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Abstract

By introduction of modern electronics into railway system, new challenges in under-
standing the electric and electromagnetic behavior of these systems arise. In this thesis,
electromagnetic modeling of electrical networks above dielectric and perfect electrically
conducting surfaces are studied. The approach is based on the Partial Element Equivalent
Circuit (PEEC) method for solving Maxwell’s equations.

The most challenging problem within electromagnetic modeling of large systems is
computational speed and for railway systems, modeling of the ground becomes the major
bottleneck. The purpose of the thesis is to develop maintenance program for the railway
system in the Northern Sweden to deal with the failures created by electromagnetic
disturbances using mathematical modeling of the electromagnetic phenomena. First, a
grid PEEC approach was used to improve the computation time of the original program.
This approach utilizes an algorithm to distribute the calculations on computers in a
local area network. It was shown that the computation time for large systems could be
improved in some stages of the computation process.

The second approach to improve the computational efficiency of the PEEC method
utilized the theory of complex images. This results in an appropriate mathematical tool
to study and describe the generated electric fields above the earth, as a dielectric- or
perfectly electric conducting surface. Different mathematical models were applied to
analyze and plot the current distribution on structures and the electric field generated
by several structures above a perfect electrical conducting surface. The tests were verified
by analytical methods and the traditional PEEC computation method. In the traditional
PEEC method, the numerical solution of mathematical modeling of the ground did form
the major effort due to the large number of unknown variables in the corresponding
linear equation system. By using of the complex image methods, where the effect of
the ground was approximated, the computational time was clearly improved in the case
studies. This combination of the PEEC method and the method of complex images
resulted in an ultimate linear equation system by a smaller number of unknown variables
and therefore a considerable improvement of the computational time.

By use of electromagnetic modeling, it will be possible to study the disturbances due
to transients and discharges, and also to expand the data bases for artificial intelligence.
Defining the problem and determining what can be obtained by using of computational
electromagnetic modeling, will be a step towards developing a more appropriate mainte-
nance program for the railway system in the northern Sweden.
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Chapter 1

Thesis Introduction

This chapter introduces Reliability-centered maintenance (RCM) and EMC-related main-
tenance of the railway system. The theoretical background of electromagnetic modeling
techniques is also discussed in which the complexity of the applied mathematical tools and
the numerical solution of the associated models are concisely discussed.

1.1 Thesis Introduction

During the past twenty years, the concept of maintenance has been changing more than
other management discipline, possibly due to a huge increase in the number and variety
of physical assets, i.e. equipment and plant. To ensure the right maintenance at the
right time to sustain system functions, one may apply reliability-centered maintenance
(RCM). This discipline is a very useful tool in different industries and can be adapted
to particular constraints and requirements of the industry where it is applied. Analysis
of risk and simulations may be used when carrying out the computerized tool concern-
ing implementation of RCM. Electromagnetic compatibility (EMC) tests and modeling
are functioning as an indicator when maintaining the electrified railway networks and
systems. There are standard methods in railway applications for reducing disturbance
of the feeding arrangements and feeder networks which can cause disturbance to elec-
trical/electronic systems. Some of feeder networks can even cause direct danger to life.
These will be discussed in the following chapters where the electromagnetic compatibility
(EMC) is a major issue within European railway standards.

In order to guarantee operability of advanced railway signaling and vehicles, EMC
tests may be compared to results from electromagnetic modeling. The experimental
techniques are expensive and time consuming but are still widely used. Hence, the ad-
vantage of obtaining data from tests can be weighted against the large amount of time
and expense required to operate such tests. Analytic solution of Maxwell’s equations
offers many advantages over experimental methods but applicability of analytical elec-
tromagnetic modeling is often limited to simple geometries and boundary conditions.
The analytic solution of Maxwell’s equations by the methods of Separation of variables
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2 Thesis Introduction

and Series expansions are not applicable in a general case and in a real-world application,
these analytic solutions are of a very limited scope. Availability of high performance com-
puters during the last decades has been one of the reasons to use numerical techniques
within electromagnetic modeling to solve Maxwell’s equations for complicated geometries
and boundaries.

The goal of this work is to improve the maintenance program for the railway system
in the northern Sweden. To deal with the failures created by electromagnetic distur-
bances, mathematical modeling of the electromagnetic phenomena is applied. It will be
shown that the calculation time for large systems, resembling railways, could be improved
in some stages of the computation process. The most challenging problem within elec-
tromagnetic modeling of large systems is computational speed and for railway systems,
modeling of the ground becomes the major bottleneck. It is shown that how applying the
PEEC methodology in combination with complex image methods and parallel algorithms
can improve the solution of the electromagnetic field modeling.

The main focus in this work has been on computational speed ups for EM problems
containing large ground planes. In this context, some tests were verified by analyti-
cal methods and the traditional PEEC computation method. In the traditional PEEC
method, the numerical solution of mathematical modeling of the ground constituted the
major effort due to the large number of unknown variables in the corresponding linear
equation system. By using of the complex image methods (CIM), where the effect of
the ground is approximated, the computational time will be clearly reduced in the case
studies. It will also be shown that the combination of the PEEC method and the method
of complex images results into an ultimate linear equation system by a smaller number
of unknown variables and therefore a considerable reduction of the computational time.

1.2 Numerical PEEC method and Dyadic Green’s

Function

The most popular numerical techniques are (1) Finite difference methods, (2) Finite
element methods, (3) The method of moments, and (4) The partial element equivalent
circuit (PEEC) method. The first three methods will briefly be presented in the following
chapters. The fourth technique, the PEEC method is presented in Chapter 4 where Grid-
PEEC, as a parallel algorithm, is discussed for numerically large systems. The differences
in the numerical techniques have its origin in the basic mathematical approach and
therefore make one technique more suitable for a specific class of problem compared to
the others.

The electromagnetic modeling of computationally large systems like railways involves
challenges in form of abnormal simulation time for computers using numerical algorithms.
As an approach to perform the computational time, the parallel algorithm of Grid-PEEC
is applied which is based on a traditional PEEC algorithm. A general feature of this
parallel algorithm is that the computational time is constantly dependent on the number
of computers which are solving the integral form of Maxwell’s equations, discretized by
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the traditional PEEC method. However, a certain improvement of the calculation time,
especially when calculating partial elements, was experienced. This improvement was,
in all of the possible options, a result of the trade-off between the number of the parallel
computers and memory consuming for every individual computer; the fewer number of
computers, the shorter elapsed time for communication among them and vice versa. This
is actually a general feature of parallel computing.

It will be shown that how the method of complex images can be combined with
the PEEC method to reduce this computational time. Combination of these methods
leads into solving an equivalent problem where the time-consuming calculation of the
ground effects is approximated. The mathematical background of the method of images
is discussed in the following chapters. Further, it will be shown that how this method
can be applied to derive mathematical models for both small and large systems above a
perfectly electric conducting (PEC) surface, resembling the railway system. Combination
of the PEEC method and the method of complex images results into a considerable
improvement in the calculation time. In the complex image applications, an important
stage is to determine the associated dyadic Green’s function by appropriate numerical
methods; solving the integral form of the Maxwell’s equations, by this dyadic Green’s
function as a part of the integrand, is the another crucial issue within computational
electromagnetism. Application of the method of complex images and the PEEC method,
involving different scattering structures above a PEC surface, results into a remarkably
reduced computational time.

