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ABSTRACT 
 

Today, many maintenance programs in the industrial 
sector rely on condition-based maintenance (CBM). This 
type of program helps improve  maintenance tasks because 
machines or equipment are continuously monitored. 
Condition-based maintenance recommends maintenance 
decisions based on information collected through condition 
monitoring. It consists of three main steps: data acquisition, 
data processing and maintenance decision-making.  
 
Prognostics is a key feature of today’s maintenance 

strategies; it prevents inopportune maintenance spending, 
because with prognostics, we can estimate the remaining 
useful life (RUL) and minimise maintenance tasks. 
  
Real prognostic systems are scarce in industry. For one 
thing, it is difficult to choose an efficient technology, as 
there are many possible approaches: model based, data 
driven and experience based. The applicability of each is 
dependent on industrial constraints. Thus, the general 
purpose of the present work is to review the various 
techniques of prognosis for different industrial assets.  It 
investigates each approach to determine which techniques 
are applicable to different assets (rotating machines, 
esructutas and complex systems). Finally, it compares the 
approachs and their respective techniques in a table. 
 

Keywords: Condition-based maintenance (CBM), Prognosis, 
Remaining useful life (RUL), Maintenance. 
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In t roduc t ion                            1                              

 

1.1. Background. 
The maintenance of all types of assets is increasingly 

important in both the industrial and the scientific sectors. 
Industries want to improve their maintenance techniques in 
order to increase the lifetime of their equipment. All 
equipment deteriorates over time, as it operates under a 
certain voltage or load in the real environment, thus 
generating maintenance activities more often. 

Maintenance activity combines various methods, tools and 
techniques in a bit to reduce maintenance costs while 
increasing reliability, availability and security of equipment 
[2]. The most common types of maintenance are corrective 
maintenance (also called unplanned maintenance, or run-to-
failure maintenance), which takes place only at breakdowns. 
Time-based preventive maintenance (also called planned 
maintenance) sets a periodic interval to perform preventive 
maintenance regardless of the health status of a physical 
asset. With the rapid development of modern technology, 
products have become increasingly complex while better 
quality and higher reliability are required. This raises the 
cost of preventive maintenance. Preventive maintenance has 
become a major expense of many industrial companies [3]. 
Therefore, many are now implementing condition-based 
maintenance (CBM). CBM is designed to avoid unnecessary 
maintenance tasks. Techniques for monitoring condition 
include: 
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� Temperature Control: use of contact thermometers, 
infrared, thermographic; 

� Dynamic Monitoring: control the energy emitted by 
mechanical equipment, such as Vibration Analysis, etc.; 

� Analysis of Oils: test the quality of any type of oil, 
whatever its function, i.e. lubricating oils, hydraulic 
oils, insulating oils; 

� Performance Supervision: compare nominal data to real 
time flows, pressures, times, temperatures, voltage. 

A very important element of the maintenance strategy is 
called prognostics. Prognostics is of great interest to both 
industry and research centres as it can significantly improve 
the efficiency of a CBM program. Prognostics basically tries 
to predict how much time remains before a fault or failure 
will occur, given the current situation of the asset and the 
operation. In other words, prognostics is based on predicting 
the remaining useful life (RUL) of a system before a failure 
occurs. 

This topic is of great interest since with prognostics, 
industries can potentially reduce the costs of both preventive 
and corrective maintenance. If they can predict when a 
machine or asset may fail, they will be able to prevent or 
limit maintenance activities.  

Prognostics is mainly based on mathematical models for 
predicting the remaining useful life. These models are built 
using one of four approaches: experience based, data based, 
model based and hybrid methodology (discussed later) 
Figure 1 illustrates the hierarchy of possible approaches in 
relation to their applicability and relative costs. 

 



3 | P a g e  
 

  

Figure 1. Hierarchy of Prognostics Approaches. [13] 

A typical example in the application of prognostics is the use 
of models for modelling fatigue initiation and propagation of 
cracks in structural components. In this case, a model-based 
approach would be appropriate. Other examples include the 
study of the estimation of RUL for bridge structures using a 
system based on experience or a study of vibrations in 
rotating machines using a data-driven approach. The various 
approaches and their application in indusry will be explained 
in more detail in the following chapters. 

1.2. Research Goal. 

The objective of this work is to compare the different 
techniques and models used to estimate the remaining useful 
life (RUL) of different assets. It seeks to determine if a 
technique used in an asset in a particular area may be also 
used in other assets. It conductes a review of the relevent 
literature on prognostics techniques their use in the industrial 
sphere. 
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Indus t r ia l  Main tenance                 2                  
 

2.1. History of Industrial Maintenance. 

Since the industrial revolution, maintenance has gone 
through a number of different stages. At the beginning of the 
industrial revolution, the workers were responsible for the 
repair of equipment. As machines became more complex 
and the amount of repair work increased, the first 
maintenance departments, distinct from production 
departments, were established. Tasks in both eras were 
basically remedial, with efforts devoted to addressing 
failures. 

The concept of reliability appeared in the 20th century after 
the end of World War II. Maintenance departments now 
sought not only to fix the faults but to prevent them. This 
involvee creating a new figure in maintenance departments: 
staff whose purpose was to study what maintenance should 
be performed to avoid failures. With the advent of the 
computer age, maintenance changed again, with the 
introduction of new techonolgies. For example, Reliability 
Based Maintenance (RCM) is based on the analysis of 
failure modes and the application of statistical techniques 
and detection technology. It is basically a philosophy of 
technology maintenance. Total Productive Maintenance 
(TPM) is another recent concept; it refers to tasks normally 
performed by maintenance personnel that are now performed 
by production workers [4]. Finally, condition based 
maintenance (CBM) is a widely used concept which we will 
discuss later [5]. 
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Clearly, maintenance techniques have evolved. Not all 
maintenance models apply to all companies. Some models 
interact; others do not.  But all have been adapted to new 
uses in industry.  Today, the specific needs of each team and 
each industry will determine the most appropriate 
maintenance model to optimise resources and needs.  

2.2. Types of Maintenance. 

2.2.1. Corrective Maintenance. 

Corrective maintenance is used to repair damage that 
has already occurred. Usually, when this type of 
maintenance is performed, the manufacturing process is 
stopped, decreasing production and increasing costs. Repair 
time cannot be predicted, nor can the expenses resulting 
from the breakdown and consequent disturbances on the 
production line. 

Therefore, corrective maintenance is applied on assets with 
low criticality, whose faults do not involve large temporal or 
economic problems. It is often used for specific equipment 
where other techniques would be more costly. 
 
2.2.2. Preventive Maintenance. 

Preventative maintenance is planned in a time horizon 
and aims to prevent breakdowns. Unlike corrective 
maintenance, because it is planned, it is not done during 
production time. 

The intention of this type of maintenance is to reduce the 
number of corrective interventions, performing periodic 
reviews and replacing worn components. 
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It is a demanding type of maintenance, as it requires strict 
supervision and development of a plan to be carried out by 
qualified personnel. In addition, as it involves routine tasks, 
personnel may not be motivated. Furthermore, if it is not 
done correctly, there will be a cost overrun with no 
significant improvements in productivity.  

2.2.3. Predictive Maintenance. 

As its name suggests, predictive maintenance is done 
before faults appear. It requires the application of tools or 
techniques to detect certain measurable elements prior to 
failure, such as wear. The goal is to do the right maintenance 
at the right time. Predictive maintenance uses technology 
based on indicators to measure the variables that allow the 
machine to operate; it also requires personnel trained in the 
interpretation of the data[1]. 

2.3. Condition-Based Maintenance (CBM). 

Condition-based maintenance (CBM) aims to 
determine the condition of equipment, so that operation 
remains safe, efficient and economic. Monitoring techniques 
are aimed at measuring physical variables which indicate the 
condition of the machine and to compare these with normal 
values to determine if they are in good condition or are 
deteriorating. CBM assumes there are measurable and 
observable characteristics that are indicators of the condition 
of the machine. 

Condition monitoring studies the evolution of selected time-
dependent parameters; it identifies trends indicating the 
existence of a fault, its severity and the likely time to failure. 
Timely decision-making avoids the occurrence of faults and 
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eliminates the possibility of catastrophic failure. CBM can 
be performed while the machine is running [6]. 

CBM consists of three key steps (see Figure 2): 
 

1. Data acquisition (information collecting) to obtain 
data relevant to system health. 

 
2. Data processing (information handling) to handle and 

analyse the data or signals collected in step 1 for 
better understanding and interpretation of the data. 

 
3. Maintenance decision-making (decision-making), to   

recommend efficient maintenance policies. 
 
 
 
 
 
  

 
Figure 2. Three Steps in CBM. 

 

2.3.1. Steps to Implement CBM. 

2.3.1.1. Data Acquisition. 

Data acquisition is a process of collecting and storing 
useful data (information) from targeted physical assets for 
the purpose of CBM. This is an essential step in 
implementing a CBM program for machinery faults (or 
failure, usually caused by one or more faults). Data 
collected in a CBM program can be categorised into two 

Data 
Acquisition 

Data 
Processing  

Maintenance 
decision 
making 
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main types: event data and condition monitoring data. Event 
data include information on what happened (e.g., 
installation, breakdown, overhaul, etc., along with the 
causes) and/or what was done (e.g., minor repair, preventive 
maintenance, oil change, etc.) to the targeted physical asset. 
Condition monitoring data are measurements related to the 
health condition/state of the physical asset. These are very 
versatile and can include vibration, acoustic, oil analysis, 
temperature, pressure, moisture, humidity, weather or 
environment data, etc. 

 
2.3.1.2. Data Processing. 

Data processing consists of two stages. The first is 
data cleansing; this step is important because usually the 
data are entered manually. This leads to frequent errors, 
requiring data cleansing to increase the probability that the 
data are clean (no errors). The second step is the analysis of 
the data. There are a variety of models, algorithms and tools 
for analysis; selection depends on the types of data collected. 
 
2.3.1.3. Maintenance Decision Support.  

The last step of a CBM program is maintenance 
decision-making. Sufficient and efficient decision support is 
crucial for determining maintenance actions. Techniques for 
maintenance decision support in a CBM program can be 
divided into two main categories: diagnostics and 
prognostics. Fault diagnostics focuses on detection, isolation 
and identification of faults when they occur. Prognostics 
attempts to predict faults or failures before they occur. 
Obviously, prognostics is superior to diagnostics in the sense 
that prognostics can either prevent faults or failures, or be 
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ready (with spare parts and human resources) for the 
problems, thus reducing the costs of unplanned maintenance. 
Nevertheless, prognostics cannot completely replace 
diagnostics since, in practice, there are always some faults 
and failures which are not predictable. In addition, 
prognostics, like any other prediction technique, cannot be 
100% accurate. In the case of unsuccessful prediction, 
diagnostics can be a complementary tool for maintenance 
decision-making. Diagnostics are also helpful for improving 
prognostics; diagnostic information can result in more 
accurate event data, and a better CBM model can be built for 
prognostics. Furthermore, diagnostic information can be 
used as feedback information for system redesign. 

The techniques listed above are used today to assist in 
making decisions on when and how to do maintenance on a 
machine or asset class to improve the planning of 
maintenance and reduce the cost [3] . 
 

2.3.2. Types of CBM. 

There are two ways to implement CBM: first, timely 
diagnosis (offline) and monitoring (online); second, 
diagnosis with guarantees of operation. The first requires 
rigorous planning; a specific program is carried out in a 
timely manner on each piece of equipment or machinery to 
be monitored, a history is established, and the necessary 
corrections are made. The second introduces diagnostic 
equipment for continuous condition monitoring. This means 
that while machines and equipment are functioning all 
parameters can be observed in real time [6]. 
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2.3.3 Techniques Applied in the CBM. 

A range of techniques have been developed for CMB, 
as described below. 

2.3.3.1. Vibration Monitoring: 

Vibration monitoring techniques can be used to detect 
fatigue, wear, imbalance, misalignment, loosened 
assemblies, turbulence, etc. in systems with rotational or 
reciprocating parts, such as bearings, gear boxes, shafts, 
pumps, motors, engines and turbines. The operation of such 
mechanical systems releases energy in the form of vibration 
with frequency components which can be traced to specific 
parts in the system. The amplitude of each distinct vibration 
component will remain constant unless there is a change in 
the operating dynamics of the system. 

Vibration can be characterised in terms of three parameters: 
amplitude, velocity and acceleration. The sensitivity of 
senors used for measuring these parameters varies with the 
frequency of the vibration. The general selection guideline is 
to use amplitude senors to pick up low frequency signals, 
velocity senors in the middle ranges, and accelerometers at 
higher frequencies. In one form of vibration monitoring, 
readings of the overall vibration energy between 10 to 
10,000Hz are taken from selected points on a machine. 
These data are compared to baseline readings taken from a 
new machine. Alarm limits are established on the basis of 
the baseline readings. A fault diagnosis will be triggered 
when a reading exceeds its alarm limit. Alternatively, 
vibration readings are compared to vibration severity charts 
to determine the relative condition of the machine. This 
approach is known as broadband vibration trending, and it 
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monitors only the overall machine conditions. The common 
microprocessor-based instrumentation for this procedure 
monitors the rootmean-square (RMS) level of the vibration. 

