficients 𝛽̂. In the stochastic logistics module, each 

observation i would refer to a firm-to-firm flow of a particular commodity going from one 

Samgods zone to another. The number of different alternatives K would be 224 at a maximum.  

The logit-probability has several desirable features: it is necessarily between 0 and 1 and the 

probabilities for all alternatives sum to 1. The association between the logit probability and 

representative utility is S-shaped, as shown in Figure 1. This means that if the representative 

utility is very low or very high compared to the alternatives, an increase in the utility of that 

option (e.g. due to transport cost reductions) changes its choice probability by very little. This 

feature is what reduces the swings in modal shares following changes in policy variables and 

makes the logit-formula suitable to use in the logistics module in Samgods.   
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Figure 1. Graph of logit curve 

The first step in the stochastic logistics module is to reduce a longlist of some 100 transport 

chains that are pre-defined in Samgods to the shortlist of the 14 chain types. The next step is 

to calculate for each firm-to-firm relation on each OD-pair the probability that each alternative 

(i.e. combination of chain type and shipment size) is chosen. This probability is given by the 

logit-formula. The stochastic module then sums the tonnes-weighted probabilities over all 

firm-to-firm relations to produce matrices containing the tonnes transported by mode between 

origin and destination zones in Samgods. In a memo accompanying this study, we provide a 

longer description of our suggested stochastic logistics module (Lindgren et al. 2019).   

Previous literature 

Implementation of the stochastic logistics module requires several decisions to be made 

regarding the logit formula. This includes selecting one of the many different discrete choice 

models that are based on the logit-formula; specifying how to model firms’ choice of which 

mode to use and their decision of how much to ship; deciding which variables that should enter 

the representative utility and their functional form as well as estimating their coefficients.  

Some of these questions have been analyzed in previous work. Abate et al. (2014) estimated 

and reviewed various econometric models of discrete choice that can be used to describe firms’ 

choice of shipment size and mode. They compared three types of discrete choice models; one 

that only consider the mode choice decision, another of the joint choice of mode and discrete 

shipment size choice and a third of the joint choice of mode and continuous shipment size 

choice. Their conclusion was that converting shipment sizes into discrete categories gives other 

behavioral responses but might be preferable when using large datasets such as the 

Commodity Flow Survey. Thus, this is the approach we also take in this study.  

Abate et al. (2016) estimated and implemented models of the joint choice of transport chain 

and discrete shipment size. The logit models were estimated separately by commodity group 

using the old commodity group classification. We follow their approach and estimate one logit 

model per commodity group. They implemented a stochastic logistics module for two of the 
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commodity types based on the estimated coefficients. The authors showed that cost and time 

elasticities produced by the stochastic module was closer to zero compared to elasticities based 

on the deterministic module.  

There remain several questions regarding the production of logit-based coefficients that can 

be used in a stochastic logistics module. These broadly concern i) the need to base estimation 

on updated data sources that are internally consistent, ii) the suitability of different logit model 

specifications, iii) the sensitivity of logit model performance to changes in the estimation 

process and iv) how well a logit-based formula works for predicting the transport chain and 

shipment size choice.   

This study analyses these questions. We use the 2016 Commodity Flow Survey for Sweden 

together with the new Samgods commodity classification and cost parameters that have been 

updated to the same year as the CFS to estimate discrete choice models of firms’ joint choice 

of shipment size and transport chain. We test various model specifications, make predictions 

of modal shares using the best logit model and compare those against the observed choices in 

the CFS. The resulting coefficients can be readily applied in the logit-formula in a future 

stochastic logistics module. We then analyze how our results are affected by changes in the 

main analysis, including the size of the choice set, weight class interval and new input data.  

Data 

Commodity Flow Survey 

The main data source used in this project is the Swedish Commodity Flow Survey from 2016. 

The data set contains records of some 5 million individual shipments to or from a company in 

Sweden, with information about the origin, destination, value, weight, cargo type and 

commodity class of the shipments.  

The survey also contains information about the mode(s) used to transport each shipment. It 

distinguishes between road, rail, sea and air transport and includes an additional category for 

unknown modes. We translate the observed mode choice in the CFS to a choice of one of the 

14 chains in the choice set of the proposed stochastic logistics module. The correspondence of 

these sets is shown in table 2.  

Chain 1 is truck and corresponds to shipments in the CFS that has recorded using only road 

transportation. Chains 2 and 3 are direct transportation by vessel and sea and include CFS 

shipments using only the corresponding mode (or in combination with an unknown mode). 

Chain 4 (truck-vessel) and 5 (rail-vessel) consist of various combinations using either only road 

and sea transportation or rail and sea transportation (in combination with an unknown mode 

in some instances).  

Chain 6 (truck-truck-truck) corresponds to CFS shipments recording road in combination with 

an unknown mode. The information in the CFS makes it difficult to differentiate between chain 

1 (truck) and 6 (truck-truck-truck). The latter chain consists of a leg with a small truck, followed 

by consolidation in a larger truck and ends with a smaller truck on the last leg. This chain 

cannot reliably be taken from the CFS as the survey does not distinguish between vehicle size. 

In practice, the CFS combinations corresponding to chain 6 are rarely recorded in the CFS. 
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NO. Shortlist chaintype CFS combinations included (V=road, J=rail, S=sea, L=air, X=unknown) 

1 Truck V 

2 Vessel S, SX,  

3 Rail  J, JX 

4 Truck-Vessel SV, SVS, VS, VSX 

5 Rail-Vessel JS, JSJ, JSX, SJ, XSJ 

6 Truck-Truck-Truck VXV, VX, XV,  

7 Truck-Rail-Truck JV, VJ, VJV, VJX 

8 Truck-Ferry-Truck  

9 Truck-Vessel-Truck VSV, VSVSV 

10 Truck-Air-Truck All chains containing L 

11 Truck-Ferry-Rail-Truck  

12 Truck-Rail-Ferry-truck  

13 Truck-Vessel-Rail-Truck SJV, SVJV, VSJ, VSVJ, VSJV, XSJV 

14 Truck-Rail-Vessel-Truck VJS, VJSJ, VJSJV, VJSV, VJSX, VJVS, VJVSV, VJX, JSJV, JSV, JVS 

Table 2. Correspondence shortlist and CFS combinations  

Chains 7 (truck-rail-truck) and 9 (truck-vessel-truck) is made up by shipments using road in 

combination with rail or vessel respectively. Chains 13 (truck-vessel-rail-truck) and 14 (truck-

rail-vessel-truck) both consist of chains where road, rail and sea transportation are utilized. 

We differentiate between the two chains by allocating shipments that use sea before rail 

transportation to chain 13 and the opposite to chain 14.  We link all shipments using air 

transportation to chain 10 (truck-air-truck).   

Unfortunately, the CFS does not allow the identification of ferries from vessels. We decided to 

regard all records of sea transportation as a vessel so the chains containing ferries (8, 11, 12) 

will not be coded as chosen in the data. This is motivated by vessels being the more common 

mode than ferries and that identification of ferries based on e.g., shipment origin and 

destination involves a degree of arbitrariness.  

Figure 2 shows the tonnes modal shares of the chains for each commodity based on the 

shipments in the CFS 2016. Overall, there is substantial variation in chain types shares, 

although direct road transportation (chain 1) is the most common choice for most commodity 

groups.  There are only two groups where a single chain constitutes more than 90 percent of 

the market. Direct road transportation dominates in commodity group 1 (agriculture and 

forestry products (excluding round wood) and fishing) while vessels (chain 2) has virtually all 

of the market for transportation of group 2 (coal, crude petroleum and natural gas).   

 



12 
 

 

Figure 2. Chain shares in tonnes, based on CFS 2016 
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Samgods-based data 

For our logit model estimations, we will use information about the cost, time and distance of 

chosen and non-chosen alternatives facing each shipment in the CFS. We create these variables 

using the existing logistics module in Samgods as follows. First, a regular model run is 

performed with the deterministic model to determine the consolidation factors that will be 

used in the cost calculations. These consolidation factors will be fixed during the steps that 

will be described below. Second, we identify the Samgods zone of origin and destination for 

each shipment in the CFS 2016. Samgods zones corresponds to municipalities in Sweden, 

larger regions in the rest of Scandinavia and some European countries and to countries or 

country-combinations in the rest of the World. We geocode the origin and destination using 

the sender’s and receiver’s postal address or using the country code when the postal address 

is unavailable or unreliable.  

We then create a synthetic production-consumption-matrix for the Samgods zones based on 

the observations in the CFS. We subsequently run a special version of the deterministic 

logistics module where the cost-minimizing option per chain type is determined. This 

procedure is run at a fixed annual shipment frequency of 1 and produces the best chain for 

each of the chain types that are available for the particular origin- and destination-pair being 

considered. For each of these best chains the route (and corresponding transport time, distance 

and costs) and vehicle type being used are determined. This step therefore effectively 

determines the set of available chains for each shipment in the CFS. 

This step requires the use of cost parameters as input. The cost parameters that are currently 

available in Samgods refer to the base years 2012 or 2014 while we which them to be related 

to the same year as the CFS 2016 for internal consistency. We therefore update the cost 

parameters to their 2016 level using price indices. Table 3 shows the indices used to adjust cost 

parameters.  

Cost 
category 

Cost 
parameter 

Mode Index (source) Adj. 
factor 

Vehicle 
parameters 

All Road Swedish SPPI for road freight transportationa  (SCB)  1,009 
Rail Swedish SPPI for land-based transportationb (SCB)  1,025 
Sea Swedish SPPI for maritime freight transportationc 

(SCB) 
1,041 

Air Swedish CPI (SCB) 1,009 

Cargo Product value All 
All 
 
All 

Swedish CPI (SCB) 1,009 
Inventory costs Service price index, group H: transport and handling 

services (SCB) 
0,996 

Order costs Service price index, group H: transport and handling 
services (SCB) 

0,996 

Kiel Canal Link-based tax Sea CPI EU28 (OECD) 1,023 

Tax per 
country rail 
and road 

Road and rail 
tax  

Road 
Rail  

CPI EU28 (OECD) 
CPI EU28 (OECD) 

1,023 
1,023 

Toll links Toll link Road  
Rail 

Swedish CPI (SCB) 
Swedish CPI (SCB) 

1,009 
1,009 

Pilot fees Pilot fees Sea Swedish CPI (SCB) 1,009 

Tax link Tax link Sea No update - 
Note: a SPPI product group 49.41 ,bSPPI product group 49., c SPPI product group 50.2 

Table 3. Overview of cost parameters and indices 
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Vehicle cost parameters are adjusted according to the Swedish Producer Price Index for 

Services (SPPI) and consumer price index (CPI). Cargo-specific costs are adjusted according to 

various price indices. The development of product values is assumed to be well-approximated 

by that of the general consumption bundle. More detailed indices are available (e.g. producer 

price index by product linked to sector (SPIN)) but their high-resolution makes them sensitive 

to price shocks. Inventory and order costs are approximated by price of services for transport 

and handling., Swedish and international taxes and fees are adjusted by the Swedish and EU-

level CPIs respectively.  