1.3 Computational Electromagnetics for Layered Me-

dia

Determining of Green’s functions for stratified media has, during the last decades, been
an important and fundamental stage to design of high-frequency circuits. In the case
of a layered medium, a so-called mixed-potential integral equation (MPIE), is applied to
the associated geometry [1]. MPIE can be solved in both spectral- and spatial- domain
and the both solutions require appropriate Green’s functions. The Green’s functions for
multi-layered planar media are represented by the Sommerfeld integral whose integrand
is consisted of the Hankel function, and the closed-form spectral-domain Green’s func-
tions [2]. A two-dimensional inverse Fourier transformation is needed to determine the
spectral-domain Green’s functions analytically via the following integral which is along
the Sommerfeld integration path (SIP) and kρ-plane as

G =
1

4π

∫
SIP

dkρkρH
(2)
0 (kρρ)G̃(kρ) (1.1)

where H
(2)
0 is the Hankel function of the second kind; G and G̃ are the Green’s functions

in the spatial- and spectral- domain. One of the topics in this context is that there is no
generally analytic solution to the Hankel transform of the closed-form spectral-domain
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Green’s function. Numerical solution of the above transformation integral is very time-
consuming, partly due to the slow-decaying Green’s function in the spectral domain,
partly due to the oscillatory nature of the Hankel function. Dealing with such problem
constitutes one of the major topics within the computational electromagnetics for multi-
layered media. In many applications, the Discrete complex image methods (DCIM) is
used to handle this numerically time-consuming process. The strategy in this process is
to obtain Green’s functions in closed form as

G ∼=
N∑

k=1

an
e−jkrm

rm

(1.2)

where

rm =
√

ρ2 − b2
m (1.3)

with j =
√−1 will be complex-valued. The constants an and bm are to be determined

by numerical processes such Prony’s method [3][4]. In dyadic form and by assuming an
ejωt time dependence, the electric field at an observation point �r produced by a surface
current �J of a surface S ′ can be expressed as

E(r) = −jω

∫
S′

[
I +

1

β2∇∇
]

μe−jβR

4πR
J(r, r′)dS ′

=

∫
S′

G(r, r′)J(r, r′dS ′ (1.4)

where β = ω
√

με by μ and ε as the electromagnetic characteristics for the layered medium;

R is the distance from the source point to the field point. I is the unit dyad and G(r, r′)
is defined as the dyadic Green’s function.

There are different methods to construct the auxiliary Green’s function in the case
of boundary value problems which are as a consequence of using mathematics to study
problems arising in the real world. Within EMC, Green’s function is applied to convert
a partial differential equation to an integral equation. The numerical solution of an
integral equation has the general property that the coefficient matrix in the ultimate
linear equation Ax = y will consist of a dense coefficient matrix A and a relatively
fewer number of elements in the unknown vector x. Numerical solution of a general
integral equation involves challenges due to the ill-conditioned coefficient matrix A, as
a rule and not as an exception; the integration operator is a smoothing operator and
determining the kernel of an integral equation will be the opposite operator. This is the
main reason of the ill-conditioning. Generally and depending on the kind of problem,
there are several numerical methods to get rid of this ill-conditioning and in the case of
solution of Maxwell’s equations by the integral-based PEEC method, ill-conditioning will
be a problem to handle.



Chapter 2

Reliability-Centered Maintenance
(RCM) and Railway system

In this chapter, the concept of Reliability-Centered Maintenance (RCM) is presented.
The related concept of Failure Mode and Effect Analysis (FMEA), followed by a short
introduction to EMC-related European standards and measurements within railway system
are also presented.
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6 Reliability-Centered Maintenance (RCM) and Railway system

2.1 Reliability-Centered Maintenance

RCM was initially developed for the commercial aviation industry in the late 1960s and
the result was published as a document which was called MSG-3. This standard did
constitute an accepted methodology that has been applied in a wide range of industries.
RCM achieves effectively the required safety and availability levels of equipment and
structures. The result is intended to be improved overall safety, availability, and economy
of operation. For establishing a preventive maintenance program, the application of RCM
requires a detailed analysis of the product and its functions. A maintenance program is
the set of tasks resulted from the RCM analysis where the maintenance objectives are:

• To maintain the function and inherent safety and reliability levels

• Optimization of availability

• Monitoring the condition of specific safety, and critical- and costly- components

• Obtaining the necessary information for design improvement

• Accomplishing these goals at a minimum total life cycle cost (LCC)

The present industrial competition is global and forms a fragmented international market
with customers expecting to get the best product with the best price. Success in man-
ufacturing, and indeed survival, is increasingly more difficult to ensure and it requires
continuous development and improvement of the way products are produced. Meeting
customer demands requires a high degree of flexibility, low-cost/low-volume manufactur-
ing skills, and short delivery times. These demands make manufacturing performance
a strategic weapon for competition and future success. Many managers believe that
the greatest potential for improvement of competitiveness lies in better production man-
agement. Productivity, in its turn, is a key weapon for manufacturing companies to
stay competitive in a continuous growing global market. Increased productivity can be
achieved through increased availability. This has directed focus on different maintenance
strategies. Increased availability through efficient maintenance can be achieved through
less corrective maintenance actions and more accurate preventive maintenance intervals.

2.2 Failure Mode and Effect Analysis (FMEA)

FMEA is defined as the work procedure concerning different phases of production de-
velopment and to prepare for identifying potential failure occurrence. FMEA prepares
also for quality performance and it is applied by people who are working with produc-
tion development by a high degree of competition where reliability and high quality are
respectively desired. FMEA work is combined in the production development in a well-
planned and schematic way where the analysis is growing successively and it is deepened
tactfully with a detailed development process. A well-done FMEA is also functioning
as a valuable documentation which will be used as a reference in the future when, for
instance, it is time for a new analysis. FMEA is applied within different fields such [5]
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• Product planning, in which risk assessment is introduced based on desired functions
of the product. To identify the costumer’s requirement and to guarantee that
the development efforts is directed against the fields that are important for the
costumer, one should apply the method of Quality Function Development (QFD).
This method identifies the costumer’s requirement and interpret it in technical
terms.

• Product development, as a process where the product is assessed and discussed if it
is, among others, as faultless as possible.

• Production preparing, applied to guarantee a well-functioning production process,
i.e. a process where availability, security, and capability are respectively required.

• Material acquisition, in which the detailed components are considered in their en-
tirety; highly estimated risk, which may affect the choice of components, is also
considered.

• Production installation, which must be focused on the requirements due to the man-
ufactured functions such accuracy, production discretion, maintenance requirement,
operation security etc.

• Production, in which the analysis of failure effect is included where identifying the
possibility of failure occurrence is the focus of interest.

The basic principle is that the product- and process- changing will be analyzed within
FMEA. Sometimes it is necessary to prioritize and make a selection of actions that
considers the usefulness of them which is mentioned and expected in the analysis. The
order of priority is based on:

• concepts concerning both personal- and product- safety

• already known problem fields

• large economical consequences

The method of FMEA is especially appropriate for serial, functional systems and pro-
cesses where every detailed component or process is acting together in a chain of events;
if a link is out of order, the whole system will be stopped, unlike a so-called redundant
system where several parallel sub-systems are functioning independent from each other.
FMEA may be applied to different levels and different moments; the longer a project
is, the more detailed FMEA is. An analysis will be made firstly for a comprehensive
level, then for each sub-system, and finally for lowest level, i.e. the component level. The
choice of the analysis level occurs after studying the object which is illustrated in flow
charts.