In the narrowband trending technique, the total energy 
across a specific bandwidth of vibration frequencies is 
tracked to monitor the health condition of specific machine 
components or failure modes. The process of scanning 
vibration signals across a bandwidth captures vibration data 
in the time domain. Such data can be transformed into the 
frequency domain so that the vibration at each frequency 
component can be measured. The frequency plot providing a 
visual representation of each frequency component 
generated by a machine is called the machine’s vibration 

signature. When the vibration signatures of a machine at 
different times are arranged in chronological order and 
shown in a cascading manner on a three-dimensional plot, a 
waterfall plot of the machine is formed. Anomalies in the 
machine’s condition can be easily detected by noting that the 
vibration signatures have changed with time. 

2.3.3.2. Thermography: 

Thermography uses instrumentation designed to 
measure emissions of infrared energy to determine the 
operating condition of plant machinery. Anomalies of 
thermal conditions, such as equipment being hotter or colder 
than it should be, are taken as alarm signals of potential 
problems within the system. Thermographic techniques are 
most appropriate to detect problems found in systems which 
rely on heat transfer or retention.  

Infrared thermometers are designed to measure the surface 
temperature at a single point on a machine surface. They can 
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be used to monitor the temperature of critical parts of plant 
machinery, such as bearing caps and motor windings, and to 
spot check process piping systems. When the infrared 
emission profile of a large area needs to be scanned within a 
short period of time, infrared imaging is the applicable 
technique. The imaging system functions much like a video 
camera, and the thermal profile of the observed area can be 
viewed through the instrument’s optics. 

The measurement of infrared emissions is very sensitive to 
variations of ambient conditions, such as the amount of 
airborne particles. Therefore, extra care must be taken to 
compensate for the effect of such factors when capturing 
thethermal data. 

2.3.3.3 Tribology: 

Tribology is the field of study relating to the interface 
between sliding surfaces. Three tribology techniques are 
used in condition-based maintenance: lubricating oil 
analysis, wear particle analysis and ferrography. These 
techniques are relatively slow and expensive because the 
analysis requires the use of laboratory facilities such as 
spectrometers and scanning electron microscopes (SEM). In 
lubricating oil analysis, samples of lubricating, hydraulic, 
and dielectric oils are analysed at regular intervals to 
determine if they still meet the lubricating requirements of 
their application. When the oil condition reaches an 
unacceptable state, it will be replaced to maintain 
satisfactory system operation. Results of the analysis may 
also form the basis for decisions to change the type of oil to 
improve performance or reduce variety. Lubricating oil 
analysis involves the use of spectrographic techniques to 
analyse the elements contained in the oil sample. However, 
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it must be supplemented with other diagnostic procedures to 
identify the specific failure mode which may have caused 
the observed degradation of the oil. 

Wear particle analysis provides direct information about the 
wearing condition of the machine. This information is 
derived from the study of particle shape, composition, size 
and quantity. There are two basic types of wear particle 
analysis. In the first type, the solids content of the machine 
lubricant, the quantity, size, and composition of particulate 
matter in the lubricating oil, is routinely monitored to detect 
changes over time. In the second, particulate matters in each 
lubricating oil sample are analysed to identify the type of 
wear (rubbing wear, cutting wear, rolling fatigue, combined 
rolling and sliding wear, or severe sliding wear) found in the 
sample. Wear particle analysis using spectrographic 
techniques is limited to the study of particulate matters with 
a size not exceeding 10mm [7]. 

2.3.4. Advantages and Disadvantages of CBM. 

2.3.4.1. Advantages:  

� Reduces outages due to failures and breakdowns. 
� Reduces maintenance costs by allowing achieve maximum 

life cycle of equipment and machinery, with no 
unnecessary parts required.  

� Substantially increases indicator reliability of equipment 
and machinery.  

� Reduces stress caused by constant emergencies.  

2.3.4.2. Disadvantages:  

� High initial cost of implementing this system. 
� High initial cost of equipment and diagnostic tools. 
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� Specialised personnel required to operate equipment and 
instruments. 

� Constant training required in techniques of interpretation 
and diagnosis[6]. 

2.3.5. Typical Degradation Process of Equipment. 

Following a period of normal operation when an item 
has been running smoothly, a change may occur that affects 
its performance. The earliest time to detect the degradation 
is called the P-point, or potential failure point, as after this 
time, the item can potentially fail at any time. This change 
occurs gradually, or rapidly in some cases, and worsens to 
the point where the equipment cannot reliably and safely do 
its job. At this stage, the item has functionally failed, i.e. it is 
not delivering its required performance. This is called the 
functional failure point or F-point. If the item continues to 
operate, the part will fail and work will cease (see Figure 3) 
[8]. 

 

 

 

 

Figure 3. Degradation Process Experienced By Equipment. 
Time (from hours to months) 
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2.4. Prognostics. 

Maintenance activity combines various methods, tools 
and techniques to reduce maintenance costs while increasing 
reliability, availability and security of equipments. We 
usually speak about fault detection, failure diagnostics, 
response development (choice of management actions, i.e. 
preventive and/or corrective) and scheduling actions. 
Briefly, these steps correspond to the need, first, to 
"perceive" phenomena, second, to "understand" them, and 
third, to "act" correctly. However, rather than understanding 
a phenomenon which appears as a failure (a posteriori), it 
may be convenient to "anticipate" its manifestation to 
quickly resort to protective actions. This could be defined as 
the "prognostic process" [2]. 

Prognostics is a very promising maintenance activity as it 
should permit plants to improve safety, plan and schedule 
successful maintenance, and reduce maintenance cost and 
down time [9]. 

2.4.1. Concept of Prognostics. 

Prognostics is an engineering discipline focused on 
predicting the time at which a system or a component will no 
longer perform its intended function. This lack of 
performance is most often a failure beyond which the system 
can no longer be used to meet its desired goals. Thus, the 
predicted time becomes the Remaining Useful Life (RUL) of 
the component, an important concept in decision-making for 
contingency mitigation. Prognostics predicts future 
performance by assessing the extent of deviation or 
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degradation of a system from its expected normal operating 
conditions. The science of prognostics is based on the 
analysis of failure modes, detection of early signs of wear 
and aging, and fault conditions. These signs are correlated in 
a damage propagation model. Prognostics can potentially be 
used in condition-based maintenance [10]. 

Prognostics should be based on assessment criteria; its limits 
depend on the system itself and on performance objectives. 
Prognostics can be split into two sub-activities: first, to 
predict the evolution of a situation at a given time; second, 

to assess this predicted situation using an evaluation 
referential [11] (see Figure 4). 

 
Figure 4. Prognostics as a Prediction and Assessment 

Process. [11] 

2.4.2. Remaining Useful Life (RUL). 
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A main concept of prognostics is the RUL, the output 
generated by a prognostic algorithm describing the 
distribution in time of likely equipment failure times. Figure 
5 illustrates the key concepts of a RUL. At time tP , a 
prediction is made and an estimate of the RUL is generated. 
Once the RUL has been generated, the next question is when 
to carry out corrective maintenance. Ideally, the time chosen 
for maintenance action will avoid equipment failure and 
maximise the useful life of the equipment. However, these 
are conicting requirements and, as a consequence, selecting 
when to perform maintenance is typically an exercise in risk 
management. 
 
 
 
 
 
 
 
 

 

 

Figure 5. The Remaining Useful Life. [14] 

To develop the requirements for a prognostic algorithm, the 
maximum allowable probability of failure (PoF) must be 
considered. This value defines the maximum acceptable 
level of risk of equipment failure, beyond which equipment 
can no longer be operated as the risk of equipment failure is 



20 | P a g e  
 

deemed excessive. Using the defined maximum allowable 
PoF and the estimated RUL, an important value known as 
the just-in time-point (JITP) can be identified. The JITP 
defines the latest point in time before which corrective 
maintenance actions must be carried out to avoid operating 
equipment beyond the maximum allowable PoF.  

In a real-life applications, selecting the maximum allowable 
PoF usually requires the consideration of a number of 
factors, including safety, criticality and economic concerns. 
In certain scenarios, where safety considerations are 
primary, the requirement might be to avoid as many in-
service failures as possible; thus, a conservative value for the 
maximum allowable PoF might be chosen. Alternatively, a 
plant operator may accept a higher maximum allowable PoF 
value in situations where maximising the useful life of 
expensive equipment/components might be more 
economical than avoiding an occasional failure. An example 
of such a scenario might be the use of a diamond headed 
cutting tool. 

In Figure 5, a maximum allowable PoF value of 5% is 
assumed for illustrative purposes. Once the JITP has been 
identified, he lead-time interval (LTI). Can be computed. 
The LTI is defined as the time interval between the time the  

prediction is generated, tP , and the JITP tJITP , so that[15] 

        

                    (2.1) 

 

Another way to estimate the RUL is as follows: 

tptt JITPLTI ��
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                   ),(, tZt
T
tT ��                             (2.2) 

where T denotes the random variable of time to failure, t is 
the current age and Z(t) is the past condition profile up to the 
current time. Since RUL is a random variable, the 
distribution of RUL would be of interest to fully understand 
the RUL. In the literature, ‘‘remaining useful life estimate” 

(RULE) has two possible meanings. In some cases, it means 
finding the distribution of RUL. In other cases, it simply 
means the expectation of RUL [3]: 
 

                    ��
�

�	

 �� ),(, tZt

T
tTE                       (2.3) 

 
2.4.3. Technical Approaches. 

Technical approaches to building forecasting models 
can be classified broadly into data-based approaches and 
model-based approaches. 

2.4.3.1. Model-Based Approaches. 

Model-based prognostics attempts to incorporate 
physical understanding (physical models) of the system into 
the estimation of the RUL. Modelling can be accomplished 
at different levels, for example, micro and macro levels. At 
the micro level (also called material level), physical models 
are based on a series of dynamic equations that define 
relationships at a given time or load cycle, between damage 
(or degradation) of a system/component and environmental 
and operational conditions under which the 
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system/component are operated. The micro-level models are 
often called damage propagation models. 

Macro-level models are mathematical models at the system 
level; they define the relationship among system input 
variables, system state variables, and system measures 
variables/outputs. The model is often a somewhat simplified 
representation of the system, for example, a lumped 
parameter model [12]. 

Generally, model-based methods assume an accurate 
mathematical model can be constructed from first principles. 
These methods often use residuals as features; the residuals 
are the outcomes of consistency checks between the sensed 
measurements of a real system and the outputs of a 
mathematical model. The premise is that the residuals are 
large in the presence of malfunctions, and small in the 
presence of normal disturbances, noise and modelling errors 
[2]. 
 

 Advantages and Drawbacks. 

The main advantage of model-based approaches is 
their ability to incorporate physical understanding of the 
monitored system. In addition, in many situations, the 
changes in feature vectors are closely related to model 
parameters. and a functional mapping between the drifting 
parameters and the selected prognostic features can be 
established. Moreover, if the understanding of the system 
degradation improves, the models can be adapted to increase 
its accuracy and address subtle performance problems. 
Consequently, they can significantly outperform data-driven 
approaches (see next section). But this closed relation with a 
mathematical model may also be a weakness: it can be 
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difficult, even impossible to catch the system's behaviour. 
Further, some authors think the monitoring and prognostic 
tools must evolve as the system does [14]. 

Figure 6 shows a schematic representation of physical-based 
prognostics (model-based approach). 

Figure 6. Physics-Based Modelling Approach.[14] 

2.4.3.2. Data-Driven Approaches. 

In many situations, the complexity of the systems 
under observation makes it impossible to derive robust and 
accurate models which can be used for prognostic purposes. 
However, historical data which capture the signal behaviour 
of measured signals or extracted features from the incipient 
fault stage to equipment failure are often available. In such 
cases, data-driven methods which model how such signals 
and features evolve can be utilised to generate predictions of 
the RUL. 
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Data-driven prognostic approaches typically adopt one of 
two strategies. The first is a two-stage process. Appropriate 
dimensionality reduction, feature extraction, or pattern 
matching techniques are employed to map system signals or 
features onto a single dimension damage, degradation, or 
health index. Technically, this first step falls under the realm 
of fault diagnostics since it is concerned with posterior event 
analysis. Once the current level of degradation is identified, 
it is extrapolated into the future until a predefined critical 
threshold limit is exceeded. A range of techniques can be 
applied in both steps. The second strategy is to directly 
model the relationship between monitored signals or 
features, and the remaining life of the system. In this 
situation, the remaining life of the system is the output 
generated by the models.  
 
The next section presents a brief overview of some data-
based techniques which have been applied to prognostic 
problems.  

Time Series Approaches: The simplest data-driven 
approaches to prognostics rely on projection methods which 
project the current level of degradation into the future. This 
task is essentially a time series prediction problem and 
within the realm of prognostics has been addressed by a 
variety of approaches, including autoregressive models and 
exponential smoothing techniques. 

The autoregressive integrated moving average model 
(ARIMA) is part of a general class of linear models that 
have historically seen wide use in modelling and forecasting 
time series. Unsurprisingly, such approaches have also been 
applied to prognostic problems which are similar, in many 
respects, to forecasting problems. ARIMA models are 
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derived from the more common autoregressive moving 
average (ARMA) model which models a time series using 
two parts, an autoregressive (AR) part and a moving average 
(MA) part. However, since ARMA models can only be used 
to model stationary processes, ARIMA models are often 
employed, as these can be used to model non-stationary time 
series signals. Examples of ARIMA models applied to 
prognostic problems can be found in[15]. 