The cost parameters covering product value, inventory costs and order costs are specific to a 

single commodity group. The existing cost parameters follows the old commodity 

classification in Samgods that consists of 35 groups, while our analysis is based on the 16 

commodity groups used in Samgods version 1.2 (Vierth et al. 2017). We solve this by linking 

the commodities and their costs from the old Samgods classification to the commodities in the 

new classification based on the correspondence of sub-groups within each commodity.  

Within the Commodity Flow Survey only the size of the observed shipment is available. The 

annual volume on a specific firm-to-firm relation is not available from the Commodity Flow 

Survey. For this reason, it is not possible to calculate the order and storage costs for the 

observed transport flows. Therefore, the stochastic model is estimated on the transport costs 

only, order and storage costs are not included in the estimation. 

The transport costs are calculated for all combinations of the 16 shipment sizes and sub-modes 

available in Samgods. We link the sub-modes to the 14 chain types in the choice set that the 

proposed stochastic logistics module will operate on by creating a correspondence key. 

Matching between the set of 14 chain types and the sub-modes is non-trivial because the 

former is specified in terms of modes (truck, vessel, rail and air) while the sub-mode 

combinations are given at the Samgods vehicle type level (e.g. feeder train, wagonload train). 

NO. Shortlist chain type Principle for inclusion 

1 Truck No transfers 

2 Vessel No transfers to other modes 

3 Rail  No transfers to other modes 

4 Truck-Vessel Vessel taken to be all sea modes apart from road and rail ferry 

5 Rail-Vessel Vessel taken to be all sea modes apart from road and rail ferry 

6 Truck-Truck-Truck Trucks in combination 

7 Truck-Rail-Truck Any combination containing only truck and rail 

8 Truck-Ferry-Truck Ferry taken to be road ferry (sub-modeNr P) 

9 Truck-Vessel-Truck Vessel taken to be all sea modes apart from road and rail ferry 

10 Truck-Air-Truck All chains including air 

11 Truck-Ferry-Rail-Truck Includes one of only two chain types containing rail ferry (HQH) 

12 Truck-Rail-Ferry-truck Includes one of only two chain types containing rail ferry (GHQH) 

13 Truck-Vessel-Rail-Truck Order of rail/vessel important, vessel taken to be all sea transports apart 
from road and rail ferry 

14 Truck-Rail-Vessel-Truck Order of rail/vessel important, vessel taken to be all sea transports apart 
from road and rail ferry 

Table 4. Correspondence shortlist and Samgods transport chains 
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Table 4 shows the principle for defining a sub-mode in Samgods as a particular chain in the 

choice set. This means for instance that chain 1 (truck) consists of sub-modes that only uses 

direct road (i.e., sub-modes A, B, X, C, S and c). Chain 2 (vessel) consists of sub-modes that 

only use sea transportation without transfers to other modes (sub-modes J, KL, LK and M) and 

so forth. The full correspondence key between chains and sub-modes is shown in Appendix 

B.  

When we calculate the costs representative for each chain type and more than one available 

sub-mode can be linked to a chain, the sub-mode with the lowest cost is set to represent that 

chain. In this way, for each shipment in the CFS there is information of the cost, time and 

distance for all combinations of the 16 shipment sizes and 14 chains (or at least for all available 

chains).   

The procedure used to generate the costs involves several assumptions about the input data, 

not least the cost parameters. In the analysis we test our results against an alternative cost 

variable to assess the robustness of our procedure. 

Methodology 

In our main analysis we use the CFS in combination with estimated transport cost, distance 

and time to estimate discrete choice models of the transport chain and shipment size choice. 

The choice set consists of the 14 chain types and 16 shipment size categories included in the 

choice set of the proposed logistics module. 

Based on the available set of variables, we try different model specifications (variable 

combinations and functional form) and choose the best model to make predictions. We end 

our main analysis by comparing these predictions to observed levels in the CFS and quantify 

the deviation of predictions to observed output. We then extend the analysis to investigate 

whether variations in input data, weight class interval and size of choice set alter the main 

results. We also examine if our findings are changed if we use choice models with other 

assumptions about choice patterns.  

Models 

Our main model is the multinomial logit (MNL). It assumes that the representative utility of 

choosing the combination of shipment size s and transport chain t for shipment i is  

 

𝑉𝑖𝑠𝑡 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 

 

where 𝛽𝑘 is the coefficient on variable 𝑥𝑘. Exactly which variables to be used will be 

determined in our analysis. Under some distributional assumption about the unobserved 

component of the utility (Train 2003), the probability that transport chain t and shipment size 

s is used for shipment i is given by: 

 

𝑃𝑖(𝑡, 𝑠) =
exp(𝑉𝑖𝑠𝑡)

∑ exp(𝑉𝑖𝑠′𝑡′)𝑠′,𝑡′
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This expression is the basis for which our predictions will be made and the formula that enters 

the stochastic logistics module. As a benchmark to compare our logit model predictions to, we 

define a mock-deterministic model that for each decision-maker selects the alternative with 

lowest transport costs 𝐶:  

𝑃𝑖(𝑡, 𝑠) = {
 1 𝑖𝑓 𝐶𝑖𝑡𝑠 < 𝐶𝑖𝑘𝑙   ∀𝑘, ∀𝑙

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This decision rule has the same all-or-nothing assignment found in the deterministic logistics 

module, although the one used here is arguably coarser as it lacks feedback loops and does 

not account for rail capacity constraints.  

Estimation 

Estimation follows the standard procedure for logit models. The probability that transport 

chain t and shipment size s was actually chosen for shipment i can be expressed as 

∏ 𝑃𝑖(𝑡, 𝑠)𝐼𝑖𝑡𝑠

𝑡,𝑠

 

where 𝐼𝑖𝑡𝑠 = 1 if shipment i is transported using chain t and size s and 0 otherwise, and the 

multiplication is over all chain and size-combinations available for shipment i. The probability 

of all of the N shipments in the sample being transported by the chain and size actually chosen 

is given by the likelihood 

𝐿(𝛽) = ∏ ∏ 𝑃𝑖(𝑡, 𝑠)𝐼𝑖𝑡𝑠

𝑡,𝑠

𝑁

𝑖=1

 

which depends on the vector of coefficients 𝛽 through the logit-formula 𝑃𝑖(𝑡, 𝑠).  The log-

likelihood is then:  

𝐿𝐿(𝛽) = ∑ ∑ 𝐼𝑖𝑡𝑠

𝑡,𝑠

×

𝑁

𝑖=1

ln 𝑃𝑖(𝑡, 𝑠) 

and the estimator of 𝛽 is the value the maximizes this function. To handle the large sample 

size associated with 5 million shipments and up to 224 alternatives for each shipment, we 

randomly sample 10 alternatives (including the chosen one) for each shipment.3 The estimation 

is run on a 20 percent random sample of each commodity group separately. Running 

commodity-specific models facilitates the estimation procedure and produces commodity-

specific coefficients directly.  

Variable Selection and Model Fit Evaluation 

In principle, any variable set can be included in the utility specification in the logit model.  The 

included variables can in turn be specified in various functional forms, including linear, log-

linear and splines. They could also be set to be specific to one or more of the choice alternatives. 

 
3 Sampling non-chosen alternatives with equal probability as is done here provides consistent estimates of the 

coefficients (Train 2003).   
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In this project, we first restrict the model specifications to be estimated and evaluated based 

on two factors. First, all variables included in the model must also be possible to make 

available in the Samgods model. Finding a model with high predictive accuracy is of limited 

use if the coefficient cannot be applied in the logistics module of Samgods due to lack of data. 

Second, we restrict attention to the variables available in the CFS 2016 and the alternative-

specific cost, time and distance variables estimated in Samgods. The table below shows the 

variables and their functional form tested in the utility specification for some or all commodity 

groups.  

Variable Unit Functional form tested 

Transport cost SEK/tonne Linear, scaled by shipment value, log,  

Transport time Hours Linear 

Value density SEK/kilogram Linear 

Chain type Dummy (0/1) Linear  

Shipment size  Dummy (0/1) Linear 

Table 5. Variables and their functional form tested in utility specification 

Our choice of variables to include is based on the following procedure. First, we select the 

number of chain and shipment size dummies to include for every commodity group. This 

choice is based on the accuracy with which the coefficients were estimated and whether the 

category was observed in the estimation sample. Coefficients for chain and shipment sizes that 

are seldom chosen are difficult to estimate with precisions and these variables are therefore 

left out of the model. Second, we select the number of cost variables to include in the model. 

We let cost enter linearly and separately for each chain and keep the cost variable if the 

coefficient has the expected negative sign. In the third step we estimate the coefficient on a 

common transport time variable and keep the variable if the coefficient has the expected 

negative sign. This procedure implies that the best model specification can vary between 

commodity groups.4 

Model Prediction Evaluation 

We use the coefficients from our best logit models to make predictions both for the 

observations used for estimation (i.e. in-sample predictions) and those not used for estimation 

(out-of-sample predictions). We make separate predictions for each commodity group. In-

sample observations constitute 20 percent of all observations, which translates to between 840 

and 1.6 million observations depending on the size of the commodity group.5    

 

Our prediction targets are the number of shipments per transport chain and shipment size and 

the tonnes by each transport chain and in total. These are standard measures of modal shares, 

used in Samgods and straightforward to calculate in the validation data (CFS). The observed 

frequency by transport chain t in the CFS is given by 

 

 
4 An alternative way of selecting model specification is to use some measure of model fit, such as the log-likelihood 

and Akaike/Bayesian Information Criteria. We tested this approach but found that the included variables 

sometimes were very imprecisely measured and had coefficients with the unexpected sign. We argue that such 

coefficients would be of little use in Samgods.  
5 Appendix A shows the number of observations used in estimation for each commodity group.   
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𝑁(𝑡) = ∑ 𝐼𝑖𝑡

𝑁

𝑖=1

 

 

where 𝐼𝑖𝑡 is an indicator equal to 1 if shipment i uses transport chain t and 0 otherwise.  