8 Reliability-Centered Maintenance (RCM) and Railway system

2.3 EMC Standards and Railway System

The aim of the common EMC laboratory tests is to demonstrate that equipment will
operate satisfactory in its electromagnetic environment, and the equipment does not
affect another equipment. The principle is that these tests must be realistic, realizable,
and repeatable and they have to simulate real-world conditions where requirements of
standards and contracts are met. Within the standards, different railway issues are
first addressed for a particular problem and then maximum radiated emissions will be
measured after placing the equipment under test (EUT) on an open area test site (OATS)
with an antenna placed 10 m from it [6]. EMC tests are designed within railway system to
ensure the above mentioned principle. Depending on the particular problem, two major
test groups are implemented [7]. These are:

• Emissions tests, in which the equipment under test does not affect the operation
of other equipment; implemented to protect radiocommunications services.

• Immunity tests to ensure that the equipment under test operates satisfactory on
the environments close to, for instance, heavy machinery and transmitters.

These test groups are sub-divided into several test categories such as conducted or ra-
diated, and also frequency domain (continuous) or time domain. The categorization is
intended to realize the most appropriate and effective test method matching the dom-
inant coupling mechanism. As an example for EMC tests simulating induced pulses
from nearby lightning strikes, it will be an appropriate choice to implement time domain
test due to the time-domain nature of a lightning strike; frequency measurements are
however applied when EMC tests simulating interference from frequency-domain radio
transmitters. In European countries, the EN 50121 series [8] of standards has recently
been established according to which rail manufacturers across Europe have agreed levels
of emission and immunity at radio frequencies so that modern electric locomotives have
nowadays significant emissions in the low frequencies between 9 kHz and 100 kHz. The
methods are not suitable for solving disturbances problems on operational railways owing
to be adapted, originally, for stationary equipment [7].

In traditional railway EMC measurements, voltage due to the induced longitudinal
voltage (VL) on line-side cabling, was measured continuously as the train moved along
the affected part of the line; exceeding the permissible limit for VL, increases the risk
of electric shock for staff and also a higher probability of equipment malfunction and
failure. To enable freetrade for European manufacturers of railway equipment and to
comply with the EMC directive, the EN50121 set of product specific EMC standards is
applied. The standards which cover different areas of interest within different sectors of
the railway industry are harmonized which means that all European countries use them.
These six standards are as follows.

• EN 50121 − 1. This standard considers a general point of view regarding EMC
measurements.
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• EN 50121 − 2. Based on measurements all over Europe, a limit is set regarding
emissions of existing railway stock in different train speeds. This type of standard
covers emission of the whole railway system to the outside world.

• EN 50121− 3− 1. It considers rolling stock related to train and completed vehicle.
Like EN 50121 − 2, this standard uses the same test method but with the train
operating at different speeds. In this way, results from one test may not satisfy the
requirements of the other standard.

• EN 50121 − 3 − 2. This standard deals with rolling stock related to apparatus.
In the case of a multi-port apparatus, all types of port has to be tested. Special
aspects of emission limits and immunity are considered.

• EN 50121−4. This standard is applied to signaling and telecommunication appara-
tus installed in railway environment. It deals actually with emission and immunity
of the signaling and telecommunications apparatus.

• EN 50121− 5. It deals with emission and immunity of fixed power supply installa-
tions and apparatus. There are limits for both immunity levels and emissions for
the power supply system.

To cover the frequency range of 9 kHz and 30 MHz, the use of at least one loop antenna
is suggested by the standard. For electric field measurement, i.e. above 30 MHz, a bi-
conical antenna is used but the advanced antenna design may cover the whole range by
one bi-log antenna. Nowadays, an spectrum analyzer can sweep the set frequency range
in less than 0.2 seconds for capturing continuous emissions from the passing train. For
different purposes, different train passes are required. As an example, EN 50121 − 2
requires at least three train passes to the electric antenna as a part of a moving test
whilst the slow moving test of EN 50121 − 3 − 1 requires at least nine train passes. By
aid of a special arrangement, the problem of requiring nine train passes will however be
performed by doing a single EN 50121 test. This method utilizes simultaneously running
analyzers and a control computer which is downloading each spectrum [7].
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Chapter 3

Mathematical Tools in
Electromagnetism

The mathematical tools applied to solution of radiated electromagnetic fields are presented
in this chapter. Application of these mathematical tools to structures which are close to-
and within- dielectrics and perfectly electric conducting materials is also presented.

11



12 Mathematical Tools in Electromagnetism

3.1 Basic Concepts in Electromagnetism

In constructing the electrostatic model an electric field intensity vector E and an electric
flux density vector, D, are respectively defined. The fundamental governing differential
equations are [9]

∇× E = 0 (3.1)

∇ · D = ρv

where ρv is volume charge density and ε is dielectric constant. For linear and isotropic
media, E and D are related by relation

D = εE (3.2)

The fundamental governing equations for magnetostatic model are

∇ · B = 0 (3.3)

∇× H = J

where B and H are defined as magnetic flux density vector and magnetic field intensity
vector respectively. B and H are related as

H =
1

μ0μr

B (3.4)

where μ is defined as magnetic permeability of the medium which is measured in H/m.
The medium in question is assumed to be linear and isotropic. Eqs. (3.1) and (3.3) are
known as Maxwell’s equations and form the foundation of electromagnetic theory. As it is
seen in the above relations, E and D in the electrostatic model are not related to B and H
in the magnetostatic model. The coexistence of static electric fields and magnetic electric
fields in a conducting medium causes an electromagnetostatic field and a time-varying
magnetic field gives rise to an electric field. These are verified by numerous experiments.
Static models are not suitable for explaining time-varying electromagnetic phenomenon.
Under time-varying conditions it is necessary to construct an electromagnetic model in
which the electric field vectors E and D are related to the magnetic field vectors B and
H. In such situations, the equivalent equations are constructed as

∇× E = −∂B

∂t
(3.5)

∇× H = J (3.6)

∇ · D = ρv (3.7)

∇ · B = 0 (3.8)

where J is current density. As it is seen, the Maxwell’s equations above are in differen-
tial form. To explain electromagnetic phenomena in a physical environment, it is more
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convenient to convert the differential forms into their integral-form equivalents. There
are several techniques to convert differential equations into integral equations but in the
above cases, one may apply Stokes’s theorem to obtain integral form of Maxwell’s equa-
tions after tasking the surface integral of both sides of the equations over an open surface
S with contour C. The result will be constructed as in the following table.

Maxwell’s equations

Differential form Integral form

∇× H = J +
∂D

∂t

∮
C

H · dL = I +

∫
S

∂D

∂t
· dS (3.9)

∇× E = −∂B

∂t

∮
C

E · dL =

∫
S

∂B

∂t
· dS (3.10)

∇ · D = ρv

∫
S

D · dS =

∫
V

ρvdV (3.11)

∇ · B = 0

∫
S

B · dS = 0 (3.12)

ρv, in the above table, is the electric charge density in C/m3. The PEEC method uses
the integral form of the Maxwell’s equations to solve the electromagnetic field quantities
and also the partial elements.