Artificial Neural Networks: Perhaps the most common data-
driven technique applied to prognostic problems is an 
artificial neural network (ANN). ANNs model relationships 
between input and output variables with a model structure 
inspired by the neural structure of the brain. The network 
weights and biases, which define the interconnections 
between the neurons, are adapted during a training process 
to maximise the fit between the input and output data on 
which the models are trained. ANNs have been applied in a 
number of ways in prognostics. Their most common use is in 
time series prediction, where the current degradation state is 
predicted into the future until it exceeds a threshold value. 
Typically, in a feed-forward ANN, previous values of the 
degradation index are used as the inputs to generate a one 
step ahead prediction. The generated output is then fed back 
as an input to the next iteration, to generate long-term 
predictions. ANNs can also employed to estimate the current 
degradation index, using system features as inputs. The 
degradation index can then be predicted into the future using 
ANNs again, or via alternative prediction methods. A 
dynamic wavelet neural network (DWNN) is used to predict 
the fault propagation process into the future and estimate the 
RUL. The first ANN used, the WNN, is a static feed-forward 
neural network used to derive a static relationship between 
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inputs and ouputs. The second ANN used, the DWNN, is a 
recurrent neural network (RNN), which incorporates 
feedback within the network structure to predict the time 
series evolution. ANNs have also been used to directly 
model the relationship between system features and the 
RUL. ANNs learn by example and, as such, require 
sufficient instances of historical failure examples for 
training, and are typically data hungry. As a result, ANNs 
can generate poor prediction performance when future 
failure examples on which they have not been trained do not 
exhibit behaviour similar to the examples in the training set. 

While the intrinsic ability of GPR and RVM to generate 
confidence limits on generated predictions makes such 
approaches attractive, ANN approaches, in general, do not 
provide confidence limits associated with predictions. The 
availability of confidence limits associated with RUL 
predictions are highly desirable and provide a means for 
uncertainty management.  

Other data-based techniques which have been applied to 
prognostic problems include hidden Markov models and 
Neuro-Fuzzy networks [17], but in many situations, the 
complexity of the systems under observation makes it 
impossible to derive robust and accurate models for 
prognostic purposes. 

 

 Advantages of Data-Driven Approaches. 

� Relatively simple to implement and faster: 

� Variety of generic data-mining and machine learning 
techniques are available. 
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� Help gain understanding of physical behaviours from 
large amounts of data: 

� These represent facts about what actually happened 
which may not be apparent from theory. 

 Disadvantages of Data-Driven Approaches. 

� Physical cause-effect relationships are not used: 

� e.g. different fault growth regimes, effects of 
overloads or changing environmental conditions. 

� Difficult to balance between generalisation and learning 
specific trends in data: 

� Learning what happened to several units on average 
may not be good enough to predict for a specific unit 
under test. 

� Require large amounts of data. 

� We never know if we have enough data or even how 
much is enough. 

2.4.3.3. Experienced-Based Prognostics. 

If a physical model of a subsystem or component is 
absent and there is an insufficient sensor network to assess 
the condition, an experienced-based prognostic model may 
be the only alternative. This model is the least complex and 
requires the failure history or “by-design” recommendations 

of the component under similar operation. Typically, failure 
and/or inspection data are compiled from legacy systems and 
a Weibull distribution or other statistical distribution is fitted 
to the data. An example of these types of distributions is 
given in Figure 7. Although simplistic, an experienced-based 
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prognostic distribution can be used to drive interval-based 
maintenance practices that can be updated at regular 
intervals. An example may be the maintenance scheduling 
for a low criticality component with few or no sensed 
parameters. In this case, the prognosis of when the 
component will fail or degrade to an unacceptable condition 
must be based solely on analysis of past experience or OEM 
recommendations. Depending on the maintenance 
complexity and criticality associated with the component, 
the prognostics system may be set up for a maintenance 
interval (i.e. replace every 1000+/-20 Effective Operating 
Hrs) and updated as more data become available. Having an 
automated maintenance database is important for the 
application of experience-based prognostics [14]. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Experienced-Based Approach. 
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The simplest prognostic approaches rely on the collection of 
statistical information which examines historical failure rates 
of systems or components. Such data can be used to develop 
life-usage models showing distributions of failure rates over 
time. Such approaches are helpful in the development of 
preventative maintenance schedules in which maintenance is 
performed on the basis of mean time between failures 
(MBTF), as derived from life-usage models. However, such 
approaches lack predictive capability and, as such, cannot be 
described as truly predictive prognostic techniques. At the 
same time, they have wide applicability in systems or 
components with low criticality or cost or in situations 
where sensor data which can be used to infer condition are 
not available [15]. 

2.4.3.4. Hybrid approaches. 

The hybrid approach attempts to harness the power of 
both data-based approaches and model-based approaches. In 
fact, we rarely see a case where only one model is used. 
Hybrid approaches can be classified into two types, pre-
estimate and post-estimate fusion. 

Pre-estimate fusion is usually applied when there are no data 
on the ground. This can occur in situations where the 
diagnosis does a good job detecting faults before a system 
failure occurs; as a result, there is almost no information on 
failure. But for maintenance, it is always useful to know 
when a system will make better use of the remaining useful 
life while avoiding unscheduled maintenance (usually more 
costly). Pre-estimate fusion can also be done by a process 
outside the combined online process line: This requires the 
use of a simulation model based on physics to understand 
the relationships of sensor responses to error states in the 



30 | P a g e  
 

online mode. First, data can be used to identify the current 
status of the damage. The data can be then tracked to 
determine the spread of damage. Finally a propagation 
model based on individual data for remaining life prediction 
can be applied. 

Post-estimate fusion can be used to reduce the uncertainty 
ranges of approaches based on data or models while 
improving accuracy. The underlying notion is that multiple 
sources of information can improve the performance of an 
estimator. This principle has been successfully applied in the 
context of the fusion classifier; the output of multiple 
classifiers is used to achieve a better result than any single 
classifier. In the context of forecasts, fusion can be 
performed by assigning quality assessments to individual 
estimates based on a variety of inputs, e.g., heuristics, 
performance known a priori, horizon prediction, and 
robustness of the prediction [18]. 

 Advantages of Hybrid Approach 

� Does not necessarily require high fidelity models or large 
volumes of data: works in a complementary fashion. 

� Retains intuitiveness of a model but explains observed 
data. 

� Helps in uncertainty management. 

� Flexible. 

 Disadvantages. 

� Needs both data and models.  

� An incorrect model or noisy data may bias the approach. 
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Figure 8 shows a sample of hybrid approaches to prognosis; 
here, the estimation of the RUL equation requires I Tando-
based data such as those data used in model-based 
approaches. 

 
Figure 8. Hybrid approaches. [19] 

 

2.4.3.5. Approaches and Prognostics Techniques. 

The following diagram illustrates the approaches 
and their respective techniques used in prognostics. 
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Diagram 1. Approaches to and Techniques of Prognostics. 

PROGNOSTICS 

Model Based 
Approaches 

Data Driven 
Approaches Experienced-Based 

Approaches 

� Particle 
Filtering. 

� Physics- based  
fatigue models. 

� ARMA, 
ARMAX, and 
ARIMA 
Methods. 

� Linear Regression. 
� Artificial Neural 

Networks. 
� Fuzzy Logic 

Systems. 
� Gaussian Process 

Regression. 
� Relevance vector 

machines (RVM).

� Bayesian Probability Theory.
� The Weibull Model: 

Analysis of Time to 
Failure. 

� HMM. 

Hybrid Approaches 



33 | P a g e  
 

C o n d i t i o n  M on i t or i n g  a n d  Pr o gn o s t ic s  3 
T ec hn i qu e s   

This chapter introduces the procedure used to 
implement prognostics in a particular asset to estimate the 
remaining useful life (RUL), and explains the prognostics 
techniques used for the estimation.  

3.1. Implementing Prognostics. 

Figure 9 shows the steps used to estimate the 
remaining useful life (RUL) of an asset. The steps are 
explained in more detail in the following subsections. 

 

 

 

 

 

 

 

Figure 9. Implementing Prognostics. 

3.1.1. Data Acquisition and Data-Processing 

3.1.1.1. Data Acquisition: 

Diagnostics & Prognostics 
� Prediction. 
� Classification (Health) 

Decision support 
� Dynamic scheduling 

of maintenance tasks 

RUL 

Acquisition 
� Vibration 
� Temperature 
� Voltage 
� Oil viscosity 
� Etc. 

Pre- Processing 
 

� Filtering. 
� Feature extraction. 
� Feature selection 
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Once the machine or asset has been selected for 
analysis, depending on the type of asset, we must select the 
most appropriate monitoring technique. , Possible techniques 
include vibration analysis, thermography, tribology, oil 
analysis etc. This will enable the collection of data on the 
physical variables (temperature, vibration , viscosity, 
voltage, acoustic waves etc.) to be analysed to estimate 
useful life. 

Data are collected using sensors placed on specific points on 
the assets; the types of sensors represent the dependent 
variable and can be analysed. 

Vibration sensors: 

� Displacement transducers or contact (how vibrates, 
distance); 

�  Speed sensors (speed of vibration); 

� Laser vibrometer; 

� Accelerometers (relationship between internal forces); 

� Force transducer. 
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Temperature sensors: 

� Mechanical: 
� Expansion of liquid bulb thermometer; 
� Expansion of solids: prints bimetallic. 

 
� Electrical: 

 
� Thermoelectric effect: thermocouples; 
� Variation of resistance; 
� Metals: resistance thermometers; 
� Semiconductors, thermistors. 
� Sound sensors: 

Figure 10. Physical Variables. 

Domain Examples 

Thermal Temperature (ranges, cycles, gradients, ramp rates), heat 
flux, head dissipation. 

Electrical 
Voltage, current, resistance, inductance, capacitance, 
dielectric constant, charge, polarisation, electric field, 
frequency, power, impedance 

Mechanical 
Length, area, volume, acceleration, mass flow, force, 
torque, stress, density, stiffness, angular, direction, 
vibration. 

Chemical Chemical, species concentration, gradient, reactivity, 
mess, molecular weight. 

Humidity Relative humidity, absolute humidity. 

Optical 
Intensity, phase, wavelength, polarisation, reflectance, 
transmittance, refractive index, distance, vibration, 
amplitude and frequency. 

Magnetic Magnetic, field, flux density, magnetic, moment, 
permeability, direction, distance, position, flow 
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3.1.1.2. Data-Processing: 

 
Once the data are collected from the monitoring 

techniques, we must filter the data, because most of the time, 
the data are contaminated by the environment where the 
asset is used. This contamination can be, for example, noise 
signals. These alter the collected data causing erroneous 
results. 

In addition to filtering, the following must be done. 

 Feature extraction: 

� Extract patterns from raw signals. 
� Compute numeric or symbolic information from the 

observations: build features. 
� Use techniques from signal/image processing, data-

mining, statistics, etc. 

Feature selection: 

� Reduce dimensionality. 
� Use techniques from data-mining, statistics, machine 

learning, genetic algorithms, etc. [19]. 
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Ffigure 11 shows a example of feature extraction from a 
vibration signal. 

 

Figure 11. Feature Extraction From a Vibration Signal. [19] 
 
 

3.1.2. Diagnostics & Prognostics. 
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3.1.2.1. Diagnostics. 
 

After the data are monitored, analysed  and processed, 
we proceed to make a diagnosis of the asset under analysis. 
The goal of diagnosis is to determine the state of the asset’s 

health to identify whether an asset is failing or not operating 
correctly. The algorithms’ fault diagnosis are designed to 
detect system performance, control levels of degradation, 
and identify failures (faults) based on changes in physical 
properties, through detectable phenomena. Such systems 
also identify the subsystem or component which is failing, 
and the specific mechanism of failure that has occurred [15]. 

After making the diagnosis and determining the health of the 
asset mostmaintainers want to know when stop using it; this 
requires an estimation of  the RUL which is always done 
after the diagnosis. 

Note: This work does not explain data processing techniques 
in depth as this is beyond the present scope of analysis. 

 
3.1.2.2.  Prognostics to Estimate the RUL: 

As noted above, prognostics can be used to estimate 
the remaining useful life (RUL). The approach can be 
model-based, data-driven, or experience-based approaches. 
A hybrid approach fuses elements of the others. Each can be 
implemented using the techniques shown in Diagram 1. 
These will be explained later. 

 
3.1.3. Decision Support. 
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After estimating the remaining useful life of the asset or the 
analysed systems, a series of decisions must be made, 
depending on the type of asset or system. For example, we 
must decide whether to perform maintenance activities and 
whether to intervene in the system to perform those 
activities. Clearly, such decisions are very important to save 
costs. Hence, a good estimate of RUL is crucial. Should a 
maintenance activity be performed now, or can we wait for 
the date given by the RUL?  

industry. 
The procedure to implement prognostics is shown in Figure 
12. 

Figure 12. Implemeting prognostics. 

1. Sensor Module : provides system access to digitized sensor or transducer data 
2. Signal Processing: performs signal transformations and CBM feature extraction 
3. Condition Monitor: compares features against expected values and generates alerts 
4. Diagnostic Processing : generates a diagnostic record (fault conditions and 

confidences) 
5. Prognostic Processing: projects the current health state into the future and estimates 
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3.2. Prognostics Techniques. 

As explained above, prognistics is based on three 
types of approaches, alonf with an approach fusing two of 
the three. The techniques used by these approaches to 
estimate the remaining useful life of an asset or system are 
explained below. 