Similarly, the observed frequency by shipment size s in the CFS is  

 

𝑁(𝑠) = ∑ 𝐼𝑖𝑠

𝑁

𝑖=1

 

 

where 𝐼𝑖𝑠 is an indicator equal to 1 if shipment size s is chosen and 0 otherwise. Our predicted 

transport chain frequency is obtained as follows. For each shipment, the logit and mock-

deterministic model predicts the probability that the combination of transport chain t and 

shipment size s is chosen: 𝑃𝑖(𝑡, 𝑠). These formulas are shown above. Summing over the 16 

shipment sizes alternatives within a shipment gives the probability that transport chain t is 

used for shipment i: 

𝑃𝑖(𝑡) =  ∑ 𝑃𝑖(𝑡, 𝑠)

16

𝑠=1

 

 

Summing over all N observations gives the predicted frequency using transport chain t:  

 

𝑁̂(𝑡) =  ∑ ∑ 𝑃𝑖(𝑡, 𝑠)

16

𝑠=1

𝑁

𝑖=1

 

 

Analogously, our predicted frequency using shipment size s is obtained by summing the 

probabilities 𝑃𝑖(𝑡, 𝑠) over the 14 transport chains and N observations 

 

𝑁̂(𝑠) =  ∑ ∑ 𝑃𝑖(𝑡, 𝑠)

14

𝑡=1

𝑁

𝑖=1

 

 

 

The observed tonnes by transport chain t in the CFS is given by   

 

𝑄(𝑡) = ∑ 𝐼𝑖𝑡 × 𝑤𝑖

𝑁

𝑖=1

 

 

where 𝐼𝑖𝑡 again is the indicator equal to 1 if shipment i uses transport chain t and 0 otherwise, 

and 𝑤𝑖 is the observed shipment weight. Our prediction of tonnes by each transport chain is 

obtained as follows. We first sum over the shipment sizes to get the probability that transport 

chain t is used for shipment i 

𝑃𝑖(𝑡) =  ∑ 𝑃𝑖(𝑡, 𝑠)

16

𝑠=1
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We introduce tonnes by multiplying the probability that the combination of chain t and size s 

is chosen by the weight of shipment size s. Because each size refers to a weight interval, we 

use the midpoint of each interval as the actual weight. (For instance, the weight used in interval 

20-30 tonnes is 25 tonnes). Letting 𝑠̅ be the average weight in interval s, s=1, 2, …, 16, the 

predicted tonnes by transport chain t of shipment i is  

 

𝑄̂𝑖(𝑡) =  ∑ 𝑃𝑖(𝑡, 𝑠) ×

16

𝑠=1

𝑠̅ 

 

Finally, we sum over all N shipments to get the predicted tonnes by transport chain t:  

 

𝑄̂(𝑡) =  ∑ ∑ 𝑃𝑖(𝑡, 𝑠) ×

16

𝑠=1

𝑠̅

𝑁

𝑖=1

 

 

The way our predictions are calculated will have an impact on the final results. As will be 

shown, the choice of weight used to predict shipment size can be adjusted to reach the desired 

tonne level targets for commodities for which the initial prediction was poor.  

 

We present our results graphically. We also evaluate the predictive performance of the logit 

models by calculating the root mean squared errors (RMSE):  

 

   𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ 𝜀𝑡𝑐

2  

 

where 𝜀𝑡𝑐 = 𝑄̂𝑐(𝑡) − 𝑄𝑐(𝑡) is the deviation of the predicted tonnes from observed tonnes for 

chain t and commodity c. We calculate the RMSE for each commodity and for each transport 

chain. The RMSE is a standard measure frequently used to measure the difference between 

observed and predicted values. It is always non-negative and the closer the RMSE is to zero, 

the more accurate is the prediction. 

 

Main Results 

Model specification  

The best model specification was for each commodity group c to set representative utility 

equal to the following:  

𝑉𝑠𝑡 =  ∑ 𝛿𝑡𝑑𝑡 +

𝑇𝑐

𝑡=1

∑ 𝜇𝑠𝑑𝑠

𝑆𝑐

𝑠=1

+ ∑ 𝛽𝑡(𝐶𝑜𝑠𝑡𝑠𝑡 × 𝑑𝑡) + 𝜃𝑇𝑖𝑚𝑒𝑠𝑡

𝜏𝑐

𝑡=1

 

where 𝑑𝑡  is a dummy equal to 1 for transport chain t and 0 otherwise, 𝑑𝑠 is a dummy equal to 

1 for shipment size s and 0 otherwise, 𝐶𝑜𝑠𝑡𝑠𝑡 and 𝑇𝑖𝑚𝑒𝑠𝑡 are the transport cost and time of 

chain-size combination st respectively. 𝑇𝑐 and 𝑆𝑐  is the number of chain constant and shipment 

size constants included for commodity c. 𝜏𝑐 is the number of chain-specific cost coefficients for 

commodity c.  
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This means that a separate coefficient was estimated on each transport chain constant, each 

shipment size constant and for the cost variable for each chain. The coefficient on transport 

time was set to be the same for all alternatives and entered the specification only for one 

commodity group. Note that none of the coefficients depend on the attribute of the shipment, 

except of course on the commodity group. Transport cost and time enters linearly in the utility 

specification as using a logarithmic specification of cost did not improve the fit in the cases we 

tried. Table 6 summarizes the specification for each of the 16 models.  

Commodity  #  chain constants # size constants # Cost-by-chain Transport time # parameters 

1 1  15 No No 16 
2 3 2 No (common cost) No 6 
3 6 15 4 No 25 
4 6 15 6 No 27 
5 5 1 2 No 7 
6 7 15 5 No 27 
7 1 14 1 No 16 
8 7 15 5 No 27 
9 4 15 2 No 21 
10 7 15 6 No 28 
11 7 9 0 No 16 
12 6 15 6 No 27 
13 3 11 No  No 14 
14 2 12 2 No 16 
15 1 15 1 No 17 
16 2 8 1 Yes 12 

Table 6. Summary of model specifications 

The complete estimation results for the best logit models are shown in appendix A. Direct road 

transportation (chain 1) is preferred in almost all commodity groups, holding all other 

attributes constant. The highest weight category is preferred relative the lowest for shipments 

of commodity group 2 (coal, petroleum, natural gas), 3, (ores and mining products) and 15 

(round wood) whereas the opposite is true for the other groups.  The coefficient on transport 

cost differs both between transport chains and commodity groups, showing that utility weight 

put on cost indeed is different across chains and commodities. The coefficient on transport 

time enters the utility function only for commodity group 16 (air freight).  

Model prediction 

We next turn to our analysis of the predictive performance of our models. Figure 3 shows the 

predicted and observed frequency for each of the 14 chain types.  The commodity group is 

indicated at the top of every figure.  For each group, the left window shows the predictions for 

observations not used in the estimation and the right window for in-sample observations. The 

scale of the y-axis is the same within commodity groups but differs between them. Blue bars 

show the frequencies observed in the CFS, red bars show the frequencies predicted by the logit 

model and green bars the predictions from the mock-deterministic model.  

Chain 1 (direct road transportation) dominates the market for almost all commodities while 

chain 9 (truck-vessel-truck) is also frequently used for many commodities. In-sample 

frequencies are lower than out-of-sample frequencies since in-sample observations constitute 

some 20 percent of all observations within each commodity group. 

In-sample predictions by the logit model are very close to observed levels. This is due to the 

inclusion of constants for chains and shipment size, which leads to close to perfect predictions 

of observed frequencies. In-sample predictions by the mock-deterministic model is also close 
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to observed levels, indicating that the alternative offering the lowest cost per tonne tends to be 

chosen in practice.  

Out-of-sample predictions by the logit and mock-deterministic models are also close to 

observed levels but do not perform as well as the in-sample predictions. This is likely to be a 

result of modal shares being different in-sample compared to out-of-sample, perhaps due to 

sampling variation. The overall pattern is that both the logit model and the mock-deterministic 

model do well in predicting transport chain frequencies.  

Figure 4 shows the results for predicted and observed frequencies calculated for each of the 16 

shipment sizes. There is a clear variety in observed shipment sizes across commodity groups. 

A natural benchmark is weight class 10 or lower, which corresponds to below-truck-weight of 

40 tonnes. For some commodity groups (4, 5, 11, 13 and 16), almost all shipments fall between 

0-50 kg (weight class 1).6 Groups 3, 6, 8, 9, 12 and 14 have more even distribution of sizes. 

Commodity group 2 stand out as having a shipment size distribution heavily skewed to the 

right.  

The performance of the logit and mock-deterministic models are similar for in-sample 

predictions compared to out-of-sample predictions, probably owing to the similarity in 

patterns between samples. However, there is a clear difference in the predictive performance 

of the logit model compared to the mock-deterministic model. The frequencies predicted by 

logit model are very close to the observed ones, again most likely because of the inclusion of 

shipment size constants. The mock-deterministic model tends to predict large shipment sizes 

and is therefore accurate for commodity group 2 where this is the case, and off for groups that 

tend to use lighter shipments (4, 5, 11, 13 and 16). This is consistent with transport cost per 

tonne on average being lower for larger shipment sizes.  

 

 

 

  

 

6 Commodity group number and names are 1 (Products of agriculture, hunting, and forestry; fish and other fishing products. Not 

timber); 2 (Coal and lignite; crude petroleum and natural gas); 3 (Metal ores and other mining and quarrying products; peat); 4 

(Food products, beverages and tobacco); 5 (Textiles and textile products; leather and leather products); 6 (Wood and products of 

wood and cork (except furniture); pulp, paper and paper products; printed matter and recorded media); 7 (Coke and refined 

petroleum products); 8 (Chemicals, chemical products, and man-made fibers; rubber and plastic products; nuclear fuel); 9 (Other 

non-metallic mineral products); 10 (Basic metals; fabricated metal products, except machinery and equipment); 11 (Machinery 

and equipment; medical, precision and optical instruments); 12 (Transport equipment); 13 (Furniture; other manufactured goods); 

14 (Secondary raw materials; municipal wastes and other wastes); 15 (Timber); 16 (Air freight (fractions of some of the commodity 

groups). A list of commodities and their number is found in Appendix C.  
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Figure 3. Observed and predicted frequency, by chain, commodity and sample group 
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Figure 4. Observed and predicted frequency, by weight class, commodity and sample group 



26 
 

We now turn to our predictions of tonnes for each chain. Figure 6 shows the predicted and 

observed tonnes for each chain and in total. Blue bars show the tonne levels as observed in the 

CFS and red bars show the levels predicted by the logit model. The left window shows the 

predictions for out-of-sample observations and the right window for observations used in the 

estimation.  

We have also calculated predictions based on our mock-deterministic model. However, this 

model severely over-predicts the tonne levels for the transport chains. This makes a visual 

analysis of the accuracy of our logit model very difficult. Figure 5 illustrates this point. The left 

graph contains the observed levels and the predictions both from the logit and mock-

deterministic model (in green) for commodity group 8. It is difficult to assess the accuracy of 

the logit model. The right figure omits the prediction from the mock-deterministic which aids 

the visual interpretation of our results. In the remainder of the analysis we discuss our logit 

model results.  

 
 

Figure 5. Predictions against observed levels, with and without deterministic model 

Just as for the frequencies, several commodity groups are dominated by one or two chain 

types. In most cases this is direct road transportation (chain type 1). Chain type 9 (truck-vessel-

truck) also tends to have high shares of the market.  

Prediction errors for individual chain types within commodity groups are similar for in-

sample and out-of-sample observations. This is a by-product of modal shares being similar for 

observations used in estimation compared to the rest of the observations. The exception is 

commodity group 14 for which the modal shares are very different for the estimation sample 

compared to the rest of the observations. This makes the out-of-sample forecasts inaccurate 

for this group. The difference in modal shares is likely due to the very low sample size of 

commodity group 14 which makes sampling variability large.  