3.2 Green’s Functions

When a physical system is subject to some external disturbance, a non-homogeneity
arises in the mathematical formulation of the problem, either in the differential equation
or in the auxiliary conditions or both. When the differential equation is nonhomogeneous,
a particular solution of the equation can be found by applying either the method of un-
determined coefficients or the variation of parameter technique. In general, however,
such techniques lead to a particular solution that has no special physical significance.
Green’s functions1 are specific functions that develop general solution formulas for solv-
ing nonhomogeneous differential equations. Importantly, this type of formulation gives
an increased physical knowledge since every Green’s function has a physical significance.
This function measures the response of a system due to a point source somewhere on
the fundamental domain, and all other solutions due to different source terms are found
to be superpositions 2 of the Green’s function. There are, however, cases where Green’s

1George Green, 1793-1841, was one of the most remarkable of nineteenth century physicists, a self-
taught mathematician whose work has contributed greatly to modern physics.

2Consider a set of functions φn for n = 1, 2, ..., N . If each number of the functions φn is a solution to
the partial differential equation Lφ = 0, with L as a linear operator and with some prescribed boundary

conditions, then the linear combination φN = φ0 +
N∑

n=1
anφn also satisfies Lφ = g. Here, g is a known

excitation or source. This fundamental concept is verified in different mathematical literature.



functions fail to exist, depending on boundaries. Although Green’s first interest was in
electrostatics, Green’s mathematics is nearly all devised to solve general physical prob-
lems . The inverse-square law had recently been established experimentally, and George
Green wanted to calculate how this determined the distribution of charge on the surfaces
of conductors. He made great use of the electrical potential and gave it that name. Actu-
ally, one of the theorems that he proved in this context became famous and is nowadays
known as Green’s theorem. It relates the properties of mathematical functions at the
surfaces of a closed volume to other properties inside. The powerful method of Green’s
functions involves what are now called Green’s functions, G(x, x′). Applying Green’s
function method, solution of the differential equation Ly = F (x), by L as a linear differ-
ential operator, can be written as

y(x) =

x∫
0

G(x, x′)F (x′)dx′ (3.13)

To see this, consider the equation

dy

dx
+ ky = F (x)

which can be solved by the standard integrating factor technique to give

y = e−kx

x∫
0

ekx′dx′ =

x∫
0

e−k(x−x′)F (x′)dx′

so that G(x, x′) = e−k(x−x′). This technique may be applied to other more complicated
systems. In an electrical circuit the Green’s function is the current due to an applied
voltage pulse. In electrostatics, the Green’s function is the potential due to a change
applied at a particular point in space. In general the Green’s function is, as mentioned
earlier, the response of a system to a stimulus applied at a particular point in space
or time. This concept has been readily adapted to quantum physics where the applied
stimulus is the injection of a quantum of energy. It is in the quantum domain that the
application of Green’s functions to physical problems has grown most spectacularly in
the past few decades.

Within electromagnetic computation, it is common practice to use two methods for
determining the Green’s function in the cases where there is some kind of symmetry in
the geometry of the electromagnetic problem. These are the eigenvalue formulation and
the method of images. These two methods are described in the following sections, but
in order to its importance, the method of the eigenfunction expansion method is first
presented.

3.3 Eigenfunction Expansion Method

The method of eigenfunction expansion can be applied to derive the Green’s function for
partial differential equations by known homogeneous solution. The partial differential
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equation

Uxx =
1

κ
Ut + Q(x, t), 0 < x < L, t > 0 (3.14)

B.C. : U(0, t) = 0, U(L, t) = 0, t > 0

I.C. : U(x, 0) = F (x), 0 < x < L

with

Q(x, t) =
1

κ
Kt(x, t) − q(x, t) (3.15)

F (x) = f(x) − K(x, 0)

features a problem with homogeneous boundary conditions. The Green’s function, in
this case, can be represented in terms of a series of orthonormal functions that satisfy
the prescribed boundary conditions. In this process, it is assumed that the solution of
the partial differential equation may be written in the form [10]

U(x, t) =
∞∑

n=1

En(t)Ψn(x) (3.16)

where Ψn(x) are eigenfunctions belonging to the associated eigenvalue problem3

X ′′ + λX = 0 (3.17)

by prescribed boundary condition (B.C.) and initial conditions (I.C.). En(t) are time-
dependent coefficients to be determined. It is also assumed that termwise differentiation
is permitted4. In this case

Ut(x, t) =
∞∑

n=1

E ′
n(t)Ψn(x) (3.18)

and

Uxx(x, t) =
∞∑

n=1

En(t)Ψ′′
n(x)

which together with (3.17) gives

Uxx(x, t) = −
∞∑

n=1

λnEn(t)Ψn(x) (3.19)

3Clearly U(x, t), satisfies the prescribed homogeneous boundary conditions, since each eigenfunction
Ψn(x) does.

4The operation of termwise differentiation of an infinite series is valid according to: Corollary If
fk(x) has a continuous derivative on [a, b] for each k = 1, 2, 3, ... and if

∑∞
k=1 fk(x) converges to S(x)

on [a, b] and if the series
∑∞

k=1 f ′
k(x) converges uniformly to g(x) on [a, b] then S′(x) = g(x) for every

x ∈ [a, b]; equivalently d
dx

∑∞
k=1 fk(x) =

∑∞
k=1

d
dxfk(x)...”. Introduction to Mathematical Analysis page

206-William Parzynski, Philip W. Zipse.
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This is a result of applying the superposition principle which can be deduced as Ψ′′
n(x) =

−λnΨn(x) from (3.17). Next, by rewriting the partial differential equation above as

κUxx = Ut + κQ(x, t) (3.20)

and inserting the expressions (3.18) and (3.19) into the right-hand side of (3.19), it can
be obtained that

κUxx =
∞∑

n=1

[E ′
n(t) + κλnEn(t)]Ψn(x) (3.21)

The right-hand side of equation above is interpreted as a generalized Fourier series5 of
the function κUxx for a fixed value of t. Thus, the Fourier coefficients are defined as

E ′
n(t) + κλnEn(t) = κ

1

‖Ψn(x)‖2

L∫
0

Q(x, t)Ψn(x)dx (3.22)

for n = 1, 2, ...

where ‖Ψn(x)‖ is defined as the norm of Ψn(x) with the relation

‖Ψn(x)‖2 =

L∫
0

[Ψn(x)]2dx, for n = 1, 2, ... (3.23)

Eq. (3.21) as a first-order linear differential equation, has the general solution

En(t) =

⎛
⎝cn +

1

κ

t∫
0

exp(
1

κ
λn)Pn(τ)dτ

⎞
⎠ exp(−1

κ
λnt) (3.24)

for n = 1, 2, 3, ... by the assumption that λn �= 0 for all n. It has to be added that cn are
arbitrary constants. In the equation above, Pn(t) is defined as

Pn(t) =
1

‖Ψn(x)‖2

L∫
0

Q(x, t)Ψn(x)dx, for n = 1, 2, 3, ... (3.25)

Now, by substituting (3.24) into (3.16), it will be obtained that

U(x, t) =
∞∑

n=1

⎛
⎝cn +

1

κ

t∫
0

exp(
1

κ
λn)Pn(τ)dτ

⎞
⎠ exp(−1

κ
λnt)Ψn(x) (3.26)

5These series can be used in developing infinite series like Fourier series and have the general form

f(x) =
∞∑

n=1
cnUn(x) for x1 < x < x2, where the set of functions {Un(x)} is orthogonal on the specified

interval by a given weighting function w(x) > 0, that is
x2∫
x1

Un(x)Un(x)w(x)dx = 0, for all k �= n.