3.2.1. Techniques of Model-Based Approaches. 

3.2.1.1.Particle Filtering for Prognostics. 

One way to estimate the remaining useful life (RUL) of 
a component failure or degrading system is to use a 
Bayesian technique. This technique uses a dynamic state 
model and a measurement model to predict the density 
function posterior probability of the state, i.e., to predict the 
time evolution of a fault.  

A particulate filter is a recursive Bayesian estimation 
technique and  is used to avoid the assumption of linearity 
and Gaussian noise. Kalman filtering provides a solid 
framework for long term prognosis. A methodology for 
accurate and precise prediction, it presents a failing 
component on the basis of particle filtering strategies. We 
use fatigue failure as an example here. 

Prediction of the evolution of a fault or fault indicator entails 
large-grain uncertainty. Accurate and precise prognosis of 
the time to failure of a failing component/subsystem must 
consider critical-state variables such as crack length, 
corrosion pitting, etc. as random variables with associated 
probability distribution vectors. Once the probability 
distribution of the failure is estimated, other important 
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prognosis attributes such as confidence intervals can be 
computed.  

A possible solution to the prognosis problem is the use of 
recursive Bayesian estimation techniques that combine both 
the information from fault-growth models and online data 
obtained from sensors monitoring key fault parameters 
(observations). Prognosis or long-term prediction for failure 
evolution is based on both an accurate estimation of the 
current state and a model describing the fault progression. If 
the incipient failure is detected and isolated at the early 
stages of the fault initiation, it is reasonable to assume that 
sensor data will be available for a certain time window, 
allowing corrective measures to be taken. Thus, there will be 
improvements in model parameter estimates so that 
prognosis will provide accurate and precise prediction of the 
time to failure. At the end of the observation window, the 
prediction outcome is passed on to the user (operator, 
maintainer); additional adjustments are not feasible because 
corrective action must be taken to avoid a catastrophic event. 

Figure 13 depicts a conceptual schematic of a particle-
filtering framework aimed at addressing the fault prognosis 
problem. CBM sensors and the feature-extraction module 
provide the sequential observation (or measurement) data of 
the fault growth process Zk at time instant k. We assume the 
fault progression can be explained through the state-
evolution model and the measurement model: 

)|(),( 11 �� �� kkkkkk XXpXfX 
     (3.1)          

)|(),( kkkkkk XZpXhZ �� �       (3.2)                                     

where: 
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� Xk is the state of the fault dimension (such as crack size) 
�  : is the state transition function 

(possibly nonlinear) which describes the evolution of the 
system state, where nx and n! are the dimensions of the 
state and process noise vectors respectively. 

� :  is the measurement/observation 
function which describes the sequence of measurements 
Zk collected at successive time steps tk. 

� is an independent identically distributed 
(i.i.d.) process noise sequence of known distribution. 

�  is an i.i.d. measurement noise sequence of 
known distribution. 

 
The first part is state estimation, that is, estimating the 
current fault dimension as well as other important changing 
parameters in the environment. The second part is long-term 
prediction based on the current estimate of the fault 
dimension and the fault growth model with parameters 
refined in the posteriori state estimation. A novel recursive 
integration process based on both importance sampling and 
PDF approximation through Kernel functions is then applied 
to generate state predictions from (k+1) to (k + p) as the 
following: 
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Long-term predictions can be used to estimate the 
probability of failure in a process, given a hazard zone 
defined by its lower and upper bounds (Hlb and Hup, 



43 | P a g e  
 

respectively). The prognosis confidence interval, as well as 
the expected time to failure (TTF), can be deduced from the 
TTF PDF as: 

TTF

N

i
up

i

lbTTF wHTTFxHTTFP �
� �

�
�

�
�
� ���

1

)(
Pr)(   (3.5)                                

The procedure described in Sections 3.3 and 3.4 form the 
basis for the determination of the optimal Bayesian solution. 
However, the recursive computation of the posterior state 
PDF is more conceptual than practical and, in general, 
cannot be determined analytically. In a restricted set of 
cases, such as when using linear Gaussian state space 
models, the optimal solution leads to the well-known 
Kalman filter (mentioned above). However, in the presence 
of a nonlinear process model and/or non-Gaussian noise 
processes, an alternative approach must be considered. A 
common approach is to use particle filtering methods, which 
approximate the optimal Bayesian solution.  

 

Figure 13.  Fault Prognosis Based on Particle Filtering. 
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3.2.1.2.  Physics-Based  Fatigue Models. 

Physical models quantitatively characterise the 
behaviour of a failure mode using physical laws. This means 
we must have deep knowledge about the behaviour of the 
system being studied. Physical models  perform an estimate 
of the remaining useful life of an asset or system by solving 
equations or a deterministic set of equations derived from 
empirical data collected in the data acquisition. Some of 
these data are obtained using common scientific and 
engineering knowledge, while others are collected through 
specific laboratory or field experimentation. 

Physical models for the estimation of the remaining useful 
life of a particular system must identify one or more specific 
parameters of the system (e.g., exact physical properties, 
corrosion rates, equation constants). These models are 
generally described in two ways: first, using dynamic 
Lagrangian or Hamiltonian dynamic ordinary differential or 
partial equations (approximation methods applied to partial 
differential equations, distributed models and other 
techniques); second, using methods of state space (i.e., no 
differential equations) and resolved accordingly[22]. Once a 
physical model is available, the sensor measurements are 
compared to actual process model outputs. The difference 
between reality and the model is called waste; large residuals 
are assumed to indicate a fault while small residues occur in 
normal conditions, noise and modelling errors. The residuals 
are calculated using parameter estimation, state-space 
methods or parity equations .[23] 

Remaining useful life estimates are based on projecting 
degradation behaviours into expected future operating 
conditions. To construct a physics of failure model, the 
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following features and associated levels of certainty must be 
characterised:  

� Set of likely initiating failure modes for which 
behavioural models are required.  

� Process behaviour across possible/typical operating 
ranges.  

� Degradation behaviour under aforementioned process 
conditions.  

� Relationship between process measurements and 
degradation behaviour(s). 

� Process and measurement noise.[24] 

Generally, failure mechanisms by which physical models 
have been developed include fatigue, overload failure, 
corrosion and ductile to brittle transitions. When discussing 
effects, failure mechanisms can be divided into two 
categories. The first can be considered failures upon effort. 
These occur when the load exceeds the material strength; 
these is no long term effect once the load has been removed. 
Examples include brittle fracture, ductile fracture, and 
buckling performance. The second category is failures; these 
are characterised by irreversible, cumulative damage that 
does not disappear when the load is removed, such as 
fatigue, corrosion, stress corrosion cracking, wear and creep. 
Once the mechanism allowed for the particular damage 
tolerance is exhausted, the normal operating loads will 
exceed the strength the asset has left and a failure will occur 
upon effort [25]. 

In a physical forecasting model, if we want to implement the 
failure modes, we must be able to track the damage and its 
rate of progression under any or all conditions of operation. 
However, when talking about failures upon effort, we only 
need to monitor the current state to determine the immediate 
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risk of failure. Similarly, a stochastic analysis of force and 
distributed load must be carried out [26]. In practice, when 
discussing behaviour, forecasting applies only when we have 
identified the relevant failures. The main advantage of this 
group of models is the ability to incorporate the current 
understanding of the physical mechanisms of failure; in 
many cases, this has been the subject of extensive and 
exhaustive empirical testing. Crack propagation models, of 
clear interest to prognosis, include deterministic and 
stochastic models. Growth of fatigue cracks in the 
components of typical equipment, such as bearings, gears, 
shafts and aircraft wings, is affected by a variety of factors, 
including the states of stress, material properties, 
temperature, lubrication and other environmental effects. A 
variation of empirical and deterministic models can model 
fatigue crack propagation based on Paris 's formula [22]. 
Fatigue crack growth can be expressed as:  

                               
nKC

dn
d )(0 ��
�

               (3.6)                               

where: 

 : Instantaneous length of dominant crack. 

N : Running cycles. 

 : Material dependent constants. 

: Range of stress-intensity factor over one loading cycle.  

  where: is a stress intensity factor, 
Y(α)  is related  to crack geometry, Δs is the stress 
range. 

Growth models of stochastic cracks consider all parameters 
as random quantities. Thus, the resulting equation is a 



47 | P a g e  
 

growth stochastic differential equation. Here, to estimate the 
distribution parameters, we use Monte Carlo simulations, 
probabilistic neural networks, and others [22]. 

3.2.1.3. ARMA, ARMAX, and ARIMA Methods. 

Parameter estimation prognosis is another model 
possibility when the physics-based process model is 
unavailable or too complicated for implementation. In such 
cases, some of the system identification procedures must be 
used. Based on the knowledge about the system, a model 
structure and complexity can be proposed. System 
identification reduces the estimation of the unknown model 
parameters vector using the observed input and output 
sequences. 

As explained at greater length below, autoregressive moving 
average models or ARMA (p, q) capture the entire process 
when a simple model AR (p) or MA (q) cannot.  
Autoregressive integrated moving average models or 
ARIMA  (p, d, q) solve the problem where the test range is 
not stationary due to the existence of a trend. Finally, 
multiplicative seasonal ARIMA models  (p, d, q) x (p, d, Q)s 
solve the problem where the test range is not stationary due 
to the existence of a seasonality and / or a trend. 

 Autoregressive Moving Average Models or ARMA 
(p, q). 

An autoregressive moving average model combines 
the two basic models AR (p) and MA (q) to model partially 
and partially autoregressive series of moving averages. 
These combined models are abbreviated by the acronym 
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ARMA (p, q), where p is the order of the autoregressive part 
and q is the order of moving average. 

The general expression for an autoregressive moving 
average model ARMA (p,q) is: 

������� ���������� ������ qtqtttptpttt aaaaYYYY ...... 22112211  (3.7)                    
As the model is a combination of the two basic models, the 
value of the series Yt is a linear combination of the most 
recent disturbance q and p’s most recent observations. 

 Autoregressive Integrated Moving Average Models 
or ARIMA (p, d, q). 

A time series (Yt) follows an autoregressive integrated 
moving average model if the tenth differentiation (where d is 
an integer) s a stationary ARMA process. If 
(Wt) follows an ARMA (p, q), we can say that (Yt) is an 
ARIMA process (p, d, q). For practical purposes, we usually 
use a d of 1 or 2. 

The differential equation of the form of an integrated 
moving average ARMA (p, d, q) autoregressive model is:
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(3.8) 

 Multiplicative Seasonal ARIMA Models (p, d, q) x 
(p, d, q)s. 
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A time series (Yt) is a multiplicative seasonal ARIMA 
model with no seasonal orders (regular) p, d and q, seasonal 
orders P, D and Q, and a seasonal period s if the series 
differentiated  satisfies an ARMA model (p, 
q) x (P, Q)s with seasonal period s. Thus, (Yt) process is an 
ARIMA (p, d, q) x (P, D, Q)s with seasonal period s. 

In its most general form the ARIMA model (p, d, q) x (P, D, 
Q) s can be written as: 
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                                                                                  (3.9) 

This expression defines which is the most generic of the 
family forming the ARIMA model; all the others are special 
cases of it. 
 
When we want to do prognostics using the ARIMA model 
we must take into account the need to understand the 
equation that defines the delay model to a set in t + l, where l 
is the moment we want to predict. As can be seen, no delay 
is actually calculated, and if the time t is considered 
"current", the predicted time is at a distance l  in the future. 
 
The formula to predict the value of the variable for a 
moment l for a general ARIMA (p, d, q) x (P, D, Q)s is 
given as: 

                                                                    (3.10)                                      
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Importantly, the following aspects of prognostics follow this 
formulation: 

� Prognostics values are calculated sequentially. To enable 
the implementation of the autoregressive part of a model 
in periods other than the first prediction, the predicted 
value is taken in the immediately preceding . 

� All known random perturbations in the sample period are 
considered to have the character of white noise in 
prognostics periods. 

� By the necessary condition of being at the optimal 
predictor (the expected value of the series in the period of 
prognostics is equal to that predicted, if optimal), random 
perturbations used in the prediction are those of previous 
periods, i.e. : 

                     0��� ja jt                      (3.11) 

Thus, in the prognostics period, random perturbations will 
have no effect. To make subsequent predictions Yt (l) we 
must have values for at, at-1, ... t + lq, calculated as: 

       0)(ˆ ���� ���� jlYYa ljtjtjt         (3.12)                                 

� ARIMA prognostics are adaptive and the results obtained 
for (t +l), with the information available at time t, are the 
same as those obtained for the same period taking as 
baseline information to t-1, and adding a term error [22]. 
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3.2.2. Data Driven Approaches. 