In-sample predictions are relatively accurate for commodity groups 1, 4, 6, 8, 9, 10, 12 and 14-

16. The MNL model captures both the shares and the tonne levels of the chain types for these 

groups.  Predictions for commodity groups 2, 3, 5 and 7 are inaccurate — the model 

overpredicts for commodity 5 and underpredicts for the other groups.  
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Figure 6. Observed and predicted tonnes by commodity and chain type 
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To summarize the accuracy of predicted tonnes by our logit model we calculate the root mean 

squared errors for in-sample and out-of-sample predictions. Figure 7 shows RMSE for each 

chain (i.e. calculated over commodities) to the left and for each commodity (i.e. calculated over 

chains) to the right.  

The logit model predicts poorly for chains 1 (truck), 9 (truck-vessel-truck) and 14 (truck-rail-

vessel-truck) and is off target for the total levels as well. The other chains have relatively low 

prediction deviations. Commodity groups 2, 3, 7 and 11 stand out as being difficult to make 

predictions for. These groups contain large deviations for chains 1, 9 and 14, as can be seen in 

figure 6. The inaccuracy for these categories depends partly on the fact that there are large 

volumes for transport chains in these commodity groups and that RMSE tends to increase with 

observed volumes.   

One concern with our models is that the inclusion of the many constants for chains and 

shipment size leads to over-fitting. This would imply very good predictions in-sample but not 

out-of-sample. Figure 7 shows that in-sample predictions are more accurate than out-of-

sample predictions but there is not a very large difference between in- and out- of sample 

predictions as measured by the RMSE.  

 

  

Figure 7. Root mean squared error by chain and commodity  
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Additional results 

This section presents the results from a set of additional analyses made to investigate how 

changes in the main analysis impact the results.  

Effect of size of choice set 

The choice set in the proposed stochastic logistics module and our analysis consists of 14 chain 

types and 16 shipment sizes. These dimensions have been developed and analyzed in previous 

projects where they gave reasonable results (Windisch et al. 2010; Abate et al. 2014, 2016).  

One concern is that aggregating transport chains into 14 types will mask important differences 

in choices patterns between the individual chains. One particular issue is that the choice of 

transportation solution for shipments using container transportation will be different from 

that for shipments in non-container cargos.  This concern is partly motivated by the differences 

in price-elasticities for different train types in Samgods.  

We test the size of choice set by comparing two different sets; the original choice set with 14 

chains and an expanded choice set with 28 chains that differentiates between container and 

non-container options. Both sets have 16 shipment sizes. We compare the cost, time and 

distance variables generated by these two sets as well as the coefficients and predictions from 

logit models estimated on the sets.  

We restrict our analysis to shipments of a single commodity group. We select commodity 6 

(Wood, pulp, paper) as it has one of the highest shares of container usage (20%) in the CFS 

2016. Differentiating between container and non-container choice is not likely to make a 

difference for shipments that only use one or the other load unit.  

The method used to produce the expanded choice set follows that of the original one. Matching 

between observed choices in the CFS 2016 and the short list of chains is as before with the only 

exception that we now take into account the recorded load unit for the shipments in the CFS. 

A shipment is considered being transported in a container if it is registered as load unit 21-24 

or 3 (containers, swap bodies and other exchangeable loading units) in the CFS. The matching 

rate is somewhat reduced, from 78,000 shipments to 75,000 shipments, when we also have to 

account for load unit. We again sample ten alternatives (including the chosen one) for each 

shipment.   

Table 7 shows summary statistics for transport cost, time and distance produced under the 

different choice sets. Columns 1 and 2 show the statistics for all alternatives. The averages, 

standard deviation and min-max values are similar and sometimes identical for time and 

distance. Average costs are lower in the choice set that differentiates between container and 

non-container options. Columns 3 and 4 show statistics only for alternatives recorded as 

chosen in the CFS. These are even more similar than those for columns 1 and 2, suggesting that 

expanding the choice set only leads to more alternatives that have higher costs on average (and 

are not likely to be chosen).  
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  (1) 
Expanded set, 

all alt. 

(2) 
Original set,  

all alt. 

(3) 
Expanded set, 

chosen alt. 

(4) 
Original set, 
chosen alt. 

Cost (SEK/tonne) Mean 3,840 5,363 1,903 1,802 
St. dev 19,799 24,603 15,646 15,358 

 Min  66 66 69 69 
 Max 640,711 640,711 578,559 578,559 

Time (hrs) Mean 43 41 39 45 
 St. dev 147 142 141 164 
 Min  0 0 0 0 
 Max 2,128 2,084 1,843 1,212 

Distance (KM) Mean 1,509 1,486 1,363 1,377 
 St. dev 3,642 3,367 3,897 3,836 
 Min  1 1 1 1 
 Max 26,426 26,426 26,070 25,740 

Table 7. Comparison of choice sets for commodity 6 

We estimate logit models on each of the choice sets using identical model specifications and 

compare the coefficients. Ideally, we would like the coefficients to be identical so that our 

selected choice set in the original analysis does not affect the coefficients entering the logistics 

module.  

Table 8 shows the result. Column 1 displays the coefficients (and column 2 the standard errors) 

for the sample using the expanded choice set. Columns 3 shows the coefficients (and column 

4 the standard errors) based on the original choice set. Column 5 presents the difference in 

coefficients for each variable and column 6 tests if they have the same sign.  

 Expanded choice set 
 

Original choice set Difference 
(1)-(3) 

Sign (1) = 
Sign (3) 

 (1) (2) (3) (4) (5) (6) 

 Coeff. S.E. Coeff. S.E.   
Chain 1 7.98*** (0.16) 7.61*** (0.14) 0.37 Yes 
Chain 4 4.41*** (0.19) 6.36*** (0.30) -1.95 Yes 
Chain 6 0.45 (0.30) -0.42 (0.29) 0.87 No 
Chain 7 4.39*** (0.16) 4.18*** (0.15) 0.21 Yes 
Chain 9 3.22*** (0.16) 4.59*** (0.15) -1.37 Yes 
Chain 10 0.94*** (0.16) 0.60*** (0.16) 0.34 Yes 
Chain 13 -0.59 (1.06) -0.75 (0.96) 0.16 Yes 
Size 2 -1.95*** (0.053) -1.78*** (0.052) -0.17 Yes 
Size 3 -2.11*** (0.053) -1.83*** (0.053) -0.28 Yes 
Size 4 -1.68*** (0.050) -1.53*** (0.049) -0.15 Yes 
Size 5 -2.28*** (0.055) -2.05*** (0.055) -0.23 Yes 
Size 6 -2.88*** (0.065) -2.57*** (0.064) -0.31 Yes 
Size 7 -2.60*** (0.060) -2.27*** (0.058) -0.33 Yes 
Size 8 -1.79*** (0.053) -1.49*** (0.052) -0.3 Yes 
Size 9 -3.26*** (0.072) -2.99*** (0.071) -0.27 Yes 
Size 10 -3.18*** (0.071) -2.91*** (0.070) -0.27 Yes 
Size 11 -4.26*** (0.095) -3.99*** (0.094) -0.27 Yes 
Size 12 -3.01*** (0.069) -2.69*** (0.067) -0.32 Yes 
Size 13 -5.64*** (0.16) -5.39*** (0.17) -0.25 Yes 
Size 14 -6.11*** (0.19) -5.83*** (0.20) -0.28 Yes 
Size 15 -6.22*** (0.21) -6.06*** (0.21) -0.16 Yes 
Size 16 -6.15*** (0.20) -5.87*** (0.20) -0.28 Yes 
Chain 1 x cost -0.0012*** (0.000035) -0.0012*** (0.000036) 0 Yes 
Chain 4 x cost -0.00040*** (0.000038) -0.0014*** (0.00011) 0.001 Yes 
Chain 7x cost -0.00049*** (0.000046) -0.00059*** (0.000054) 0.0001 Yes 
Chain 9 x cost -0.00048*** (0.000052) -0.00099*** (0.000068) 0.00051 Yes 
Chain 13 x cost -0.00058 (0.00068) -0.00081 (0.00077) 0.00023 Yes 

N 148,810  154,600  
LL -12830.3  -12414.6  
Parameters 27  27  

Standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 8. Coefficient comparison for commodity 6 
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The model shows that direct road transportation (chain 1) and road in combination with vessel 

(chain 4 and 9), rail (chain 7) or air (chain 10) has a statistically significant positive impact on 

utility. The smallest shipment size tends to be preferred over larger. Reassuringly, for almost 

every variable, the sign of the coefficient from one estimation is the same as the one from the 

other estimation. Magnitudes are also similar across coefficients suggesting that whether the 

choice set is expanded or not matters little for the final coefficients. The cost coefficients for the 

expanded choice set are somewhat larger in size, possibly as a response to lower average costs. 

For the implementation of a stochastic logistics module, we are interested in the predictive 

performance of these two sets of coefficients. We therefore use the same prediction approach 

as in the main analysis for these two sets. The only difference is that we now make predictions 

over the expanded set of choices. Graphical results are shown in figure 8 and suggest that the 

predictive performance is improved when using the expanded choice set.  

  

Figure 8. Comparing predictions for expanded and original choice sets 

Effect of changing weight class interval 

The choice set in our analysis consists of 16 shipment sizes. We test the effect of changing 

weight classes by first defining an alternative interval based on the existing one. We divide the 

weights into multiples of a truck-load (40 tonnes). This classification follows existing truck 

capacity limits and is easily compared to the original weight class interval.  

We test the choice of weight class interval by comparing two different sets; the original choice 

set with 16 shipment size and the reduced set with 5 shipment sizes. Both sets have 14 chain 

types. Table 9 summarizes these sets. We compare the cost, time and distance variables 

generated by these two sets as well as the coefficients and predictions from logit models 

estimated on the sets. We again focus solely on commodity group 6. Matching rate is slightly 

higher with the broader weight class interval, 99.1% compared to 97% for the original weight 

class interval.  
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 Original weight class interval Reduced weight class interval 

1 0-50 kg 1               0-10 000 kg 

2 51-200 kg  

3 201-800 kg  

4 801-3000 kg  

5 3001-7500 kg  

6 7501-12500 kg 2               10 0001 kg-20 000 kg 

7 12501-20000 kg  

8 20001-30000 kg 3               20 001-40 000 kg 

9 30001-35000 kg  

10 35001-40000 kg  

11 40001-45000 kg 4               40 001-400 000 kg 

12 45001-100000 kg  

13 100001-200000 kg  

14 200001-400000 kg  

15 400001-800000 kg 5               400 001+ kg 

16 800001+ kg  

Table 9. Overview of original and reduced weight class interval 

Table 10 shows summary statistics for transport cost, time and distance produced under the 

different sets. Columns 1 and 2 shows the statistics for all alternatives. Transport time and 

distance are virtually unaffected by the merging of interval from 16 to 5 categories. But average 

and maximum costs are lower with this interval. The same holds true for chosen alternatives 

only in columns 3 and 4. One explanation is that the composition of chains (and thus transport 

time and distance) remains the same, while the shipment sizes for the available alternatives 

increase and bring down average cost per tonne. Altogether, this indicates that a coarser 

interval produces lower transport cost overall and for chosen alternatives.  