3.3. Eigenfunction Expansion Method 17

For determining the arbitrary coefficients cn, n = 1, 2, 3, ..., one shall force equation 3.25
to satisfy the prescribed initial condition. By using the above process and applying the
method of moments (MoM), described in the previous sections, the scattering problem
of a dielectric half-cylinder which is illuminated by a transmission wave can be obtained
by the matrix equation [9]

[A][E] = [Ei] (3.27)

where

Ei = ejk(xm cos φi+ym sin φi) (3.28)

and

Amn = εm + j
π

2
(εm − 1)kanH

(2)
1 (kam) for m = n

= j
π

2
(εm − 1)kanJ

(2)
1 (kan)H

(2)
0 (kρmn) for m �= n (3.29)

with

ρmn =
√

(xm − xn)2 + (ym − yn)2 (3.30)

for m,n = 1, 2, ..., N by N as the number of cells the cylinder is divided into. εm is the
average dielectric constant of cell m and am is the radius of the equivalent circular cell
by the same cross section as cell m. E is the field inside the dielectric half-cylinder and
J

(2)
1 is the Bessel function [11]; H

(2)
1 and H

(2)
0 are Hankel functions of the first and second

kinds.

3.3.1 Green’s Functions and Eigenfunctions

If the eigenvalue problem associated with the operator L can be solved, then one may
find the associated Green’s function. It is known that the eigenvalue problem

Lu = λu, a < x < b (3.31)

by prescribed boundary conditions , has infinite many eigenvalues and corresponding
orthonormal eigenfunctions as λn and φn, respectively, where n = 1, 2, 3, .... Moreover,
the eigenfunctions form a basis for the square integrable functions on the interval (a, b).
Therefore it is assumed that the solution u is given in terms of eigenfunctions as

u(x) =
∞∑

n=1

cnφn(x) (3.32)

where the coefficients cn are to be determined. Further, the given function f forms the
source term in the nonhomogeneous differential equation

Lu = f or u = L−1f
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where L−1 is the opposite operator to the operator L. Now, the given function f can be
written in terms of the eigenfunctions as

f(x) =
∞∑

n=1

fnφn(x), (3.33)

with

fn =

b∫
a

f(ξ)φn(ξ)dξ (3.34)

Combining (3.32), (3.33), and (3.34) gives

L

( ∞∑
n=1

cnφn(x)

)
=

∞∑
n=1

fnφn(x) (3.35)

By the linear property associated with superposition principle , it can be shown that

L

( ∞∑
n=1

cnφn(x)

)
=

∞∑
n=1

cnL(φn(x)) (3.36)

But ∞∑
n=1

cnL(φn(x)) =
∞∑

n=1

cnλnφn(x) =
∞∑

n=1

fnφn(x) (3.37)

which finally yields

L

( ∞∑
n=1

cnφn(x)

)
=

∞∑
n=1

fnφn(x) (3.38)

By comparing the above equations, it will be obtained that

cn =
1

λn

and fn =
1

λn

b∫
a

f(ξ)φn(ξ)dξ for n = 1, 2, 3, ... (3.39)

Further

u(x) =
∞∑

n=1

cnφn(x) (3.40)

=
∞∑

n=1

1

λn

⎛
⎝ b∫

a

f(ξ)φn(ξ)dξ

⎞
⎠ φn(x)

Now, it is supposed that an interchange of summation and integral is allowed. In this
case (3.40) can be written as

u(x) =

b∫
a

( ∞∑
n=1

φn(x)φn(ξ)

λn

)
f(ξ)dξ (3.41)



But by definition of Green’s function, one may write

u(x) = L−1f =

b∫
a

g(x, ξ)f(ξ)dξ (3.42)

By comparing the last two equations, u(x) can be expressed in terms of Green’s functions
as

g(x, ξ) =
∞∑

n=1

φn(x)φn(ξ)

λn

(3.43)

is the Green’s function associated with the eigenvalue problem (3.31) with the differential
operator L.

3.4 The Method of Images

Solution of electromagnetic fields is greatly supported and facilitated by mathematical
theorems in vector analysis. Maxwell’s equations are based on Helmholtz’s theorem where
it is verified that a vector is uniquely specified by giving its divergence and curl, within
a simply connected region and its normal component over the boundary. This can be
proved as a mathematical theorem in a general manner [11]. Solving partial differential
equations (PDE) like Maxwell’s equation desires different methods, depending on, for
instance, which boundary condition the PDE has and in which physical field it is studied.

The Green’s function modeling is an applicable method to solve Maxwell’s equations
for some frequently used cases by different boundary conditions. The issue in this type of
formulation is, in the first hand, determining and solving the appropriate Green’s function
by its boundary condition. Once the Green’s function is determined, one may receive a
clue to the physical interpretation of the whole problem and hence a better understanding
of it. This forms the general manner of applying Green’s function formulation in different
fields of science. In some cases within electromagnetic modeling, where the physical
source is in the vicinity of a perfectly electric conducting (PEC) surface and where there
is some kind of symmetry in the geometry of the problem, the method of images will
be a logical and facilitating method to determine the appropriate Green’s function. The
method of images is, in its turn, based on the uniqueness theorem verifying that a solution
of an electrostatic problem satisfying the boundary condition is the only possible solution
[12]. Electric- and magnetic- field of an infinitesimal dipole in the vicinity of an infinite
PEC surface is one of the subjects that can be studied and facilitated by applying the
method of images.

In the following section, the method of images is applied to derive the electromagnetic
modeling for different electrical sources above a PEC surface.

3.4.1 The Electric Field for Sources above a PEC Surface

It is assumed that an electric point charge q is located at a vertical distance y = r above
an appropriate large conducting plane which is grounded. It will be difficult to apply
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the ordinary field solution in this case but by image methods where an equivalent system
is presented, it will be considerably easier to solve the original problem. An equivalent
problem can be to place an image point charge −q at the opposite side of the PEC plane,
i.e. y = −r. In the equivalent problem, the boundary condition is not changed and a
solution to the equivalent problem will be the only correct solution. The potential at the
arbitrary point P (x, y, z) is [13]

Φ(x, y, z) =
q

4πε0

(
1√

x2 + (y − r)2 + z2
− 1√

x2 + (y + r)2 + z2

)
(3.44)

which is a contribution from both charges q and −q as

Φ+(x, y, z) =
q

4πε0

(
1√

x2 + (y − r)2 + z2

)
(3.45)

and

Φ−(x, y, z) =
−q

4πε0

(
1√

x2 + (y + r)2 + z2

)
(3.46)

respectively. According to the image methods, Eq. (3.44) gives the potential due to an
electric point source above a PEC plane at the region y > 0. The field located at y < 0
will be zero; it is indeed the region where the image charge −q is located.