3.2.2.1.  Linear Regression. 

This subsection provides an overview of the concepts 
and techniques associated with regression analysis. 
Regression analysis uses the existing data and determines 
the relationships, if any, between the measurable outcome 
and the variables contributing to that outcome (e.g. life 
expectancy is the outcome and exercise and diet are the 
variables contributing to that outcome.) Neter et al. [27] 
present a framework for the statistical relation in order to 
predict machine remnant life. Their general linear regression 
model is given by 

niXXXY jpipiii ,...2,1,... 1,12,21,10 ������� ��  !!!!     
(3.13)               

where Yi is a random variable denoting the value of the ith 
trial's response, bo,b1,b2, are estimated parameters X1,I , 
Xi,2,…Xi,p-1 are the values of the prediction, or contributing 
variables, and  is the random error with mean = 0, variance 
=  , and covariance = 0. Regression analysis seeks to 
estimate the parameters of the regression function, 

in order to find a representative model by 
using the method of least squares. This method defines a 
variable Q where 

            

2
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1
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(3.14) 
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and attempts to find estimates for denoted by 
bo, b1, b2…., bp-1, which minimise Q for the observations (X1, 
Y1), (X2, Y2), …( Xn, Yn). The simultaneous solution to the 
equations formed by taking the derivative of Q with respect 
to , provides the least squares estimates, bo, b1, 
b2…., bp-1,. Least squares estimates are desired because they 
are unbiased and have minimum variance, thus resulting in  
               

     1122110
ˆ

������ pp XbXbXbbY      (3.15)      
 
The method of maximum likelihood can also be used to 
estimate bo, b1, b2…., bp-1, if the probability distribution of 
the error terms is known [27]. 

 3.2.2.2. Neural Network Model. 

In computer programs, neural networks (NNs) are 
designed to work in a way similar to how the human brain 
processes information. By using the concept of learning 
through experience, NNs pool knowledge to identify 
patterns and relationships in data. The NN computational 
model contains hundreds of artificial neurons and connects 
with known coefficients as weights. Figure 14 shows the 
model structure of NN. Input signals, X1, X2,…Xn are 
propagated through the network with weights. W1,W2,…Wn 
connect input and hidden neurons. The combination of input 
signals and weights is passed through an activation function 
to produce the output value of the neuron yk [28]. 
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Figure 14. Neural network structure. 
 
NNs have been widely applied in time series predictions. 
The time series prediction model uses a feedforward neural 
network (FNN) and employs a sliding window over the input 
sequence. To construct the multi-step prediction, the model 
uses previous predicted value to forecast the future values 
iteratively until the expected future values are obtained. This 
multi-step prediction is illustrated in Figure 15 [29]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. The concept of multi-step prediction. 
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This multi-step prediction technique uses the previous values 
to forecast iteratively the future d time step values. Given the 
observation Yt = [ Xt-r+1, Xt-r-2,…Xt], the first future 

value can be predicted by using 
        

)...,()(ˆ 211 trtrttt xxxfyfy ����� ��
(3.16)                           

 
where r denotes the number of inputs or the size of sliding 
window dimension. To predict the next value, the model can 
be given as: 

             )ˆ...,(ˆ 1322 ������ � trtrtt yxxfy                        
(3.17)                           

 
Then, the procedure repeats recursively depending on the 
required number of time series d [30] as shown in: 

            
)ˆ...,(ˆ 11 �������� � dtdrtdrtdt yxxfy                  

(3.18)                         
The process of prognostics is accomplished by predicting 
and extrapolating the dynamic FPs over time from the 
performance degradation model using FNN. In order to use 
FNN, three other key parameters need to be considered: the 
number of hidden layers, the choice of activation functions 
and the number of neurons. As a single hidden layer can 
compute a uniform approximation of any continuous 
function [31], the proposed FNN architecture is composed of 
an input layer, a hidden layer and an output layer with one 
output neuron. To introduce nonlinearity into the network 
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model, nonlinear activation functions are needed. The 
logistic and tanh functions can be conbined and used as an 
activation function from input layer to the output layer.  

When applying neural networks, deciding the number of 
input hidden neurons has always been an issue. Having a 
smaller number of hidden neurons tends to lead to 
ineffective performance, while having too many neurons 
may increase the risk of over-fitting the data and impede 
generalisation.  

Ultimately, the selection of the architecture of a neural 
network comes down to trial and error [32]. There is a 
selection method for the process of trial and error to 
determine the number of input neurons and hidden neurons 
to create the final combination of activation functions. Here, 
the training data are iteratively trained with the increase in 
the number of input and output activation functions. These 
are changed until the error produced by the network is 
minimal based on the root mean square error (RMSE), 
calculated as follows: 

               �
�

��
n

t
tt xx

n
RMSE

1

2)(1
                 (3.19) 

where n is length of time series data, xt represents the target 
values and represents actual values.  

After the FNN architecture is identified, the training dataset 
is used to train the network in adjusting the synaptic weights. 
Once the network is completely trained, the weights are 
frozen, and the network is ready to predict and extrapolate 
failure probability. To validate the predicting performance of 
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the network, a set of validation data compares the network 
output with the predicted output.[30] 

Is important to note that the NN technique is frequently used 
in the medical realm, especially to estimate the risk of 
relapse in cancer patients. Many institutions and medical 
laboratories are currently using this type of prognostics, as 
doctors can estimate the time when the patient may have a 
relapse. This extends the use of prognostics techniques 
beyond engineering to other fields. 

3.2.2.3.  Fuzzy Logic Systems. 

Neuro-fuzzy systems (NFS) are data-driven methods 
that have been employed successfully in the prediction of 
machine condition degradation. The prediction performance 
of the NFS has been shown to outperform conventional 
neural-network-based predictors such as the feedforward-
neural-network, radialbasis-funtion, and recurrent-neural 
network-based models. Through off-line training using 
available data sets, the NFS is used to model machine 
dynamics to make accurate predictions of machine health 
conditions. However, since the machine dynamics in real 
applications change with time, the trained NFS cannot carry 
out accurate predictions if the new dynamics/states are not 
taken into account during the prediction process. Since 
Bayesian algorithms can update system states in real-time 
via new data, the NFS is integrated with Bayesian 
algorithms so that on-line data can be used to improve the 
prediction accuracy [33]. 

The NFS predictor is, in essence, a fuzzy logic system, 
where the system parameters are optimised via neural 
network training. The architecture of the NFS is 
schematically shown in Figure 16. The NFS consists of five 
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layers: an input layer, membership function (MF) layer, rule 
layer, normalised layer and output layer. There are l input 
nodes in the input layer, and each input node is related to m 
term nodes in the MF layer. Thus, the number of nodes in 
the MF layer is l × m , where m denotes the rule number 
[34]. The signal propagation in the NFS proceeds as follows:   

Layer 1 (Input layer): The input values are transmitted 
directly to the next layer without any computation. The 
outputs of this layer can be expressed by 

                              
)1()1(

ii XO �                                  (3.20)                                            

Layer 2 (MF layer): Each node in this layer performs a 
membership function calculation. Sigmoid membership 
functions are used here, as shown below: 

      
))(exp(1
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�         (3.21)                                       

where  is the MF layer’s output associated the jth term of 
the ith input  and  are the parameters of the 
sigmoid function. 
Layer 3 (Rule layer): The following max-product operation 
is carried out in this layer: 

 
                     ��

i iji uO )2()3(                     (3.22)                              
where the output  represents the firing strength of the jth 
fuzzy rule. 

Layer 4 (Normalised layer): This layer performs the 
normalisation operation for all the rule firing strengths. The 
resulting output is given by: 
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Layer 5 (Output layer): The output of the NFS is calculated 
by using the centroid defuzzification procedure, that is, 

          � �
� ��

j
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              (3.24)                

where  is the kth estimated output associated with 
the jth rule [35]. 
 
Figure 16 gives an example of the architecture of a fuzzy 
system login (NFS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure.16. Architecture of the NFS predictor; S is a sigmoid 
function; T means max-product operation; N means 
normalisation operation. 

Xj 

Xt-3r 

S 

S 

S 

S 

S 

S 

T 

T 

T 

N 

N 

N ∑ Xt+r 

Layer Layer Layer Layer Layer



59 | P a g e  
 

Another way to apply data-driven prognostics is to use 
recurrent neuro-fuzzy systems (RNFS). The RNFS predictor 
(Figure 17) possesses additional feedback links added in 
Layer 2 (MF layer). Each node in Layer 2 functions as a 
memory unit that performs the following operation: 

           

))(exp(1
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�             (3.25)                                     

 

where  is the MF layer’s output associated with the jth 

term of the ith input  and  are the parameters of 
the sigmoid function. Note that the inputs of this layer 
involve the feedback components 

)1()()( )2()2()1()2( ��� tutOtX ijijiij �            (3.26)                  
 
where  is the feedback link weight. It is clear that the 

activation responses at the previous time step are 
utilised used as one part of the current input values. This 
allows the RNFS predictor to memorise past information so 
it can deal with temporal issues. More information on 
recurrent neuro-fuzzy systems can be found in [36]. 
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Figure. 17. Architecture of the RNFS predictor; Z-1 is a unit 

delay operator; S is a sigmoid function; T is 
max-product operation; N is normalisation 
operation. 

3.2.2.4. Gaussian Process Regression. 

A Gaussian Process (GP) is a collection of random 
variables, any finite number of which  have a joint Gaussian 
distribution. A real GP f(x) is specified by its mean  function 
m(x) and co-variance function k(x,x’) defined as:
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The index set X  is the set of possible inputs, which need 
not necessarily be a time  vector. Given prior information 
about the GP and a set of training points {(xi, fi ) i=l,…,n} , 
the posterior distribution over functions is derived by 
imposing a restriction on prior joint distribution to contain 
only those functions that agree with the observed data points 
[37]. These functions can be assumed to be noisy, as in real 
world situations we have access to only noisy observations 
rather than exact function values; i.e. yi = f (x) + ε, where ε 
is additive IID N(0, σ2n). Once we have a posterior 
distribution, it can be used to assess predictive values for the 
test data points. The following equations describe the 
predictive distribution for GPR [38]: 
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where X (Inputs), y (targets), K (convariance function), 2
n%  ( 

Noise level), and Xtest (test inputs). 
 
A crucial ingredient in a Gaussian process predictor is the 
covariance function that encodes assumptions about the 
functions to be learnt by defining the relationship between 
data points. The covariance structure also incorporates prior 
beliefs of the underlying system noise. A GPR requires prior 
knowledge of the form of covariance function, which must 
be derived from the context if possible. Furthermore, 
covariance functions consist of various hyper-parameters 
that define their properties. Setting right values of such 
hyper-parameters is another challenge in learning the desired 
functions. Although the choice of covariance function must 
be specified by the user, corresponding hyper-parameters 
can be learned from the training data using a gradient based 
optimiser, such as maximising the marginal likelihood of the 
observed data with respect to hyper-parameters [39]. 

3.2.2.5.  Relevance Vector Machine. 

The relevance vector machine (RVM) is a Bayesian 
form representing a generalised linear model of identical 
functional form of the support vector machine (SVM). 
Although SVM is a state-of-the-art technique for 
classification and regression, it suffers from a number of 
disadvantages, one of which is the lack of probabilistic 
outputs that make more sense in health monitoring 
applications. The RVM attempts to address these issues in a 
Bayesian framework. Besides the probabilistic interpretation 
of its output, it uses fewer kernel functions for comparable 
generalisation performance [40]. 
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This type of supervised machine learning starts with a set of 
input vectors {xn}, n = 1,…, N, and their corresponding 
targets {tn}. The aim is to learn a model of the dependency of 
the targets on the inputs in order to make accurate 
predictions of t for unseen values of x.Typically, the 
predictions are based on some function F(x) defined over the 
input space, and learning is the process of inferring the 
parameters of this function. The targets are assumed to be 
samples from the model with additive noise:     

                  nnn wxFt  �� );(             (3.28)                       

where εn are independent samples from some noise process 
(Gaussian with mean 0 and variance σ2). Assuming the 
independence of tn, the likelihood of the complete data set 
can be written as: 
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where w = (w1, w2,…, wM)T is a weight vector and Φ is the N 
x (N+1) design matrix with Φ =[ø(t1), ø(t2),…, ø(Tn)]T; ø (tN 
) = [1, K (xn,x1), K(xn,x2),…,K(xn,xN)]T, and K(x,xi) is a 
kernel function. 

To prevent over-fitting, a preference for smoother functions 
is encoded by choosing a zero-mean Gaussian prior 
distribution over w parameterised by the hyperparameter 
vector η. To complete the specification of this hierarchical 
prior, the hyperpriors over η and the noise variance σ2 are 
approximated as delta functions at their most probable 
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values ηMP and σ2
MP. Predictions for new data are then made 

according to: 
           

dwwpwtpttp MPMPMP ),|(),|*()|*( 22 %)%��
                                                                    (3.32) 
 
3.2.3. Experienced-Based Approaches. 

3.2.3.1. Bayesian Probability Theory. 

Various methods of confronting uncertainty include 
Bayesian methods, the Dempster-Shafer theory, and fuzzy 
logic. Probability methods are generally based on Bayes’ 

theorem (Lewis, 1986), which says that 

)()/()()/(),( //, xfxyfyfyxfyxf xXYYYXYX ��
                                                                               (3.33) 

where ƒX,Y (x, y) is the joint probability density function 
(PDF), the marginal PDFs are ƒX(x) and ƒY(y), and the 
conditional PDFs are ƒX/Y(x/y) and ƒY/X (y/x). We compute 
the marginal PDFs from the joint PDF by using. 
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where the integrals are over the entire region of definition of 
the PDF. Therefore, we can write 
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Ssimilarly for ƒX/Y(x/y), the mean or expected value of a 
random variable is given in terms of the PDF by 
 

               ��� dxxxfxEx x )()(               (3.36) 

and the conditional mean is given by 
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Clearly, all these quantities may be computed from the joint 
PDF. Therefore, in applications, the computation of the joint 
PDF, given the available data, is of high priority. Figure 18 
shows the geometric meaning of the manipulations involved 
in obtaining the marginal and conditional PDF from the joint 
PDF [22]. 