  (1) 
Original interval,  
all alternatives 

(2) 
Reduced interval,  

all alternatives 

(3) 
Original interval, 

chosen alt. 

(4) 
Reduced interval, 

chosen alt. 

Cost 
(SEK/tonne) 

Mean 4,922 3,437 1,802 1,181 
St. dev 19,693 13,799 15,358 10,829 

 Min  66 66 69 68 

 Max 640,711 561,814 578,559 499,662 

Time (hrs) Mean 30 30 45 44 

 St. dev 98 96 164 161 

 Min  0 0 0 0 

 Max 7,907 1,212 1,212 1,212 

Distance (KM) Mean 1,241 1,240 1,377 1,368 
 St. dev 2,355 2,355 3,836 3,766 

 Min  1 1 1 1 

 Max 26,426 26,426 25,740 25,740 

Observations  8,668,576 2,708,930 78,019 81,022 

Table 10. Cost, time and distance by weight class interval 

We estimate logit models on each set using identical model specifications and compare the 

coefficients. Table 11 shows the results. The coefficients exhibit the same patterns overall, 

although some of the cost coefficients based on the reduced interval have a positive sign.  We 

again perform predictions for the commodity group based on the updated weight class 
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interval. The results are shown in figure 9. The reduced weight class interval overpredicts the 

road transportation. These shipments are very small but predicted as too large. This shows the 

need to keep a more fine-grained weight interval in the logit application 

 Reduced interval Original interval Difference 
(1)-(3) 

Sign (1) = 
Sign (3) 

 (1) (2) (3) (4) (5) (6) 

 Coeff. S.E. Coeff. S.E.   
Chain 1 7.37*** (0.071) 7.91*** (0.072) -0.54 Yes 

Chain 4 3.10*** (0.14) 7.50*** (0.15) -4.4 Yes 

Chain 6 0.32** (0.12) 0.20 (0.12) 0.12 Yes 

Chain 7 4.16*** (0.089) 4.64*** (0.075) -0.48 Yes 

Chain 9 2.07*** (0.082) 4.07*** (0.078) -2 Yes 

Chain 10 0.50*** (0.071) 0.51*** (0.074) -0.01 Yes 

Chain 13 -2.29*** (0.59) -0.78 (0.40) -1.51 Yes 

Size 2   -2.04*** (0.030)   

Size 3   -2.25*** (0.031)   

Size 4   -1.83*** (0.029)   

Size 5   -2.41*** (0.032)   

Weight (10-20t) -2.27*** (0.022)     

Size 6   -3.18*** (0.038)   

Size 7   -2.68*** (0.034)   

Weight (20-40t) -1.14*** (0.016)     

Size 8   -1.82*** (0.031)   

Size 9   -3.52*** (0.041)   

Size 10   -3.48*** (0.040)   

Weight (40-400t) -2.50*** (0.024)     

Size 11   -4.49*** (0.053)   

Size 12   -2.93*** (0.038)   

Size 13   -5.92*** (0.089)   

Size 14   -5.91*** (0.091)   

Weight (+400t) -5.10*** (0.066)     

Size 15   -6.26*** (0.10)   

Size 16   -6.00*** (0.091)   

Chain 1 x cost -0.00094*** (0.000025) -0.0011*** (0.000019) 0.00016 Yes 

Chain 4 x cost 0.00025*** (0.000076) -0.0018*** (0.000053) 0.00205 No 

Chain 7x cost -0.00043*** (0.000088) -0.00064*** (0.000026) 0.00021 Yes 

Chain 9 x cost 0.00094*** (0.000076) -0.0013*** (0.000049) 0.00224 No 

Chain 13 x cost 0.00043 (0.00052) -0.00053* (0.00023) 0.00096 No 

N 663080  663080    
ll -35637.7  -39873.8    
k 16  27    

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001 

Table 11. Coefficient comparison by weight class interval 
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Figure 9. Comparison of weight class interval 

Effect of changing weight used to predict shipment size 

Our prediction of tonnes per transport chain has so far been based on the formula 

 

𝑄̂𝑖(𝑡) =  ∑ ∑ 𝑃𝑖(𝑡, 𝑠) ×

16

𝑠=1

𝑠̅

𝑁

𝑖=1

 

 

where 𝑠̅ is the average weight in interval s, s=1, 2, …, 16.  Here we investigate alternative ways 

a weight class interval is coded as a weight. Specifically, we add a factor F to the formula used 

to predict tonnes levels:  

𝑄̂(𝑡) =  ∑ ∑ 𝑃𝑖(𝑡, 𝑠) ×

16

𝑠=1

(𝑠̅ × 𝐹)

𝑁

𝑖=1

 

We focus on commodity groups 2,3 and 5 since the tonnes were poorly predicted for these 

groups. We set the factor F to obtain more accurate levels. We use a scaling factor of 80 for 

commodity 2, 25 for commodity group 3 and 1/320 for commodity group 5. For example, this 

means that for commodity 2, the predicted weight associated with interval 20-30 kg is rescaled 

from 25 kg to 2000 kg. 

The effect of rescaling the weights are shown in figure 10. The original predictions are shown 

on the left side and the predictions based on the adjusted weight interval on the right side. The 

adjusted predictions show a high degree of consistency with the observed levels. This shows 

that the inaccuracy of the initial predictions for commodity groups 2,3 and 5 is not due to 

incorrect modal shares, these are fairly accurately predicted, but that the shipment sizes are 

poorly predicted.  

This result shows that it is more difficult to predict how much firms will ship than which chain 

they will use. But it is not obvious that the weight class interval used in the analysis is 

inappropriate and should be adjusted since the existing one works well for the other 

commodity groups.   
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Unadjusted predictions Adjusted predictions 

  

  

  

Figure 10. Comparison of original and adjusted predictions by commodity 

Nested Logit Model Results 

The multinomial logit model that was used in the main analysis implies that an improvement 

for one alternative in, say, transport cost, will reduce the probabilities for all the other 

alternative by the same percentage. To be specific, for two options j and k, the ratio of their 

probabilities is  
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𝑃(𝑗)

𝑃(𝑘)
=

𝑒(𝑋𝑗𝜷̂) ∑ 𝑒(𝑋𝑙𝜷̂)
𝑙⁄

𝑒(𝑋𝑘𝜷̂) ∑ 𝑒(𝑋𝑙𝜷̂)
𝒍⁄

=
𝑒(𝑋𝑗𝜷̂)

𝑒(𝑋𝑘𝜷̂)
 

 

The relative probability of choosing j over k does not depend on any other alternatives. The 

nested logit relaxes this assumption and may therefore produce more realistic choice patterns. 

The model partitions the alternatives into nests in a way that i) the ratio of choice probabilities 

within a nest are independent of the attributes or existence of all other alternatives and ii) the 

ratio of choice probabilities for alternatives in different nests depend on the attributes of other 

alternatives in the two nests.  

 

The nested logit model implies that the probability of shipment i is being transported by chain 

t and shipment size s within nest N is given by:  

 
𝑃𝑖𝑁(𝑡, 𝑠) = (𝑃𝑖(𝑡, 𝑠)|𝑁) × 𝑃𝑖(𝑁) 

 

where (𝑃𝑖(𝑡, 𝑠)|𝑁) is the probability of choosing alternative t,s, given that nest N is chosen and 

𝑃𝑖(𝑁) is the probability of choosing an alternative in nest N. Because the nested logit is a 

generalization of the multinomial logit, it will mechanically fit any set of estimation data at 

least as good as the MNL in terms of log-likelihood. However, it need not predict as well as 

the logit model, e.g. in the case of over-fitting the model.   

 

We estimate the nested logit model above and compare the coefficients with the baseline MNL. 

We select to estimate the model on commodity group 14 and estimate the model on all 

observations (as opposed to a 20% sub-sample, like before). We specify one nest for direct road 

transport (using any of the shipment sizes) and another for using multimodal transportation. 

We let the probability of using direct transportation, 𝑃𝑖(𝑁), depend on the ratio of shipment 

value to shipment weight. The probability of using transport chain t,s, given the choice of nest, 

(𝑃𝑖(𝑡, 𝑠)|𝑁), is specified as a function of chain type and size dummies.  

 

Table 13 compares the coefficient estimates from our baseline MNL in column 1 and nested 

logit model in column 2. The coefficients determining the choice of shipment size and chain 

type are almost always of identical sign but vary in size. The nested logit is preferred according 

to the log-likelihood, shown in the bottom panel. But the information criteria, AIC and BIC, 

give inconclusive evidence as to which model is preferred.  

 

Figure 11 shows the observed tonnes and the predicted tonnes by the MNL model and nested 

logit respectively. Neither model is able to predict the large amount of freight moved by chain 

type 9 (truck-vessel-truck), although the coefficient on this constant is positive and sizeable in 

both models. The nested logit does better in predicting the levels transported by chain type 1 

(truck) — it deviates from the observed levels by 36 % compared to the 59 % for the baseline 

MNL. The nested model predicts worse than the baseline MNL for the other two chain types 

(truck-vessel and truck-rail-truck) but the tonnes lifted by these chains are very small and the 

deviations are not significant in terms of absolute levels.  

Overall, this analysis illustrates that a nested logit specification can predict at least as well as 

the baseline MNL. It does come with greater computational requirements and the simplicity 

of the MNL is a strong argument for using it in our analysis. 
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 MNL Nested Difference 
(1)-(3) 

Sign (1) = 
Sign (3) 

(𝑃𝑖(𝑡, 𝑠)|𝑁)  (1) (2) (3) (4) (5) (6) 

 Coeff. S.E. Coeff. S.E.   
Chain 1 21.65 (0.01) 27.87 (0.04) -6,22 Yes 
Chain 4 21.86 (0.00) 22.40 (0.01) -0,54 Yes 
Chain 6 0.0951 (0.00) -3.647 (-0.00) 3,7421 No 
Chain 7 17.74 (0.01) 22.81 (0.03) -5,07 Yes 
Chain 9 20.09 (0.01) 25.89 (0.03) -5,8 Yes 
Chain 10 -0.0102 (-0.00) -4.759 (-0.00) 4,7488 Yes 
Chain 13 0.0387 (0.00) -3.968 (-0.00) 4,0067 No 
Size 2 0.299 (0.55) 0.692 (1.55) -0,393 Yes 
Size 3 0.453 (0.88) 0.682 (1.55) -0,229 Yes 
Size 4 0.545 (1.17) 0.728 (1.76) -0,183 Yes 
Size 5 2.831*** (8.51) 2.527*** (5.08) 0,304 Yes 
Size 6 3.601*** (11.21) 3.052*** (5.24) 0,549 Yes 
Size 7 1.814*** (5.20) 1.735*** (4.14) 0,079 Yes 
Size 8 3.271*** (10.51) 2.755*** (5.01) 0,516 Yes 
Size 9 2.435*** (7.48) 2.075*** (4.47) 0,36 Yes 
Size 10 2.482*** (7.45) 2.089*** (4.44) 0,393 Yes 
Size 11 0.750 (1.68) 0.572 (1.29) 0,178 Yes 
Size 12 -0.957 (-1.23) -0.423 (-0.68) -0,534 Yes 
Size 13 -0.674 (-0.87) -0.852 (-0.92) 0,178 Yes 
Size 14 -1.315 (-1.25) -1.230 (-1.10) -0,085 Yes 

𝑃𝑖(𝑁)        

Value/Weight   0.00225 (0.17)   

𝜏𝑑𝑖𝑟𝑒𝑐𝑡      0.688*** (5.10)   

       

𝜏𝑐ℎ𝑎𝑖𝑛    1.599*** (5.14)   

       

Observations 6140  6140    
Lok-likelihood -511.8  -501.1    
AIC 1063.6  1048.2    
BIC 1198.1  1202.8    

Table 12. MNL and nested logit results 

 

 
Figure 11. MNL and nested logit predictions against observed 
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New cost and time data cost data 

A relevant question is how useful the coefficients produced in the main analysis are if changes 

are made to the process that generates the data. Cost, time and distance for the choice 

alternatives were clearly generated using specific values on the input parameters. Transport 

cost could therefore change if input values are updated or if alterations are made to the LOS-

matrices. The estimated coefficients should ideally predict well even for smaller changes to the 

level of the cost variable.  