Now it is assumed that a long line charge of constant charge λ per unit length is
located at a distance d from a surface of a grounded conductor, occupying half of the all
space. It is also assumed that the line charge is parallel to both the grounded plane and to
the z-axis in the rectangular coordinate system. Further, the surface of the conducting
grounded plane is coincided with yz-plane and x-axis passes through the line charge
so that the boundary condition for this system is Φ(0, y, z) = 0 where Φ is defined as
the electric potential. To find the potential everywhere for this system by applying the
method of images, one may start by converting this system to an equivalent system where
the boundary condition of the original problem will be preserved. To solve this problem
by method of images, the original system will first be converted to an another system
where the conducting grounded plane is vanished, i.e. a system where the line charge is
in free-space. By using the polar coordinate system, the potential at an arbitrary point
P , see Fig. 3.1, is

Φ(R, φ) =
λ

2πε0

ln

[
(4L2L1)

1/2

R

]
(3.47)

An equivalent problem may consist of a system of two parallel long lines with opposite
charges in free-space and by a distance of 2d from each other; the charge densities of the
two lines are assumed to be λ and −λ respectively. According to the method of images,
the total potential Φ will be determined by contribution from these two line charges
which respectively are
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Figure 3.1: Geometry of two opposite long line charges, λ and −λ by a distance of 2d from each
other and observed as (a): perpendicular to the paper plane, (b): coincided by the paper plane.

Φ+ =
λ

2πε0

ln

[
(4L2L1)

1/2

R+

]
(3.48)

and

Φ− = − λ

2πε0

ln

[
(4L2L1)

1/2

R−

]
(3.49)

The total potential is resulted from both of these two line charges as

Φ = Φ+ + Φ−

=
λ

2πε0

ln

(
R−

R+

)

=
λ

2πε0

ln

(
d2 + R2 + 2dR cos φ

d2 + R2 − 2dR cos φ

)
(3.50)

According to uniqueness theorem and the method of images, Eq. (3.50) gives the solution
for a long line charge by a distance of d above a PEC plane. The potential below the
PEC surface will be zero. This is illustrated in Fig. 3.2
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d

PEC

Figure 3.2: Electric potential of an infinitely long line charge parallel to a PEC surface and by
a height of d above it.

3.4.2 Radiated Electric Field of an Infinitesimal Dipole above
a PEC Surface

The overall radiation properties of a radiating system can significantly alter in the vicinity
of an obstacle. The ground as a lossy medium, i.e. σ �= 0, is expected to act as a very
good conductor above a certain frequency. Hence, by applying the method of images
the ground should be assumed as a perfect electric conductor, flat, and infinite in extent
for facilitating the analysis. It will also be assumed that any energy from the radiating
element towards the ground undergoes reflection and the ultimate energy amount is
a summation of the reflective and directed (incident) components where the reflected
component can be accounted for by the the introduction of the image sources. In all
of the following cases, the far-field observation is considered. To find the electric field,
radiated by a current element along the infinitesimal length l′, it will be convenient to
use the magnetic vector potential A as [14]

A(x, y, z) =
μ

4π

∫
C

I(x′, y′, z′)
e−jβR

R
dl′ (3.51)

where (x, y, z) and (x′, y′, z′) represent the observation point coordinates and the coordi-
nate for the constant electric current source I, respectively. R is the distance from any
point on the source to the observation point; the integral path C is the length of the
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source and β2 = ω2με where μ and ε are permeability and permittivity of the medium.
By the assumption that an infinitesimal dipole is placed along the z-axis of a rectangular
coordinate system plus that it is placed on the origin, one may write I = ẑI0 for constant
electric current I0, and x′ = y′ = z′ = 0. Hence, the distance R will be

R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 =
√

x2 + y2 + z2 (3.52)

By knowing that dl′ = dz′, and by setting r =
√

x2 + y2 + z2, Eq. (3.51) may be written
as

A(x, y, z) = ẑ
μI0

4πr
e−jβr

∫ l/2

−l/2

dz′ = ẑ
μI0l

4πr
e−jβr (3.53)

The most appropriate coordinate system for studying such cases is the spherical coordi-
nate system why the vector potential in Eq. (3.53) should be converted into the spherical
components as

Ar = Az cos θ =
μI0l

4πr
e−jβr cos θ (3.54)

Aφ = −Az sin θ = −μI0l

4πr
e−jβr sin θ (3.55)

Aφ = 0 (3.56)

In the last three equations, Ax = Ay = 0 by the assumption that the infinitesimal dipole
is placed along the z-axis. For determining the electric field radiation of the dipole,
one should operate the magnetic vector potential A by a curl operation to obtain the
magnetic field intensity HA as

HA =
1

μ
∇× A (3.57)

In spherical coordinate system, Eq. (3.57) is expressed as

HA =
1

μ

(
r̂

1

r sin θ

[
∂

∂θ
(Aφ sin θ) − ∂Aθ

∂Aφ

]
+

θ̂

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]
+

φ̂

r

[
∂

∂r
(rAθ) − ∂Ar

∂θ

])

But according to Eq. (3.56) and due to spherical symmetry of the problem, where there
are no φ-variations along z-axis, the last equation simplifies to [14]

HA =
1

μ

φ̂

r

[
∂

∂r
(rAθ) − ∂Ar

∂θ

]
(3.58)

which together with (3.54) and (3.55) gives

HA = φ̂
βI0l sin θ

4πr

(
1 +

1

jβr

)
e−jβr (3.59)



Further, by equating Maxwell’s equations, it will be obtained that

∇× HA = J + jωεEA (3.60)

By setting J = 0 in Eq. (3.60), it will be obtained that

EA =
1

jωε
∇× HA (3.61)

Eq. (3.61), together with Eqs. (3.54)-(3.56) yields

Er = η
I0l cos θ

2πr2

[
1 +

1

jβr

]
e−jβr (3.62)

Eθ = jη
βI0l sin θ

4πr

[
1 +

1

jβr
− 1

βr2

]
e−jβr (3.63)

Eφ = 0 (3.64)

where η = Eθ/Hφ is called the intrinsic impedance (= 377 	 120π ohms for free-space).
Stipulating for far-field region, i.e. a region where βr >> 1, the electric fields Eθ and Er

in Eqs. (3.62)-(3.64) can be approximated by

Eθ 	 jη
βI0l sin θ

4πr
sin θ (3.65)

Er 	 Eφ = 0 (3.66)

which is the electric far-field solution for an infinitesimal dipole along z-axis and in the
spherical coordinate system. The same procedure may be used to solve the electric field
for an infinitesimal dipole along x-axis where the magnetic vector potential A is defined
as

A = x̂
μI0le

−jβr

4πr
(3.67)

In the spherical coordinate system, the above equation is expressed as

Ar = Ax sin θ cos φ (3.68)

Aθ = Ax cos θ cos φ (3.69)

Aφ = −Ax sin φ (3.70)



It should be mentioned that Ay = Az = 0 due to the placement of the infinitesimal dipole
along x-axis. By far-field approximation, and based on Eqs. (3.68)-(3.70), the electric
field can be written as

Er 	 0 (3.71)

Eθ 	 −jωAθ = −jω
μI0le

−jβr

4πr
cos θ cos φ (3.72)

Eφ 	 −jωAφ = −jω
μI0le

−jβr

4πr
sin φ (3.73)

The electric field, as a whole, will be contributions from both Aθ and Aφ which is ex-
pressed as

EA 	 −jω (Aθ + Aφ) = −jω
μI0le

−jβr

4πr
(cos θ cos φ − sin φ) (3.74)

3.4.3 Infinitesimal Vertical Dipole above a PEC Surface

The overall radiation properties of a radiating system can significantly alter in the vicinity
of an obstacle. The ground as a medium is expected to act as a very good conductor above
a certain frequency. Applying the method of images and for simplifying the analysis, the
ground is assumed to be a perfect electric conductor, flat, and infinite in extent. It is also
assumed that energy from the radiating element undergoes reflection and the ultimate
energy amount is a summation of the reflective and the directed components respectively
where the reflected component can be accounted for by the image sources.