Figure. 18  Finding marginal PDFs from joint PDF.[22] 
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3.2.3.2. The Weibull Model: Analysis of Time to 
Failure. 

In general, a typical Weibull probability distribution 
function (PDF) is defined by  
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where t ≥ 0 represents time, β > 0 is the shape or slope 
parameter and η >0 is the scale parameter of the distribution. 
Equation (3.38) is usually referred to as a 2-parameter 
Weibull distribution. Of the two parameters, the slope of the 
Weibull  distribution, β, is very important as it determines 
which member of the family of Weibull failure distributions 
best fits or describes the data. It also indicates the class of 
failures in the “bathtub curve” failure modes as shown in 

Figure 19. The Weibull shape parameter β indicates whether 
the failure rate is increasing, constant or decreasing. If β<1, 
the product has a decreasing failure rate. This scenario is 
typical of "infant mortality" and indicates that the product is 
failing during its "burn-in" period. If β=1, there is a constant 
failure rate. Components that have survived burn-in will 
frequently exhibit a constant failure rate. If β>1, there is an 
increasing failure rate. This is typical for products that are 
wearing out. To summarise: 
 

� β < 1 indicates infant mortality; 
� β = 1 means random failures (i.e. independent of time); 
� β > 1 indicates wear-out failures. 
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The information about the β value is extremely useful for 
reliability centred maintenance planning and product life 
cycle management because it can provide a clue to the 
physics of the failures and tell the analyst whether scheduled 
inspections and  overhauls are needed. For instance, if β is 
less than or equal to one, overhauls are not cost effective. 
With β greater than one, the overhaul period or scheduled 
inspection interval can be read directly from the plot at an 
acceptable or allowable probability of failures. For wear-out 
failure modes, if the cost of an unplanned failure is much 
greater than the cost of a planned replacement, there will be 
an optimum replacement interval for minimum cost [41]. 

On the other hand, the scale parameter, or spread, η, 
sometimes called the characteristic life, represents the 
typical time-to-failure in Weibull analysis and is related to 
the mean-time-to-failure (MTTF). In Weibull analysis, η is 
defined as the time at which 63.2% of the products will have 
failed [42]. 

 

 
 
 
 
 
 
 
 
 
 

Figure 19. The “bathtub curve” failure modes. 
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There are basically two fitting methods for parameter 
estimation in widespread use in reliability analysis: the 
maximum likelihood estimation (MLE) and regression 
methods. The former involves developing a likelihood 
function based on the available data and finding the values 
of the parameter estimates that maximise the likelihood 
function. The latter generally works best with datasets with 
smaller sample sizes that contain only complete data (i.e., 
data in which all units under consideration have been run or 
tested to failure). This failure-only data is best analysed with 
rank regression on time, as it is preferable to regress in the 
direction of uncertainty. In Weibull analysis, the median 
rank regression (MRR) method which uses median ranking 
for regression fitting is often deployed to determine the 
shape and scale parameters for complete life data [43]. 

The probability of failure at time t, also called the Weibull 
distribution or the cumulative distribution function (CDF), 
can be derived from Equation (3.38) and expressed as: 
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Thus, the Weibull reliability at time t, which is 1 – F (t) = 
R(t), is defined as:  
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This can be written as: 
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Taking two times the natural logarithms of both sides gives 
an equation of a straight line as in: 
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Equation (3.42) represents a straight line in the form of “y = 
ax + b” on log/log(Y) versus log(X), where the slope of the 
straight line in the plot is β, namely, the shape parameter of 
Weibull distribution. Through the above transformation, the 
life data samples can be fitted into the Weibull model and 
the two Weibull parameters can be estimated. 

The mean of the Weibull PDF, T , which is the MTTF in 
Weibull analysis, is given by:  
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where Γ is the gamma function. 

Note that when β=1, MTTF is equal to η. In fact, as a rough 
approximation, in practices of Weibull analysis where β is 
equal to or slightly larger than 1, the characteristic life can 
be approximated as MTTF. However, for β that is much 
larger than 1, MTTF should be calculated using Equation 
(3.43) [41]. 
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3.2.3.3.  Hidden Markov Models (HMM). 

An HMM is a statistical model used to represent 
stochastic processes when no states where this is completely 
defined by the following parameters are directly observed: 

� N: number of states in the model. 
� M: the number of distinct observations for each state. 
� A: the state transition probability distribution. 
� B: the observation probability distribution of each state. 
� π: the initial state distribution π. 

For simplicity and clarity of presentation, a compact notation 
(λ= π, A, B) is used for each HMM. In practice, HMMs are 
used to solve three typical problems: a detection problem, a 
decoding problem and a learning problem. 

Discrete HMMs usually consider the observations as discrete 
symbols and use discrete probability densities to model the 
transition and the observation probabilities. The problem 
with this approach is that in condition monitoring, the 
observations are typically continuous signals. In order to use 
a continuous observation density, some restrictions are 
required to insure the parameters of the probability density 
function can be re-estimated, as expressed by: 
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                                                                 (3.44) 

In Equation (3.44), O is the observation vector, Cjm is the 
mixture coefficient for the mth mixture in state i and ξ is any 
log concave or elliptically symmetric density with mean 
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vector μjm and covariance matrix Ujm for the mth mixture 
component in state j. A Gaussian density is usually used for 
ξ; the corresponding model is called a MoG-HMM and is 
completely defined by: the A matrix, the B matrix and the 
initial probability π. For an MoG-HMM, the observation 
matrix B is modelled by a Gaussian density with a mean μ, a 
standard deviation σ and a mixture matrix M [44]. Figure 20 
shows an example. 

 

 

 

 

 

 

 

 

 

 

Figure 20. A three state left-to-right HMM. 

 

Failure Prognostic Methods Based on HMMs. 

There are three types of HMM-based prognostics: 
traditional HMMs, those based on hidden Markov models 
(HSMM Semi) and those using Mog-HMM. 
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 The HMM case. 

The learning phase and the exploitation phase for 
traditional HMMs to perform diagnostics and prognostics 
include the following: 

� Learning phase: the extracted features from complete 
monitoring histories (from the normal condition to the 
failure state) are transformed into HMMs by using the 
well known Baum-Welch algorithm. Thus, an HMM 
model is created for each failure. The model is then 
stored in a model base containing all the HMMs with a 
diagnostic label associated with each learned history. 

 
� Exploitation phase: the online data are used as inputs to 

the learned models to make a prognosis of the health 
state. The online extracted features are used in a first step 
to find the model that best fits the actual observation 
sequence by computing the probability P(O|λ). In a 
second step, the parameters of the selected model are 
used to assess the current health state and to estimate the 
RUL. 

 
The Chapman- Kolmogorov equation (3.45) is used to re-
estimate the health state after n iterations. When the 
predicted probability of being in the last state reaches a 
predefined limit ε, the RUL can be calculated (3.46) [45] as: 
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 The HSMM case. 
 

The problem with traditional HMMs is that the 
durational behaviour is usually characterised by a 
geometrically decaying function. This assumption is a 
source of inaccurate duration modelling because most real-
life applications do not obey this function. TO solve this 
problem a model with explicit time durations, called a 
hidden semi Markov model, has been proposed. The 
learning and exploitation phases using this model are 
performed as follows: 
 
� Learning phase: like a traditional HMM, the parameters 

of the HSMM are defined by using the history data and 
the Baum-Welch algorithm. For an HSMM, the shape is 
constrained to a left-to-right model. In addition, for each 
state, the stay durations D(si) are learned by using the 
Viterbi algorithm. The idea is to use the learned 
parameters (π, A, B) and the history data to obtain the 

whole observation sequence. Then, by taking into 
account the transition instant between the states, the 
duration D can be defined. 

 
Finally, by assuming the sojourn time follows a Gaussian 
distribution, the mean time duration μ(D(si)) and the 

standard deviation σ(D(si)) of the same state concerning 
different histories of the same fault can be estimated ((3.47) 
and (3.48)): 
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In Equations (3.47) and (3.48), D(·) stands for the stay 
duration, i is the state index, h is the history index and H is 
the total number of histories from a particular fault state 
[46]. 

� Exploitation phase: this phase uses the learned models 
and their associated stay duration. First, a competitive 
model selection is performed by using the raw data and 
the forward-backward algorithm to compute the 
probability P(O|λ). The label of the winner model is used 
to perform a prognosis of the monitored system; the 
actual health state is defined in the same way as in 
traditional HMMs.  

 

The selected model is also used to estimate the RUL. An 
HSMM permits to estimate the RUL in two ways: 
 
� By using the expression  where the stay durations are 

merged with the state probability transitions, we get: 
                            

]( 11, ���� llllcl RULatRUL               (3.49)                 
where l is the actual state index, tlc is the state changing 
point and al,l+1 is the probability transition to the next state. 
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� By using a more intuitive expression, adding the state 
duration from the current state until the last state and 
subtracting the time spent in the actual state, we get: 
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Furthermore, a confidence interval with different recovering 
values can be easily estimated by using the Bonferroni 
method, as in: 
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In Equations (3.50) and (3.51), l is the actual state, i is the 
state index, N is the total number of states, μ(D(si)) is the 

mean time duration in the state i, σ(D(si)) is the standard 
deviation, tl is the time spent in the actual state, α is the 
confidence interval between [0,1] and cf is the confidence 
factor defined by using Φ, which is the cumulative 
distribution function of a Gaussian probability distribution 
[47]. 
 

 The MoG-HMM based method 

The originality of this method is that raw signals are 
processed using the Wavelet Packet Decomposition (WPD) 
to extract the relevant information to learn the behaviour 
models. Also in the generated MoG-HMM, the states' stay 
durations are not assumed to be a geometrically decaying 
function as in the HSMM case, but are learned from the 
monitoring data (note that multiple continuous signals are 
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considered as observations for both learning and simulation 
phases, instead of the traditional mono-observation 
approach). Moreover, the proposed method has no 
limitations on the type of generated MoG-HMM (the model 
can be ergodic, left-right or parallel left-right). 

� Learning phase: in this first phase, which is executed off-
line, the raw data recorded by the sensors are processed 
to extract the energy of each node at the last 
decomposition level by using the WPD technique. These 
features are then used to learn several behaviour models 
(in the form of MoG-HMMs) corresponding to different 
histories related to several initial states and/or operating 
conditions of the component. One global left-to-right 
MoG-HMM is learned for each type of fault. There are X 
states, i.e.,  different asset health states. Each raw data 
history corresponding to a given component's condition is 
transformed into a feature matrix F, by using the WPD. 
In this matrix, each column vector (C features at time t) 
corresponds to a snapshot of the raw signal, and each cell 
fct represents the node c of the last WPD level at time t, 
as expressed by: 
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with 1  t 1  c 

The nodal energy (features) are then used to estimate the 
parameters (π, A, B) and the temporal parameters (stay 
duration in each state) of the MoG-HMMs. This 
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algorithm permits us to obtain the state sequence and t 
compute the length of time the component has been in 
each state of the corresponding MoG-HMM. Thus, by 
assuming that the state duration in each state follows a 
normal law, it is possible to estimate the mean duration 
(3.53) and the corresponding standard deviation (3.54) by 
computing the duration and the number of visits in each 
state. The Viterbi algorithm also permits us to identify 
the final state which represents the physical component's 
failure state, as given by:  
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In equations (3.53) and 3.54), D(·) stands for the visit 
duration, i is the state index, ω is the visit index and Ω 
corresponds to the total of visits. A compact representation 
of each learned MoGHMM used to perform diagnostic and 
prognostic is given by the following expression: 
                 

))),(()),((,,,( finalii SsDsDBA %�(6 �
                                                                (3.55) 
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where λ is the fully defined model and Sfinal is the final 
state (corresponding to the end of the considered condition 
monitoring history). 
 
� Exploitation phase: this phase, which is performed 

online, consists of exploiting the learned models to detect 
the component's current condition (using the Viterbi 
algorithm) and to compute the corresponding RUL. The 
processed data and the extracted nodal energy using the 
Wavelet toolbox from Matlab® are continuously fed to 
the learned models to determine the global MoG-HMM 
which best fits the observed sequence. The diagnosis is 
then made, and the current health state is defined. The 
selection process is based on the calculation of a 
likelihood P(O|λ) of the model over the observations 
(HMMs problem 1). Using this last calculation and the 
current model state, along with the stay durations learned 
in the off-line phase, the component's RUL and its 
associated confidence value can be estimated. 
 
The generated MoG-HMMs are used during the online 
phase to estimate the RUL and the associated confidence 
value of the physical component by using a dedicated 
procedure with the following Steps: 
 
a) Detection of the appropriate global left-to-right general 

MoG-HMM that best fits and represents the online 
observed sequence of nodal energy. The diagnostic 
label of the selected model is used to diagnose the 
current condition. 

b) Choice of the nearest RUL model knowing the active 
failure mode. 
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c) Identification of the current state of the selected RUL 
model. 

d) Identification of the critical path, from the current state 
to the end state. The idea is to identify all the non-zero 
probabilities in the transition matrix as potential 
transitions and then to choose the minimal path 
amongst all the possible ones (Figure. 21) with only 
one visit per state. 

e) Estimation of the RUL by using the temporal 
parameters of the stay duration in each state. In 
addition, a confidence value over the RUL is 
calculated based on the standard deviation values of 
the stay durations and the Bonferroni confidence 
interval [48]. This is expressed as: 
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Figure 21. Path Estimation 
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RUL in  Indus t r ia l  Asse t s                   4                         

 
For purposes of this paper only discuss the calculation 

of the remaining useful life of assets into three types: 
rotating machines (compressors, pumps,  
 
turbines, etc.), structures (bridges, buildings, etc.) and 
complex systems (cars, planes, etc.). It goes to compares the 
various techniques used to estimate the RUL of each asset; it 
determines if the RUL for that asset can be estimated by 
using one specific technique  or several different techniques. 