We test the robustness of our estimated coefficients to changes in input data in the following 

manner. We first create an alternative cost function that produces alternative-specific transport 

costs that are similar but not identical to those used in the main analysis. We then use the 

estimated coefficients from the main analysis to make two sets of predictions — one based on 

the original cost variable and another based on the alternative cost variable. We end by 

comparing the predictions from the two variable sets against the observed levels. Large 

differences are concerning since it suggests that future changes in variables heavily influence 

the predictive accuracy of the coefficients.  

Our alternative cost function for each alternative is given by  

𝐶𝑜𝑠𝑡𝑡𝑠
𝐴 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑠 × 𝛼𝑡 + 𝑁𝑡𝑠 × 𝛽𝑠 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑠 is equal to the kilometers between origin and destination using chain ts as 

calculated in Samgods.  𝛼𝑡 is a cost-factor for chain t, 𝑁𝑡 is the number of transshipment points 

for the chain and 𝛽𝑠 is the assumed unit cost per transshipment for shipment size s. We set the 

cost-factor 𝛼𝑡 to be the ratio of average cost to average distance for each of the four modes, 

based on the cost that were generated for the main analysis. (These are 3.8 for road, 2.5 for rail, 

3 for sea and 5.8 for air transportation). If more than one mode is used in a chain, the cost-

factor is a weighted average of the mode-specific factors.  This means that a chain that uses all 

modes would have 𝛼𝑡 = (3.8 + 2.5 + 3 + 5.8)/4. We set the unit cost per transshipment 𝛽𝑠 

proportional to the shipment size s by letting it equal 𝛽𝑠 =  40𝑠. This value produces 

alternative costs that are on average similar to the original values.  

We restrict our analysis to commodity group 10. Table 14 shows summary statistics for the 

alternative cost and original cost. Columns 1 and 2 show the statistics for all alternatives.  These 

are indeed relatively similar on average but there is more variation in the original cost set. 

Columns 3 and 4 show the statistics only for alternatives that were chosen in the CFS.  

  (1) 
Original interval,  
all alternatives 

(2) 
Reduced interval,  

all alternatives 

(3) 
Original interval, 

chosen alt. 

(4) 
Reduced interval, 

chosen alt. 

Cost 
(SEK/tonne) 

Mean 8,123 9,685 7,256 15,743 

St. dev 14,467 41,984 13, 954.3 69,967.9 

 Median 9.5 12.6 9.5 13.4 

 Min  3,58 760 2,087 753.6 

 Max 150,657 642,483 113,576 642,483 

Observations  685,330 685,330 68,533 68,533 

Table 13. Cost by weight interval 
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In the next step we apply the coefficients from the main analysis to the alternative cost variable 

to determine whether the prediction differs. Let 𝐶𝑜 be the original cost variable and 𝐶𝐴 the 

alternative cost variable. Using the coefficient estimated in the main analysis, 𝛽 and 𝛾, we now 

make two sets of predictions:  

P𝑂(𝑡, 𝑠) =  
exp(𝛽𝐶𝑂 + 𝛾′𝑥𝑡𝑠)

∑ exp(𝛽𝐶𝑂 + 𝛾′𝑥𝑗)𝑗
 

P𝐴(𝑡, 𝑠) =  
exp(𝛽𝐶𝐴 + 𝛾′𝑥𝑡𝑠)

∑ exp(𝛽𝐶𝐴 + 𝛾′𝑥𝑗)𝑗
 

where the only component that differ between the predictions is the cost variables. As before, 

we predict tonnes by summing over observations and shipment sizes:  

𝑄̂𝑂(𝑡) =  ∑ ∑ 𝑃𝑂(𝑡, 𝑠) ×

16

𝑠=1

𝑠̅

𝑁

𝑖=1

 

𝑄̂𝐴(𝑡) =  ∑ ∑ 𝑃𝐴(𝑡, 𝑠) ×

16

𝑠=1

𝑠̅

𝑁

𝑖=1

 

 

Figure 12 shows the results from the predictions. The blue bar shows the observed tonnes for 

each of the chain types, 𝑄(𝑡), the red bars are the predictions based on the original costs. 

𝑄̂𝑂(𝑡), and the green bars the predictions using the alterantive costs 𝑄̂𝐴(𝑡). For out-of-sample 

observations, the predictions based on alterantive costs are closer to observed levels for chains 

1, 7, 9 and 14 while the predictions using the original costs performs better for the other chains.  

Predictions using the alternative costs are thus not systematically worse (or better) than the 

original, giving some support to the robustness of our estimated coefficients to changes in data 

inputs.   

 

Figure 12. Predictions based on original and alternative cost   
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Conclusions 

As part of the Swedish Transport Administration’s plan to implement a stochastic logistics 

module in the national freight transport model Samgods, the aim of this study has been to 

estimate and evaluate discrete choice models, produce coefficients estimate that can be used 

in the implementation of a stochastic logistics module and analyze how such implementation 

should be conducted.  

Predictive performance 

The mock-deterministic model that for each shipment selects the low-cost option with 

probability one is still very useful when predicting the chain type. It follows the chain 

frequency observed in the CFS very closely, showing that the minimum-cost-principle can 

capture certain mode choice patterns very well.  

On the other hand, the mock-deterministic model predicts choices of shipment sizes that are 

larger than observed. This holds true for virtually all commodity groups. The model is only 

accurate for shipments of coal, petroleum and natural gas where these large sizes actually are 

observed. This feature makes the predicted tonnes per chain by the mock-deterministic model 

very inaccurate.  

When it comes to predicted frequencies of the logit models, we find that in-sample predictions 

are very close to observed levels. This is likely due to the inclusion of constants for chains and 

shipment size, which leads to close to perfect predictions. One concern is that including a large 

set of chain and shipment size constant leads to overfitting. Reassuringly though, the out-of-

sample predictions are also accurate.   

When it comes to predicted tonnes by the logit model, there is a high degree of consistency 

between observed and predicted tonnes for most groups. The predictive performance of our 

baseline model is superior to the mock-deterministic model. This illustrates how a logit-based 

model can outperform all-or-nothing assignment. 

However, predictions are very poor for a few groups (2,3,5, 11 and 13). The difficulties do not 

appear to be caused by a particular chain being used for these groups. The chains observed 

vary across these groups and the same chains are accurately predicted in other groups. Rather, 

it appears that it is the group-chain-combination that is difficult to predict.  

Additional analyses 

We also make a set of additional analyses that test if the suitability of our coefficients depends 

on a range of changes in the procedure used in the main analysis. We show that the inaccuracy 

of predictions for some of the commodity groups can be handled by recoding the implied 

weight of each predicted weight class interval. The adjusted predictions show a high degree 

of consistency with the observed levels. This shows that the inaccuracy of the initial 

predictions is not due to incorrect modal shares but that the shipment sizes are poorly 

predicted for these commodity groups.   

This confirms that it seems to be more difficult to predict how much firms will ship than which 

chain they will use. But it is not obvious that the weight class interval used in the analysis is 



42 
 

inappropriate and should be adjusted since the existing one works well for the other 

commodity groups.  

Reducing the weight class interval from 16 to five categories produces lower transport cost 

overall and for chosen alternatives. Coefficients estimated on the alternative interval are 

similar to those from the original interval, although some have the incorrect sign. Predicted 

tonnes based on the alternative weight class interval overpredicts the levels for road 

transportation severely. This illustrates the benefit of keeping the more fine-grained weight 

class interval in the logit application.  

We show that an expanded choice set that differentiates between container and non-container 

options leads to inclusion of additional alternatives that are similar in terms of transport time 

and distance but have lower transport cost on average. The difference in average costs is 

substantially reduced when we restrict attention to alternatives recorded as chosen in the CFS. 

This suggest that the alternatives included only in the expanded choice set have a relatively 

low probability of being selected anyway. Predictions are improved when using the expanded 

choice set, which is possibly a mechanic effect of using more fine-grained alternatives in 

combination with size- and chain-specific constants.  

We compare our baseline multinomial logit to a nested logit model and show that the 

coefficients are almost always of identical sign but vary in size. The nested logit does slightly 

better in predicting tonnes.  

Finally, we show that our estimated coefficients do not systematically predict worse when 

applied to a set of alternative-specific transport costs that are slightly different than those used 

in the main estimation. The predictions based on alternative cost function are more accurate 

for some chains and less accurate for others, compared to the original predictions. This gives 

some support to the robustness of our estimated coefficients.  

Implications for implementing a stochastic module in Samgods 

We have found that the best model specification includes constants that are specific for chain 

types and for weight classes, transport cost that enters separately for each chain type and a 

general measure of transport time. All coefficients vary across commodity groups. Our main 

output is the set of coefficients that can be used as a basis for the logit-formula in the stochastic 

logistics module. The estimates are provided in Appendix A. Applying these to the 

Commodity Flow Survey gives predictions that overall are in line with the observed 

frequencies and tonnes.  

Our results show that several adjustments may have to be made when applying these 

coefficients in the logistics module of Samgods. In our application, a rescaling of the predicted 

tonnes was needed for some of the commodity groups to achieve better predictions. We varied 

the weight associated with each weight interval and used to observed tonnes as target. An 

alternative approach is to include the logarithm of observed over predicted tonnes of each 

chain in the model specification of the logit model, estimate and predict iteratively until the 

target has been reached. This was the procedure used when a stochastic logistics module was 

developed for two commodity groups in a previous project (Abate et al. 2016).  
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The choice set in our analysis and the proposed stochastic logistics module consists of 14 chain 

types and 16 shipment sizes. Expanding the choice set to differentiate between container and 

non-container option does not seem to include options that are relevant for shippers in the CFS 

anyway. The transport alternative considered in the original choice set thus tends to be more 

relevant for the choice. Prediction accuracy did improve with a more fine-grained choice set, 

which makes it worth to consider alternative dimensions of the choice set. However, the 

benefits of an expanded choice set should be weighed against the increase in work needed for 

implementing and running such logistics module.  