A vertical dipole of infinitesimal length l and constant current I0, is now assumed to
be placed along z-axis by a distance d above a PEC surface by an infinite extent. The
far-zone directed- and reflected- components in a far-field point P are respectively given
by [15]

ED
θ 	 jη

βI0le
−jβr1

4πr1

sin θ1 (3.75)

and

ER
θ 	 jη

βI0le
−jβr2

4πr2

sin θ2 (3.76)

where r1 and r2 are the distances between the observation point and the two other points,
the source- and the image- locations; θ1 and θ2 are the related angles between these lines
and z-axis. It is intended to express all the quantities only by the elevation plane angle
θ and the radial distance r between the observation point and the origin of the spherical
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coordinate system. For this purpose, one may utilize the law of cosines an also a pair of
simplifications regarding the far-field approximation. The law of cosines gives

r1 =
√

r2 + d2 − 2rd cos θ (3.77)

r2 =
√

r2 + d2 − 2rd cos(π − θ) (3.78)

By binomial expansion and regarding phase variations, one may write

r1 = r − d cos θ (3.79)

r2 = r + d cos θ (3.80)

By utilizing the far-zone approximation where r1 	 r2 	 r, and all of the above simplifi-
cations, it is obtained that

Etotal
θ = ED

θ + ER
θ = jη

βI0le
−jβr

4πr
sin θ

(
e+jβd cos θ + e−jβd cos θ

)
(3.81)

Finally, after some algebraic manipulations, one may find for z ≥ 0

Etotal
θ = jη

βI0le
−jβr

4πr
sin θ [2 cos(βd cos θ)] (3.82)

According to the image theory, the field will be zero for z < 0.



Chapter 4

The PEEC Method and
Application of Numerical Methods

This chapter describes the time domain PEEC formulation for orthogonal structures.
Some basic concepts within electromagnetism are also introduced. It is also shown that
how the PEEC method has been combined with the method of complex image methods
(CIM). The parallel algorithm of Grid-PEEC for calculation of partial coefficients and
frequency domain systems is also presented in this chapter.
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4.1 Derivation of the PEEC Method

This presented derivation of the PEEC method is based, to a large extent, on the work
presented in [16].

4.1.1 Derivation of Electric Field Integral Equation

The theoretical derivation of the PEEC method starts from the expression of the total
electric field in free space, �ET (�r, t), by using the magnetic vector and electric scalar

potentials, �A and φ respectively.

�ET (�r, t) = �Ei(�r, t) − ∂ �A(�r, t)

∂t
−∇φ(�r, t) (4.1)

where �Ei is a potential applied external electric field. If the observation point, �r, is on
the surface of a conductor, the total electric field can be written as

�ET (�r, t) =
�J(�r, t)

σ
(4.2)

in which �J(�r, t) is the current density in a conductor and σ is the conductivity of the
conductor. Combining the above equations results in

�Ei =
�J(�r, t)

σ
+

∂ �A(�r, t)

∂t
+ ∇φ(�r, t) (4.3)

To transform (4.3) into the electric field integral equation (EFIE) the definitions of the

electromagnetic potentials, �A and φ are used. The magnetic vector potential, �A, at the
observation point �r is given by

�A(�r, t) =
K∑

k=1

μ

∫
vk

G(�r, �r′) �J(�r′, td)dvk (4.4)

in which the summation is over K conductors and μ is the permeability of the medium.
Since no magnetic material medium are considered in this thesis μ = μ0. In (4.4) the
free space Green’s function is used and is defined as

G(�r, �r′) =
1

4π

1

|�r − �r′| (4.5)

�J is the current density at a source point �r′ and td is the retardation time between the
observation point, �r, and the source point given by

td = t − | �r − �r′ |
c

(4.6)
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where c = 3 · 108m/s. The electric scalar potential, φ, at the observation point �r is given
by

φ(�r, t) =
K∑

k=1

1

ε0

∫
vk

G(�r, �r′)q(�r′, td)dvk (4.7)

in which ε0 is the permittivity of free space and q is the charge density at the source point.
Combining (4.3), (4.4) and (4.7) results in the well known electric field integral equation
(EFIE) or mixed potential integral equation (MPIE) that is to be solved according to

n̂ × �Ei(�r, t) = n̂ ×
[

�J(�r, t)

σ

]

+ n̂ ×
[

K∑
k=1

μ

∫
vk

G(�r, �r′)∂
�J(�r′, td)

∂t
dvk

]
(4.8)

+ n̂ ×
[

K∑
k=1

∇
ε0

∫
vk

G(�r, �r′)q(�r′, td) dvk

]

where n̂ is the surface normal to the body surfaces. The transformation of the EFIE in
(4.8) into the PEEC formulation starts by expanding the current- and charge-densities
according to this section. This results in a general form of the EFIE for the PEEC
formulation from which the equivalent circuit can be derived.

4.1.2 PEEC Current Density Expansion

The total current density, �J , in (4.8) is expanded in the PEEC formulation to include

the conduction current density, �JC , due to the losses in the material and a polarization
current density, �JP , due to the dielectric material properties resulting in

�J = �JC + �JP (4.9)

where
�JC = σ �E (4.10)

�JP = ε0(εr − 1)
∂ �E

∂t
(4.11)

For perfect conductors, the total current density �J reduces to �JC . While for perfect
dielectrics the total current density reduces to �JP . The polarization current density is
added in the differential form of the generalized Ampere’s circuital law according to

∇× �H = �JC + ε0(εr − 1)
∂ �E

∂t
+ ε0

∂ �E

∂t
(4.12)

which is reduced to the original form

∇× �H = �JC + ε0
∂ �E

∂t
(4.13)



for εr = 1. In this way the displacement current due to the bound charges for the
dielectrics with εr > 1 are treated separately from the conduction currents due to the
free charges.