4.1. Rotating Machines. 
Rotating machinery is a major and critical component 

of many mechanical systems found in industrial plants, air 
and ground transportation vehicles and many other 
applications. Rotating elements have unique but predictable 
characteristics in both performance and acoustics. For 
example, they exhibit high harmonic oscillations when on 
the verge of failure. Thus, fault diagnosis is commonly 
employed as a maintenance methodology for rotating 
machinery. 

Recently, maintenance methodology has shifted toward 
Condition-Based Maintenance (CBM). CBM employs a 
continuous maintenance methodology to maximise 
availability of equipment. It is accomplished by 
continuously monitoring equipment conditions and 
performing maintenance actions only when faults exist. At 
the operational level, CBM alerts operators to evolving 
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faults and allows maintenance actions to be taken before 
catastrophic failure occurs. 

A schematic of a typical CBM system is shown in Figure. 
22. The key components are machinery, sensors, fault 
detectors, fault classifiers, predictive models, model/data 
fusion, and outputs. 

 

 

 

 

 

 
Figure 22. Key elements of condition-based maintenance 

system. 

4.1.1. Sensing Techniques and Sensors. 

 Monitoring Parameters. 

The monitoring of machinery performance and its 
operating condition requires careful selection of measured 
parameters. The most common parameters are vibration and 
acoustic signatures, temperature, pressure, motor current, 
wear debris and electrostatic exhaust measurements. To 
detect failure inception, deterioration mechanisms are 
continuously monitored and the initiation of cracks, 
fractures, and other failures, such as shaft cracks, seal 
leakage, and corrosions are identified. 
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 Sensing Techniques. 

Sensing techniques are constantly being developed. 
State-of-the-art techniques include: active interrogation 
approaches, nondestructive evaluations such as acoustic 
emission and stress wave monitoring, holographic imaging, 
oil debris analysis, chemical composition and analysis, use 
of in situ and embedded microsensors, electrostatic exhaust 
measurements, remote sensing, and electrical resistance 
measurements. Also important are the optimal placement of 
sensors and a sensing strategy to monitor small changes in 
state variables that could capture fault precursors and 
features. Virtual sensors using  the simulation and modelling 
of signals based on limited data and measurements have the 
potential to reduce the number of sensors and, thus, the cost. 
 

 Sensors 

Recent advances in materials and sensor development, 
combined with new manufacturing techniques (e.g., 
nanofabrication), have allowed manufacturers to build 
rugged sensors that are both affordable and small. The new 
materials and processing include piezoelectric elements, 
piezofilm, piezocomposites, optical fibers, and micro-
electromechanical systems (MEMS). In addition, biosensors 
are being developed to sense and identify chemical species; 
this will be useful for fault diagnostics [49]. 

4.1.2. Feature Extraction. 

 Detection and Identification. 

With the increasing need to identify and locate 
incipient failures, new signal processing techniques have 
been implemented to enhance detection and identification of 
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fault precursors and features using signal enhancement or 
background noise removal and signal detection techniques. 
The signal processing techniques include cepstral analysis, 
time-frequency analysis, nonlinear dynamic techniques, and 
higher and lower order spectral analyses. Time-frequency 
analyses such as the Wigner distribution and wavelet 
transforms have been used and proved to detect and identify 
fault features. Sources of higher harmonic oscillations in 
rotating machinery have been found to be caused by 
imbalance, misalignment, and nonlinear excitation. In 
addition, nonlinear dynamic techniques and lower and 
higher order spectral (polyspectral) analyses techniques can 
be used to detect and identify higher harmonic oscillations, 
as well as fault features. In particular, alpha-stable 
distributions, a lower-order statistics method, can detect 
impulsive type features embedded in a non-Gaussian signal. 

 Feature Classification. 
 

Once fault features are detected, identified and 
extracted using signal processing techniques, the fault 
features are transformed to fault vector spaces where 
classification is performed. Classification techniques include 
conventional statistical methods, neural networks, fuzzy 
logic, and pattern recognition. Neural networks have been 
commonly applied to fault vectors to train and classify the 
various faults. Fuzzy logic, a rule-based reasoning approach, 
has been used successfully to classify faults. Efforts are 
ongoing to combine neural networks and fuzzy logic, the so-
called neuro-fuzzy network approach, to classify fault 
precursors and features. Pattern recognition still remains as 
one of the classification techniques for faults. 
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4.1.3. Prognosis Model. 

Failure analysis, which plays an important role in 
understanding how components fail, forms the basis of the 
failure predictive models. As mentioned previously, failure 
mode identification and classification is a technical issue. 
Though failure mechanisms have been studied for a long 
time, understanding how failures occur and theoretical 
developments in predicting mechanical failures are far from 
satisfactory. In particular, there is a need for physics-based 
models relating fundamentals with experimental data to 
predict the remaining useful (safe operating) life of 
structures and components. The challenge is to model fault 
initiation and propagation as a unified approach and then 
predict state variables relating to mechanical response or 
vibration. A statistical approach has been used to predict the 
fatigue life expectancy of structural components subject to 
cyclic loading. This approach deals with the statistical 
variability in such quantities as material properties and 
initial flaw sizes, as well as the statistical nature of the 
fatigue process. The estimation of the remaining useful life 
can be applied based on data and/or experience using ANNs, 
fuzzy logic and regression; for experience-based approaches 
as mentioned above the most widely used is Weibull. 
 
4.1.4. Data/Model Fusion. 

Data monitoring and predictive models can be fused 
to enhance decision-making and to provide reliable 
information and warning to operators. Occasionally, signals 
from multiple sensor inputs and models can be 
contradictory; therefore, selec tion of the proper data and 
integration or fusion of this information are critical in the 
reasoning and decision-making processes [50]. 
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In summary, a number of approaches can be used to estimate 
the remaining useful life of rotating machines. In 
experience-based approaches, the most commonly used 
method is Weibull. Model-based approaches include Paris' 
law for crack growth modelling, fatigue spall initiation, and 
progression model.  Time series predictions use neural 
networks, fuzzy neural networks, regression analysis and 
fuzzy logic. 

4.2. Structures. 

Today, many of the world’s structures are aging and 

much of its civil infrastructure requires maintenance, 
rehabilitation or replacement. In practice,  the main method 
used to identify structural deterioration is visual inspection. 
Inspections provide the engineer with data on the number of 
cracks and the rate of crack growth, but quantitative data are 
often necessary to distinguish between structures that can be 
kept in service and those requiring replacement or 
modernisations. There are a few studies on patterns of 
maintenance replacement for bridges and buildings. Most 
are based on ranking factors against failure (evaluation of 
capacity). One of the most critical types of structural 
deterioration is induced fatigue fracture; therefore, the 
maintenance strategy based on the remaining useful fatigue 
life is increasingly used by maintainers. This is usually 
based on a combination of load voltage, Miner's rule, and 
design fatigue curve. 

4.2.1. Implementation of CBM to Instrumented Bridges 
y Buildings. 

The CBM for a bridge can be initiated according to 
the degradation state of the structure, as monitored by 
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various sensors. Once the degradation characteristic crosses 
a specified threshold, maintenance actions are triggered. In 
CBM, the degradation characteristic measures of the 
structure are obtained and updated with the use of real-time 
data from both structural and durability health monitoring 
systems. This system enables the early detection of 
degradation mechanisms by continuously updating 
information on the performance of the structure in load-
carrying capacity and durability resistance, along with 
degradation effects due to aging and environments, thereby 
allowing the overall degradation mechanisms to be 
understood. The determination of the deterioration rates for 
bridges is essential to evaluate the effectiveness of 
maintenance/repair options. As the deterioration rate is a 
function of time, the conventional inspection approach, due 
to its ad hoc nature and lack of continuous time-history 
supporting data, is inadequate. Long-term real-time 
monitoring systems and analytical tools are required to 
estimate the deterioration rates at key locations/components 
of bridges under in-service condition.  

Figure 23 illustrates various potential degradation 
mechanisms for bridges (reinforced concrete structures). The 
decision making on the maintenance of a reinforced concrete 
structural component depends on two factors: the 
deterioration status of its embedded steel tendons or steel 
reinforcements and its load-carrying capacity. It therefore 
requires both durability and structural health monitoring. For 
durability health monitoring, analytical tools have to be 
developed to evaluate the formation and propagation of 
cracking and the time for the spalling of concrete cover 
based on the monitoring data from corrosion sensors 
(corrosion potentials, corrosion currents, concrete resistivity, 
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linear polarisation resistance, concrete temperature, concrete 
relative humidity, and gas concentration in deck and piers). 
After developing such analytical tools, a linkage must be 
established to transfer the monitoring/analysis results into an 
updatable and evolving rating system to facilitate the CBM 
decision making and to prioritise maintenance activities. The 
bridge rating system is generally developed in terms of the 
criticality and vulnerability indices that can be 
formulated/updated using the design information, inspection 
results and monitoring data. As the structural condition is 
obtained from the CBM, a new synthetic rating system 
(Rating Cubic) will be formulated as a rating matrix in terms 
of the criticality rating, vulnerability rating, and condition 
rating of the structural components. The action and 
prioritisation of condition-based inspection/maintenance for 
structural components will be based on the results (which are 
dynamically updated over time) of the synthetic rating (the 
rating results in Cube 1 correspond to the highest priority 
while the rating results in Cube 8 correspond to the lowest 
priority) [51]. 

 

 

 

 

 

 

Figure 23. Degradation Mechanisms for Reinforced 
Concrete Structures 
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4.2.2. Remaining Fatigue Life Estimation of Members. 

Suppose a component is subjected to a certain stress 
amplitude or stress range i σ for ni number of cycles at load 
level i and Ni is the fatigue life (failure number of cycles) 
corresponding to σi . Hence, the residual life at load level i 
can be obtained as (Ni−ni). The stress σeqi) which 
corresponds to the failure life (Ni−ni) is named as i

th level 
damage stress amplitude or stress range (otherwise 
introduced as stress amplitude or stress range relevant to the 
residual life). The new damage indicator, Di is stated as, 
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where σu is the intercept of the Wöhler curve with the 
ordinate at one-quarter of the first fatigue cycle. 
Furthermore, it can be stated that σu is the ultimate tensile 
strength amplitude or range for rotating bending test-based 
S-N curves and the ultimate shear strength amplitude or 
range for torsional fatigue test-based S-N curves. 
 
In the first cycle, the damage stress amplitude or range σ(i)eq 
is equal to applied stress σi and the corresponding damage 
indicator becomes Di=0. According to the proposed 
methodology, current damage must then be transformed to 
the next load level. Therefore, in the last cycle, the damage 
indicator becomes Di=1 when σ(i)eq  is equal to σu . 
Therefore, the damage indicator is normalised to one (Di=1) 
at the fatigue failure of the material, and the same procedure 
is followed until Di=1. Here, the defined fatigue failure is 
the time taken for the occurrence of the first through-
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thickness crack at the location of maximum stress of the 
structural component. In the case of railway bridge 
components, it can probably be taken as the time taken for 
the initiation of a crack near a connection (rivet or bolt). 

4.2.3. Identification of Critical Members/ Connections 

The members with the lowest remaining fatigue life of 
each member set (set of members with the same load 
capacity) are called “critical members” in this study. 

Generally, they are to be given more attention in the member 
replacement based maintenance. From the previously 
obtained remaining fatigue lives, it is easy to identify these 
critical members. 
 
The connections joining the previously obtained critical 
members  are called “critical connections”. 

4.2.4. Remaining Fatigue Life Estimation of Critical 
Connections. 

The stress concentration effect in connections between 
the primary members of bridges is a main reason for fatigue 
damage. Most of these connections are subjected to 
multiaxial fatigue. To capture this effect at riveted 
connections or discontinuities, the detail class (BS 5400, 
1980) of riveted connection based Wöhler curves is 
considered in a previous life estimation. However, the 
variation of real rotational fixity, clamping force and 
geometry at the connection may change the real stress 
distribution at the connections. Such changes may results in 
over or under predictions of the estimated fatigue life of the 
corresponding member. As a result, replacement of members 
based on previously determined remaining lives may not be 
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an appropriate maintenance procedure. Replacement of 
members based on fatigue lives of critical connections is a 
more appropriate strategy. This section describes the 
methodology to estimate the remaining fatigue life of such 
connections. 
 
Initially, all critical connections should be investigated non-
destructively to determine the current condition using 
various tests, including X-ray, ultrasonic, magnetic particle, 
radiographic examinations etc. The connections which do 
not illustrate significant change from the initial state or 
condition are not subjected to any unexpected stress 
concentration. Other connections which have been subjected 
to significant change may need to have their remaining 
fatigue life assessed to determine the degree of criticality. 
 
The remaining fatigue lives of the connections not subjected 
to significant deviation from the initial condition are 
finalised in the same way as the lowest remaining fatigue 
life of the member joined to a particular connection. The 
remaining fatigue lives of other connections, where the 
conditions have been significantly changed, must be 
evaluated based on the current geometric condition, 
secondary stress distribution etc. 
 