There are several thinkable changes to be made to the dimension of the choice set in the 

stochastic module, not least the way Samgods vehicle types maps to each transport chain and 

which chains and shipment weights to be included. If such changes are made it is possible to 

combine (e.g., by averaging or replacing) the estimated coefficients for different chain types. 

This is particularly relevant for the three chains in the choice set containing ferry 

transportation and for which no coefficients were estimated in this study. These could 

potentially be proxied by the coefficient estimates for vessel transportation — e.g. coefficients 

for chain 8 (truck-ferry-truck) is approximated by those for chain 9 (truck-vessel-truck).    

Our estimated coefficients appear relatively robust to alternative transport cost. Small changes 

to input factors determining these data should therefore not be a concern. This result is partly 

due to the many constants in our model specification which makes the impact of new transport 

cost on choice probabilities smaller. Should larger changes to input factors (and transport 

costs) occur, it is possible to scale the coefficients at a later point to account for the fact that 

variables scale has been changed. The coefficients can be adjusted by scaling each coefficient 

by a factor equal to the average difference between the old and the new variable. If this is not 

sufficient to produce reasonable coefficients, new coefficients could be estimated using the 

new data.  

We have estimated and evaluated discrete choice models for all of the 16 commodity groups 

available in the next version of Samgods. However, it is not obvious that a stochastic module 

is appropriate or needed for all groups. One of the main reasons for using a stochastic module 

is to reduce the occurrences of large changes in the choice of transport solution when an 

underlying choice parameter (e.g. transport cost) is changed. But such consideration is less 

important for commodities for which there is virtually no competition between modes.  

For most commodity groups there is variation in the tonnes shares based on the 14 chains and 

the CFS. Only for commodity group 1 (agriculture and forestry products (excluding round 

wood) and fishing) and 2 (coal, crude petroleum and natural gas) has a single chain more than 

90 percent of the market. Another reason for opting for a deterministic approach for some 

commodities is that the mode choice is difficult to predict using a stochastic approach. The 

results from the main analysis shows that the predicted tonnes for commodities 2, 3, 5, 7 and 

14 are very far from the observed levels. However, we showed that the model predicted shares 

accurately for these groups and the predicted value of shipment weight can be adjusted to 

align the predicted tonnes with the observed levels. Based on this, we conclude that although 

some commodities were harder to predict than others and have limited variation in modal 
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choice, there are issues concerning implementation of a mixed logistics module (i.e. with both 

stochastic and deterministic modelling) that should be given more weight in the decision to 

continue model some commodities deterministically.  

Finally, we find that the nested logit does slightly better in predicting tonnes. Given that the 

nested logit formulation we used was fairly simple and that model fit and performance 

therefore probably can be improved upon, this type of model could also be used in the 

implementation of a stochastic logistics module.  It does come with greater computational 

requirements and the simplicity of the MNL is one argument for using it in implementation 

and future work. 
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Appendix A: MNL Coefficients 
Commodity (1) (2) (3) (4) 

 Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Chain 1 8.90*** (0.41) 3.56*** (1.04) 5.81*** (0.20) 13.9*** (0.41) 

Chain 4     -1.04* (0.51) 10.0*** (1.04) 

Chain 6       1.01 (1.46) 

Chain 7   0.83 (1.24) 0.60*** (0.17) 10.7*** (0.43) 

Chain 8         

Chain 9     2.69*** (0.28) 8.42*** (0.42) 

Chain 10     -4.54*** (1.13) 2.20** (0.71) 

Chain 13   0.61 (0.60) 2.21*** (0.47)   

Chain 14         

Size 2 -1.07*** (0.072)   0.035 (0.32) -1.70*** (0.021) 

Size 3 -0.37*** (0.059)   0.029 (0.31) -2.35*** (0.026) 

Size 4 0.64*** (0.050)   0.50 (0.29) -2.85*** (0.028) 

Size 5 0.52*** (0.052)   0.53 (0.28) -3.69*** (0.031) 

Size 6 -0.100 (0.057)   1.25*** (0.27) -4.75*** (0.039) 

Size 7 -0.10 (0.057)   2.16*** (0.26) -4.91*** (0.041) 

Size 8 0.0045 (0.056)   1.39*** (0.26) -4.78*** (0.041) 

Size 9 -0.23*** (0.058)   1.58*** (0.26) -5.97*** (0.056) 

Size 10 0.39*** (0.052)   1.47*** (0.26) -4.82*** (0.041) 

Size 11 -0.25*** (0.057) 1.95* (0.81) 1.23*** (0.26) -6.09*** (0.058) 

Size 12 -3.09*** (0.16)   1.93*** (0.26) -7.00*** (0.084) 

Size 13 -4.91*** (0.38)   -1.52*** (0.42) -9.54*** (0.22) 

Size 14 -5.77*** (0.55)   -2.71*** (0.64) -10.8*** (0.40) 

Size 15 -6.87*** (1.00)   -2.53*** (0.57) -11.9*** (0.60) 

Size 16 -6.18*** (0.71) 5.19*** (0.77) 1.97*** (0.26) -10.7*** (0.40) 

Chain 1 x 
cost 

    -0.0041*** (0.00025) -0.0019*** (0.000040) 

Chain 4 x 
cost 

      -0.0022*** (0.00027) 

Chain 6 x 
cost 

    -0.0023*** (0.00046) -0.00015 (0.00019) 

Chain 7x 
cost 

      -0.0040*** (0.00018) 

Chain 8 x 
cost 

    -0.0017** (0.00055)   

Chain 9 x 
cost 

      -0.0015*** (0.000077) 

Chain 10 x 
cost 

      -
0.0000022 

(0.0000035) 

Chain 13 x 
cost 

        

Cost   -0.0050*** (0.00
13) 

-0.0025 (0.0015)   

Time         

Com. 1  2  3  4  

Obs 146,340  840  19,100  1,618,860  

LL -12013.1  -33.5  -2237.2  -53433.1  

Parameters 16  6  25  27  

Standard errors in parentheses: * p < 0.05, ** p < 0.01, *** p < 0.001 
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Commmodity 5  6  7  8  

 Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Chain 1 17.2*** (1.51) 7.61*** (0.14) 7.30*** (0.20) 8.42*** (0.28) 

Chain 4 10.7*** (1.47) 6.36*** (0.30)   4.12*** (0.34) 

Chain 6   -0.42 (0.29)   0.30 (0.43) 

Chain 7   4.18*** (0.15)   5.05*** (0.32) 
Chain 9 11.8*** (1.40) 4.59*** (0.15)   5.82*** (0.27) 

Chain 10 8.98*** (1.37) 0.60*** (0.16)   2.15*** (0.28) 

Chain 13   -0.75 (0.96)   1.68* (0.78) 

Size 1 10.3*** (0.45)       

Size 2   -1.78*** (0.052) 0.93** (0.33) -1.81*** (0.076) 

Size 3   -1.83*** (0.053) 1.03** (0.32) -2.20*** (0.083) 

Size 4   -1.53*** (0.049) 1.76*** (0.28) -2.35*** (0.086) 

Size 5   -2.05*** (0.055) 1.76*** (0.28) -3.18*** (0.10) 

Size 6   -2.57*** (0.064) 1.88*** (0.28) -3.59*** (0.11) 

Size 7   -2.27*** (0.058) 7.13*** (0.25) -2.67*** (0.095) 

Size 8   -1.49*** (0.052) -0.49 (0.45) -3.35*** (0.11) 

Size 9   -2.99*** (0.071) -2.07** (0.75) -4.58*** (0.15) 

Size 10   -2.91*** (0.070) -2.41** (0.75) -4.38*** (0.14) 

Size 11   -3.99*** (0.094) -3.23*** (0.84) -3.78*** (0.12) 

Size 12   -2.69*** (0.067) -3.90*** (1.09) -5.13*** (0.17) 

Size 13   -5.39*** (0.17) -3.61*** (1.08) -7.87*** (0.52) 

Size 14   -5.83*** (0.20) -1.81** (0.56) -8.63*** (0.72) 

Size 15   -6.06*** (0.21) 3.38*** (0.26) -7.29*** (0.39) 

Size 16   -5.87*** (0.20)   -7.69*** (0.51) 

Chain 1 x cost -0.0013*** (0.00012) -0.0012*** (0.000036) -0.0031*** (0.00029) -0.00086*** (0.000043) 
Chain 4 x cost -0.00069** (0.00024) -0.0014*** (0.00011)   -0.00093*** (0.00014) 
Chain 7x cost   -0.00059*** (0.000054)   -0.00084*** (0.00011) 
Chain 9 x cost   -0.00099*** (0.000068)   -0.0010*** (0.000075) 
Chain 13 x 
cost 

  -0.00081 (0.00077)   -0.00096 (0.00054) 

Obs 111,254  154,600  225,480  79,150  

LL -331.2  -12414.6  -1471.2  -4927.6  
Parameters 7  27  16  27  

Standard errors in parentheses: * p < 0.05, ** p < 0.01, *** p < 0.001 
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Com. 9  10  11  12  

 Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Chain 1 9.87*** (0.74) 5.46*** (0.085) 9.28*** (0.71) 11.0*** (1.01) 

Chain 4   0.76*** (0.15) 6.46*** (0.71) 8.51*** (1.08) 

Chain 6   0.52* (0.25) 1.62* (0.80)   

Chain 7 4.19*** (0.89) 3.72*** (0.10) 2.19** (0.76) 7.30*** (1.11) 

Chain 9 5.54*** (0.74) 2.37*** (0.082) 6.21*** (0.71) 8.84*** (1.00) 

Chain 10 0.31 (0.41) -0.20** (0.062) 7.62*** (0.71) 6.19*** (1.02) 

Chain 13   1.35 (1.18) 1.84 (1.23) 8.72** (2.79) 

Size 2 -0.83*** (0.10) -1.29*** (0.045) -0.37*** (0.033) -1.04*** (0.065) 

Size 3 -0.75*** (0.10) -1.57*** (0.048) -0.68*** (0.036) -0.98*** (0.068) 

Size 4 -0.19* (0.092) -1.87*** (0.052) -1.45*** (0.049) -1.53*** (0.074) 

Size 5 -0.30** (0.095) -2.33*** (0.058) -2.41*** (0.074) -2.04*** (0.083) 

Size 6 -0.46*** (0.10) -2.65*** (0.064) -3.44*** (0.11) -2.65*** (0.092) 

Size 7 -0.21* (0.095) -2.70*** (0.065) -3.81*** (0.14) -2.99*** (0.10) 

Size 8 -0.78*** (0.11) -2.10*** (0.057) -4.98*** (0.25) -3.43*** (0.12) 

Size 9 -1.39*** (0.12) -4.09*** (0.10) -6.45*** (0.50) -6.43*** (0.33) 

Size 10 -1.23*** (0.11) -4.14*** (0.10) -7.83*** (1.00) -7.19*** (0.46) 