This procedure is based on a newly proposed multiaxial 
fatigue model. Initially, the accumulated plastic strain per 
each stabilised cycle, expressed as 
 

            c
kkkpc

S
minmax

*2
3

4 ��
�       ,          (4.58)                     

 



94 | P a g e  
 

has to be obtained from the secondary stress analysis of the 
connection or part of the member (sub model) where c = b + 
2η . The b and η are the mesoscopic linear hardening 
modulus and the shear modulus respectively. The k* is the 
radius of the smallest hypersphere which contains the entire 
history of the macroscopic deviatoric stress amplitude of the 
stabilised cycle. The kmax and kmin are the maximum and the 
minimum values of mesoscopic yield stresses that can be 
reached during the loading cycle. The fatigue life is 
calculated from the new damage indicator as shown: 
 

                 
i

pc
su

pc
s

i
pc
seqi

pc
s

iD
)()(
)()( )(

  
  

�
�

�             (4.59)                 

 
where ( pc

s )i is accumulated plastic meso-strain per 
stabilised cycle of ni number of cycles at load level i. The Ni 
is the fatigue life (number of cycles to crack nucleation) 
corresponding to ( pc

s )i and can be estimated from 

 

                           
1 �� )( pc

sAN                (4.60)                       
 
where ξ and A are material parameters to be determined 
from fatigue tests. The accumulated plastic meso-strain 

eqi
pc
s )()( , which corresponds to the failure life (Ni−ni), is 

named as ith level damage accumulated plastic meso-strain. 
The u

pc
s )(  is the accumulated plastic meso-strain which 

corresponds to one-quarter of the first fatigue cycle. At this 
point, according to the proposed methodology, current 
damage has to be transformed to the next load level. As in 
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the previous sequential law in Section 4.2.2, the damage 
indicator is normalised to one (Di=1) at the fatigue failure of 
the material, and the same procedure is followed until Di=1. 

4.2.5. Member Replacement/ Strengthening Scheme. 

The lowest remaining fatigue life of the connections 
describes the remaining fatigue life of the bridge. Once the 
age of the bridge reaches this value (when bridge life 
becomes zero), it is advisable to replace the corresponding 
critical member with a new member with longer fatigue life. 
At the same time, the associated connection should be 
strengthened. After this essential repair, a new sequence for 
future member replacement should be obtained by following 
a similar procedure. This type of maintenance strategy 
extends the service life (fatigue capacity) of the bridge in the 
safest manner. 

 
In summary, the most widely used approach for estimating 
the remaining life of bridges (and buildings) is the model-
based technique to estimate the lifetime of fatigue [52]. 

4.3. Complex System. 
System maintenance is a challenge for manufacturers 

who produce complex systems, like aircraft or cars, as good 
maintenance can improve the reliability, security, safety and 
the final cost of their products. To improve the maintenance 
capabilities of a complex system, an onboard health 
monitoring system must be deployed; it should provide 
enough data to indicate what type of maintenance operation 
is required. These types of systems are assemblages of 
heterogeneous components (continuous, discrete, hybrid 
components) that require many different types of techniques 
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to monitor their health state. Before a global health 
monitoring system can be built, there are many difficulties to 
deal with. 

First of all, in classical maintenance, the objective is to 
replace components (also called Line Replacement Units, 
LRU for short) of the system that are faulty in the sense that 
they do not perform the set of functions they are supposed to 
perform. The monitoring system requires diagnostic 
capabilities to determine online the faulty components [22].  

The second difficulty is the optimality of the maintenance. 
To decrease maintenance costs, it is necessary to perform 
preventive maintenance which requires embedding 
prognostic capabilities in the health monitoring system to 
determine the ageing state of the system 

The third difficulty concerns the description of the system 
itself. Without a good level of abstraction to describe the 
system knowledge to be used in the health monitoring 
system, it is impossible to guarantee the global consistency 
of the health monitoring architecture. The objective is, thus, 
to get an abstracted description that is homogeneous [53]. 

We must take into account that complex systems, as 
mentioned above, must have a continuously monitored 
system (i.e., CBM). This is done by sensors able to capture 
all information related to the health status of the entire 
system; these data are then used to make a prognosis and 
estimate the remaining useful life. The prognostic methods 
commonly used to explain complex systems are explained in 
the following subsections. 
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4.3.1. Prognosis Methods. 

As mentioned previously, prognostics basically 
consists of estimating at time tprog  tj the time tj+1 tprog of 
the future mode change relying on the ageing models 

available in the system mode �
jm . A set of ageing models 

(or life models) is available for each private parameter ppi,k  ε 
PPi. In the following, ppi,k is generically noted pp for the 
sake of simplicity. Ageing models of a private parameter 
describe the evolution of the parameter value pp with 
environmental constraints (i.e., temperature, humidity, 
vibration, stress conditions). It follows that an ageing model 

ki
xag , can be represented as an algebraic relation depending 

on operating conditions of the system mode �
xm . According 

to the current system mode �
im  that defines the range of the 

private parameters of the system, the well-suited ageing 
models are selected for each private parameter pp ε PP. The 
remaining time until the parameter pp becomes faulty is 
noted as remaining time to fault or RTF (pp). A fault 
probability for each private parameter in PP is established 
from the selected ageing models.  

Basically, let fpp denote a probability density function (pdf 
for short) representing the fault probability of a private 
parameter pp in the mode �

xm , and Pmax be the maximal 
fault probability value acceptable for the parameter pp; the 
remaining time to fault (RTF) of pp consists, then, of 
determining the time tp for which the fault probability has 
reached the threshold Pmax as shown by: 
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                                                                  (4.61) 

It follows that tj+1 = tprog + min(RTF(pp), pp ε PP) and the 

system mode �
�1jm is such that pp is out of range [54]. 

 Generic Modelling For Prognostics. 
Private parameters usually represent physical 

attributes of the component and are totally heterogeneous. 
The difficulty is to find a common representation of the 
prognosis for any private parameter that also must be as 
flexible as possible to represent any type of probability 
density functions. For these reasons, the Weibull distribution 
is often used. In this case, the probability density function is: 
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where β characterises the shape of the distribution, η 
characterises the scale and θ characterises the location of the 
distribution. For a given private parameter pp ε PPi and a 
given probability threshold Pmax, we then get: 
 

� �� pt
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0 max),,,()( �)!

                                                                    (4.63) 
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Because βpp, ηpp, θpp fully characterise the failure probability 
distribution, they model how the parameter pp is ageing. The 
description of the characteristics βpp, ηpp, θpp relies on the 
ageing models associated with pp. Whatever the technique 
used to obtain such models, the available knowledge is then 
characterised by algebraic relations that define βpp, ηpp, θpp:  

βpp = arβ(ipi,1,…..,ipi,n),θpp = arθ( ipi,1,…., ipi,n), npp= arη( 
ipi,1,…., ipi,n). 

 Functional Prognosis. 

 The RUL of the system is defined as the remaining 
time until the system cannot perform successfully its full set 
of complex functions that rely on the basic functions FUi of 
any component Ci ε Comps. In systems like aircraft, for 
instance, the system functions usually rely on redundant 
implementations of the basic functions (the functions of one 
component can be performed by another). That is why 
prognostics relies on the functional view of the system. In 
order to get a prognosis of the availability of any system 
function in the future, the prognosis of the availability of 
every basic function F ε FUi implemented on every 
component Ci of the system must be acquired. The ageing of 
F naturally depends on the ageing of the private parameters 
of the component implementing F. The remaining time until 
a basic function F becomes failed is noted as ettf (F) which 
stands for estimated time to failure [55]: 

      

� �� pt

FFFFf PdttWthatsuchtFettf
0

),,,()( �)!
                                                                        (4.64) 
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where PF is a probability threshold and βF , ηF , θF are fully 
determined by a combination of the characteristics { βpp, ηpp, 
θpp }pp2PP(F). By extension, the ettf (Fsys) of any system 
function Fsys is defined as ettf (F) where F is the basic 
function whose availability is necessary for Fsys to be 
available and whose ettf (F) is minimal. The RUL of a 
component is then RUL(Ci) = min(ettf (Fui,j), Fui,j ε FUi) and 
the RUL of the system is estimated to the minimal ettf 
(Fsys). Finally, maintenance can be scheduled based on the 
ettf (Fsys) and consists at least of replacing a component Ci 
implementing the basic function F ε FUi by a new one so 
that ettf (Fsys) is increased. 

In summary, prognosis to implement complex systems 
should take into account that on many occasions, different 
prognoses must be applied separately, as a complex system 
consists of several subsystems, and these subsystems are, in 
turn, composed of components. As given above, the most 
common way to implement prognosis is using the Wiebull 
distribution, but other methods can also be applied, such as 
fuzzy neural networks. It is important to know that each 
complex system has a different mathematical model; thus, 
when we want to estimate the remaining useful life, we must 
first make a mathematical model of the system. 
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A B C

 Models
Mathematical

Approaches Prognosis in Different Industrial Assets 

Model Based 

Data Driven 

Experienced Based

The Weibull Model: Analysis of Time to 
Failure

ARMA, ARMAX, and ARIMA Methods

 Particle Filtering

Physics- based  fatigue models

Relevance vector machines (RVM)

Bayesian Probability Theory

 HMM

Gaussian Process Regression

Linear Regression

 Artificial Neural Networks

 Fuzzy Logic Systems

Assets
Approaches

Resul t s                                           5                         

In this chapter a comparison chart where you may view 
different prognosis techniques used for the estimation of the 
remaining useful life of the assets listed above will be made. 

Table 1. Approaches to Prognosis 
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A: rotating machines: Pumps, Turbines, Compressors, 

Motors. 

B: Structures: Bridges and Buildings 

C: Complex Systems: Planes, Cars, etc. 

As Table 1 shows, prognosis is a technique that can be 
applied in different industrial assets. Rotating machines only 
require particle filters and physics-based fatigue; other 
techniques are rarely used for this type of asset. In terms of 
data-based models, ANNs and fuzzy logic may be used; on 
occasion, linear regression is used. For experience-based 
models, the most common is Weibull  because it is the most 
conventional.  

Models for structures such as bridges and buildings use 
fatigue because as stated in the previous chapter, the 
monitoring applied to these assets is used to calculate the 
remaining useful life of fatigue as this is usually the main 
problem with such assets. But depending on the type of 
structure, Weibull can be used. 

Finally, the calculation of the remaining useful life of more 
complex systems uses mathematical models; as stated 
earlier, most complex systems require the development of a 
model, because these systems are not alike. Similar systems 
often use techniques such as neural networks, fuzzy 
networks, and occasionally Weibull. 
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Conclus ion                                    6                        
 
This work summarises how a CBM program is applied to 
estimate remaining useful life. Various techniques, models 
and algorithms have been reviewed following the three main 
steps of a CBM program: data acquisition, data processing 
and maintenance decision-making. Although advanced 
maintenance techniques are described in the literature, there 
are two common extremes in industry. One extreme is to 
always adopt a run-to-failure (breakdown) policy. The other 
is to always apply an as-frequent-as-possible maintenance 
policy. The two can be applied to some special cases with 
satisfactory results, but in many situations, especially when 
both maintenance and failure are very costly, CBM is a 
better choice. Expert knowledge in both application and 
theory is required for choosing the best maintenance 
policies.  
 
Advanced maintenance technologies have not been well 
implemented in industry for the following possible reasons: 
(1) lack of data due to incorrect data collecting approach, or 
even no data collection and/or data storage; (2) lack of 
efficient communication between theory developers and 
practitioners in the area of reliability and maintenance; (3) 
lack of efficient validation approaches; (4) difficulty of 
implementation due to frequent change of design, 
technologies, business policies and management executives. 
Next generation prognostic systems will likely focus more 
on various aspects of continuous monitoring and automate 
the prognostics.  
 
This work has also discussed many concepts associated with 
prognostics in differente industrial assets. It has reviewed 
prognostic approaches and implementation issues including 
current CBM developments, and has provided several 
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examples. It has discussed the variations in data, modelling 
and reasoning for the different prognostic approaches and 
illustrated these in different assets: rotating machines 
(pumps, turbines, compressors, motors), structures (bridges 
and buildings) and complex systems (planes, cars etc.). Data 
availability, dominant failure or degradation mode of 
interest, modelling and system knowledge, accuracies 
required and criticality of the application are some of the 
variables that determine the choice of prognostic approach. 
The ability to predict the time to conditional or mechanical 
failure (on a real-time basis) is of enormous benefit; health 
management systems that can effectively implement the 
capabilities presented herein offer a great opportunity in 
terms of reducing the overall Life Cycle Costs (LCC) of 
operating systems and decreasing maintenance tasks. 
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Fur ther  Research                                             7                                      

 
In future work, it would be interesting to study how to apply 
prognosis in other types of industrial assets. In addition, it 
would be useful to conduct a experimental  study using a 
real case with the approaches outlined here, in order to 
compare the results. Studies could also compare two 
approaches to the same data. Finally, the hybrid approaches 
could be explored in greater detail, especially their 
applicability in industry. 
 
For CBM, it would be interesting to study the progress and 
trends of this type of program at present (data cleaning, data 
quality, issues of context awareness), and to explore the use 
of data when estimating the remaining useful life. Another 
future work could study the advances in sensors and data 
acquisition systems, along with the computer programs used 
for this purpose. 
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