Size 11 -1.76*** (0.13) -5.19*** (0.15)   -3.98*** (0.13) 

Size 12 -2.09*** (0.15) -3.50*** (0.084)   -6.50*** (0.32) 

Size 13 -5.57*** (0.59) -6.74*** (0.31)   -7.33*** (0.46) 

Size 14 -6.72*** (1.01) -7.17*** (0.36)   -7.12*** (0.42) 

Size 15 -6.65*** (1.01) -7.86*** (0.50)   -9.04*** (1.01) 
Size 16 -4.40*** (0.34) -6.16*** (0.23)   -7.94*** (0.59) 

Chain 1 x cost -0.00074*** (0.00013) -0.00073*** (0.000028)   -0.00063*** (0.000045) 
Chain 4 x cost   -0.00070*** (0.000087)   -0.00063*** (0.000093) 
Chain 6 x cost   -0.00042*** (0.000080)     
Chain 7x cost -0.00070 (0.00054) -0.0012*** (0.000067)   -0.0031*** (0.00068) 
Chain 9 x cost   -0.00037*** (0.000027)   -0.00045*** (0.000027) 
Chain 10 x cost       -0.0000048** (0.0000016) 
Chain 13 x cost   -0.0042** (0.0015)   -0.0027 (0.0015) 

Obs 50,140  137,790  215,130  80,560  

LL -3589.8  -11113.9  -21773  -5649.2  

Parameters 21  28  16  27  

Standard errors in parentheses: * p < 0.05, ** p < 0.01, *** p < 0.001 
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Com. 13  14  15 16  

 Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Chain 1 5.55*** (0.12) 7.17*** (1.11) 7.94*** (0.12) 9.30*** (0.29) 

Chain 6         

Chain 7   2.56 (2.90)     

Chain 9 2.67*** (0.13)       

Chain 10 2.11*** (0.13)     3.43*** (0.23) 

Chain 13         

Size 1       10.6*** (0.40) 

Size 2 0.32*** (0.059) 0.68 (1.19) 1.36*** (0.17) 8.05*** (0.40) 

Size 3 -0.14* (0.066) 0.45 (1.19) 1.09*** (0.20) 7.65*** (0.40) 

Size 4 -0.86*** (0.083) -0.85 (1.70) 1.63*** (0.21) 6.56*** (0.40) 

Size 5 -1.95*** (0.12) 3.11*** (0.71) 2.43*** (0.20) 4.75*** (0.42) 

Size 6 -3.65*** (0.24) 2.99*** (0.69) 2.38*** (0.20) 4.12*** (0.44) 

Size 7 -4.28*** (0.34) 1.21 (0.78) 2.49*** (0.21) 3.73*** (0.45) 

Size 8 -2.18*** (0.14) 2.96*** (0.65) 2.45*** (0.21) 3.73*** (0.43) 

Size 9 -5.13*** (0.51) 1.89** (0.72) 1.71*** (0.21)   

Size 10 -4.20*** (0.34) 2.50*** (0.69) 2.65*** (0.21)   

Size 11   0.63 (0.97) 3.25*** (0.21)   

Size 12 -6.61*** (1.00)   2.20*** (0.21)   

Size 13 -5.79*** (0.71)   -1.65*** (0.25)   

Size 14     -2.73*** (0.31)   

Size 15   -0.97 (1.32) -3.74*** (0.41)   

Size 16   -0.92 (1.26) -1.12*** (0.24)   

Chain 1 x cost   -0.0051*** (0.0011) -0.0035*** (0.00031) -0.0017*** (0.000067) 
Chain 7 x cost   -0.0041 (0.0048)     
Time       -0.085*** (0.019) 

Obs 57,320  1,320  406,390  113,010  

LL -4250  -113.3  -24463.8  -3004.4  

Parameters 14  16  17  12  

Standard errors in parentheses: * p < 0.05, ** p < 0.01, *** p < 0.001 
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Appendix B: Correspondence key 
Shortlist chaintypes to Samgods chaintypes 

SHORTLIST CHAINTYPE  SAMGODS CHAINTYPES 

NO. Description Sub-ModeNr Description 

1 Truck 

A Heavy lorry 

B Light Lorry 

C Light Lorry 

c Extra heavy lorry 

2 Vessel 

J Direct Sea 

KL Feeder vessel-Long-Haul vessel 

LK Long-Haul vessel-Feeder vessel 

M Direct Sea 

3 Rail  

GH Feeder train-Wagonload train 

Gh Feeder train-Long wagonload train 

GHG Feeder train-Wagonload train-Feeder train 

HG Wagonload train-Feeder train 

hG Long wagonload train-Feeder train 

I System train 

i Long system train 

T System train 

U System train 

f Long Wagonload train 

4 Truck-Vessel 

AJ Heavy lorry-Direct Sea 

AKL Heavy lorry-Feeder vessel-Long-Haul vessel 

AV Heavy lorry-IWW 

CM Heavy lorry-Direct Sea 

JA Direct Sea-Heavy lorry 

LKA Long-Haul vessel-Feeder vessel-Heavy lorry 

MC Direct Sea-Heavy lorry 

VA IWW-Heavy lorry 

WB IWW-Light Lorry 

5 Rail-Vessel 

GHM Feeder train-Wagonload train-Direct Sea 

GHMI Feeder train-Wagonload train-Direct Sea-System train 

GHMT Feeder train-Wagonload train-Direct Sea-System train 

GHMU Feeder train-Wagonload train-Direct Sea-System train 

IM System train-Direct Sea 

iM Long system train-Direct Sea 

IMHG System train-Direct Sea-Wagonload train-Feeder train 

MHG Direct Sea-Wagonload train-Feeder train 

MI Direct Sea-Long system train 

MT Direct Sea-Long system train 

MU Direct Sea-Long system train 

TM System train-Direct Sea 

TMGH System train-Direct Sea-Feeder train-Wagonload train 
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UM System train-Direct Sea 

UMGH System train-Direct Sea-Feeder train-Wagonload train 

HM Wagonload train-Direct Sea 

MH Direct Sea-Wagonload train 

6 Truck-Truck-Truck 

BS Light Lorry-Consolidated heavy lorry 

BSB Light Lorry-Consolidated heavy lorry-Light Lorry 

SB Consolidated heavy lorry-Light Lorry 

cB Extra heavy lorry-Light Lorry 

cS Extra heavy lorry-Consolidated heavy lorry 

cC Extra heavy lorry-Heavy lorry 

Bc Light Lorry-Extra heavy lorry 

XA Extra heavy lorry-Heavy lorry 

AX Heavy lorry-Extra heavy lorry 

7 Truck-Rail-Truck 

ADA Heavy lorry-Kombi train-Heavy lorry 

AdA Heavy lorry-Long kombi train-Heavy lorry 

CGH Heavy lorry-Feeder train-Wagonload train 

CGHC Heavy lorry-Feeder train-Wagonload train-Heavy lorry 

CH Heavy lorry-Wagonload train 

Ch Heavy lorry-Long wagonload train 

ch Extra heavy lorry-Long wagonload train 

ChC Heavy lorry-Long wagonload train-Heavy lorry 

CHG Heavy lorry-Wagonload train-Feeder train 

CHGC Heavy lorry-Wagonload train-Feeder train-Heavy lorry 

GHC Feeder train-Wagonload train-Heavy lorry 

HC Wagonload train-Heavy lorry 

hC Long wagonload train-Heavy lorry 

hc Long wagonload train-Extra heavy lorry 

HGC Wagonload train-Feeder train-Heavy lorry 

XdX Extra heavy lorry-Kombi train-Extra heavy lorry 

cH Extra heavy lorry-Wagonload train 

XF Extra heavy lorry-Wagonload train 

8 Truck-Ferry-Truck 
APA Heavy lorry-Road Ferry-Heavy lorry 

CPC Heavy lorry-Road Ferry-Heavy lorry 

9 Truck-Vessel-Truck 

AJA Heavy lorry-Direct Sea-Heavy lorry 

AVA Heavy lorry-IWW-Heavy lorry 

CMC Heavy lorry-Direct Sea-Heavy lorry 

CWC Heavy lorry-IWW-Heavy lorry 

cWc Extra heavy lorry-IWW-Extra heavy lorry 

10 Truck-Air-Truck 

BR Light Lorry-Plane 

BRB Light Lorry-Plane-Light Lorry 

RB Plane-Light Lorry 

11 Truck-Ferry-Rail-Truck HQH Wagonload train-Rail Ferry-Wagonload train 

12 Truck-Rail-Ferry-truck GHQH Feeder train-Wagonload train-Rail Ferry-Wagonload train 

13 Truck-Vessel-Rail-Truck 
AJDA Heavy lorry-Direct Sea-Kombi train-Heavy lorry 

CMI Heavy lorry-Direct Sea-System train 
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CMT Heavy lorry-Direct Sea-System train 

CMU Heavy lorry-Direct Sea-System train 

LKDA Long-Haul vessel-Feeder vessel-Kombi train-Heavy lorry 

MHGC Direct Sea-Wagonload train-Feeder train-Heavy lorry 

AJdX Heavy lorry-Direct Sea-Kombi train-Extra heavy lorry 

14 Truck-Rail-Vessel-Truck 

ADJA Heavy lorry-Kombi train-Direct Sea-Heavy lorry 

ADJDA Heavy lorry-Kombi train-Direct Sea-Kombi train-Heavy lorry 

ADKL Heavy lorry-Kombi train-Feeder vessel-Long-Haul vessel 

CGHM Heavy lorry-Feeder train-Wagonload train-Direct Sea 

CUM Heavy lorry-System train-Direct Sea 

IMC System train-Direct Sea-Heavy lorry 

TMC System train-Direct Sea-Heavy lorry 

UMC System train-Direct Sea-Heavy lorry 

XdJA Extra heavy lorry-Kombi train-Direct Sea-Heavy lorry 

CHM Heavy lorry-Wagonload train-Direct Sea 
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Appendix C: Commodity groups 
 

Code Name NST 2007 

01 
Products of agriculture, hunting, and forestry; fish and other fishing 
products. Not timber 

01 excl. timber 

02 Coal and lignite; crude petroleum and natural gas 02 

03 Metal ores and other mining and quarrying products; peat 03 

04 Food products, beverages and tobacco 04 

05 Textiles and textile products; leather and leather products 05 

06 
Wood and products of wood and cork (except furniture); pulp, 
paper and paper products; printed matter and recorded media 

06 

07 Coke and refined petroleum products 07 

08 
Chemicals, chemical products, and man-made fibers; rubber and 
plastic products; nuclear fuel 

08 

09 Other non metallic mineral products 09 

10 
Basic metals; fabricated metal products, except machinery and 
equipment 

10 

11 
Machinery and equipment; medical, precision and optical 
instruments 

11 

12 Transport equipment 12 

13 Furniture; other manufactured goods 13 

14 Secondary raw materials; municipal wastes and other wastes 14 

15 Timber 01, part of 

16 Air freight (fractions of some of the commodity groups) … 
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