4.1.3 PEEC Charge Density Expansion

The charge density qT , indicating the combination of the free, qF , and bound, qB, charge
density is given by

qT = qF + qB (4.14)

This allows the modeling of the displacement current due to the bound charges for di-
electrics with εr > 1 separately from the conducting currents due to the free charges. For
perfect conductors, the total charge density qT reduces to qF . While for perfect dielectrics
the total charge density reduces to qB. The resulting EFIE for the PEEC formulation
can then be written as

n̂ × �Ei(�r, t) = n̂ ×
[

�JC(�r, t)

σ

]

+ n̂ ×
[

K∑
k=1

μ

∫
vk

G(�r, �r′)∂
�JC(�r′, td)

∂t
dvk

]
(4.15)

+ n̂ ×
[

K∑
k=1

ε0(εr − 1)μ

∫
vk

G(�r, �r′)∂
2 �E(�r′, td)

∂t2
dvk

]

+ n̂ ×
[

K∑
k=1

∇
ε0

∫
vk

G(�r, �r′)qT (�r′, td) dvk

]

4.1.4 Interpretation as Equivalent Circuit

The conversion from integral equation, (4.15), to equivalent circuit formulation is detailed
in this section. The PEEC formulation for a strict conductor environment is detailed, for
the dielectric formulation review reference [17]. The exclusion of dielectric bodies and
external fields reduces (4.15) to

0 = n̂ ×
[

�JC(�r, t)

σ

]

+ n̂ ×
[

K∑
k=1

μ

∫
vk

G(�r, �r′)∂
�JC(�r′, td)

∂t
dvk

]
(4.16)

+ n̂ ×
[

K∑
k=1

∇
ε0

∫
vk

G(�r, �r′)qF (�r′, td) dvk

]
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Note that the system of equations in (4.16) have two unknowns, the conduction current

density, �JC , and the charge density, qF . To solve the system of equations the following
procedure is employed :

1. The current densities are discretized into volume cells that gives a 3D representation
of the current flow. This is done by defining rectangular pulse functions

Pγnk = 1, inside the nk : th volume cell (4.17)

0, elsewhere

where γ = x, y, z indicates the current component of the n:th volume cell in the
k:th conductor.

Capacitive Par itiont

Discretization

Inductive Volume Cell Partition

Thin conducting plate

Jx

Jx

JY

JY

Figure 4.1: 2-D Discretization of current density and surface charge distribution.

2. The charge densities are discretized into surface cells that gives a 2D representation
of the charge over the corresponding volume cell, Fig. 4.1 This is done by defining
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the rectangular pulse functions

pmk = 1, inside the mk : th surface cell (4.18)

0, elsewhere

for the charge density on the m:th volume cell of the k:th conductor. Using the
definitions in (4.17) and (4.18) the current and charge densities can be written as

�JC
γk(�r′, td) =

Nγk∑
n=1

Pγnk Jγnk(�rγnk′, tγnk) (4.19)

qT
k (�r′, td) =

Mk∑
m=1

pmk qmk(�rmk′, tmk) (4.20)

where

tγnk = t − |�r − �rγnk′|
v

(4.21)

tmk = t − |�r − �rmk′|
v

The vector �rγnk′ is the source position vector indicating the center of the n:th
volume cell of the k:th conductor in the γ discretization and �rmk′ is the source
position vector indicating the center of the m:th surface cell of the k:th conductor.
In (4.19), the summation is over all the volume cells in conductor k with γ directed
current while in (4.20), the summation is over all the surface cells in conductor k.

Pulse functions are also used for the testing functions resulting in a Galerkin solution.
The inner product is defined as a weighted volume integral over a cell as

< f, g >=
1

a

∫
v

f(�r)g(�r) dv (4.22)

Combining (4.16), (4.19), (4.20), and (4.22) while using the inner product defined in
(4.31) results in a systems of equations given by

0 = n̂ ×
[

�JC(�r, t)

σ

]

+ n̂ ×
[

K∑
k=1

Nγk∑
n=1

μ

∫
v′

∫
vγnk

G(�r, �rγnk′)∂PγnkJγnk(�rγnk′, tγnk)

∂t
dvγnkdv′

]
(4.23)

+ n̂ ×
[

K∑
k=1

Mk∑
m=1

∇
ε0

∫
vmk

G(�r, �rmk′)pmkqmk(�rmk′, tmk) dvmk

]

Equation 4.23 is the basic discretized version of the electric field integral equation for the
PEEC method from which the partial elements can be identified as will be shown in the
following paragraphs.
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4.1.4.1 Partial Inductances

The basic expression for partial inductances can be derived from the second term in
(4.23) by using :

• The free-space Green’s function.

• The expression Iγm = Jγmam for the total current, Iγm, through a cross sectional
area, am.

This results in

K∑
k=1

Nγk∑
n=1

μ

4π

1

av′ avγnk

∫
v′

∫
vγnk

∂
∂t

Iγnk(�rγnk′, tγnk)

|�r − �r′| dvγnkdv′ (4.24)

and can be interpreted as the inductive voltage drop, vL, over the corresponding volume
cell. By defining the partial inductance as

Lpαβ =
μ

4π

1

aαaβ

∫
vα

∫
vβ

1

| �rα − �rβ|dvαdvβ (4.25)

can be rewritten as

vL =
K∑

k=1

Nγk∑
n=1

Lpv′ γnk
∂

∂t
Iγnk(t − τv′ vγnk

) (4.26)

where τv′ vγnk
is the center to center delay between the volume cells v′ and vγnk. Equation

4.25 is the basic definition for the partial self and mutual inductance using the volume
formulation. It is from this definition that simplified and analytical formulas for the
partial inductances for special geometries have been developed. The interpretation of
the second term in (4.23) as the inductive voltage drop (using the partial inductance
concept) results in :

• The connection of nearby nodes using the partial self inductance (Lpαα) of the
corresponding volume cell (α).

• The mutual inductive coupling of all volume cells using the concept of partial
mutual inductance.

A voltage source has been used to sum all the inductive (magnetic field) couplings from
all other volume cells, corresponding to the summation in (4.27). This voltage source is
defined as

V L
m (t) =

∑
∀n,n�=m

Lpmn

∂in(t − τmn)

∂t
(4.27)

Where in(t − τmn) is the current through volume cell n at an earlier instance in time,
(t− τmn). A PEEC model only consisting of partial inductances is entitled a (Lp)PEEC
model.
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4.1.4.2 Coefficients of Potential

The basic definition for partial coefficients of potential can be derived from the third
term in (4.23) by using the following approximations :

• The charges only resides on the surface of the volumes, i.e. converting the volume
integral to a surface integral.

• The integral in the γ coordinate can be calculated using a finite difference (FD)
approximation according to∫

v

∂

∂γ
F (γ)dv ≈ a

[
F

(
γ +

lm
2

)
− F

(
γ − lm

2

)]
(4.28)

This results in
K∑

k=1

Mk∑
m=1

[
qmk(tmk)

1

4πε0

∫
Smk

1

|�r+ − �r′|ds′ − qmk(tmk)
1

4πε0

∫
Smk

1

|�r− − �r′|ds′
]

(4.29)

which can be interpreted as the capacitive voltage drop, vC , over the actual cell and the
vectors �r+ and �r− are associated with the positive and negative end of the cell respectively.
By defining the partial coefficient of potential as

pij =
1

SiSj

1

4πε0

∫
Si

∫
Sj

1

|�ri − �rj| dSj dSi (4.30)

the capacitive voltage drop can be written as

vC =
K∑

k=1

Mk∑
m=1

Qmk(t − tmk)[pp
+
i(mk) − pp−i(mk)] (4.31)

using the total charge, Qmk, of the mk:th cell.
From the basic definition in (4.30) a number of simplified and analytical formulas for
partial coefficients of potential can be derived for special geometries configurations. The
interpretation of the third term in (4.23) as self and mutual (partial) coefficient of po-
tential (capacitive) coupling results in :

• The connection of each surface cell (node) to infinity through self partial (pseudo-)
capacitances.

• Mutual capacitive couplings of all surface cells (nodes).

The voltage source, V C
i which has been used to sum all the capacitive (electric field)

couplings from all other surface cells, is defined as

V C
i (t) =

∑
∀j,j �=i

Pij

Pjj

VCj
(t − τij) (4.32)

where VCj
(t− τij) is the voltage over the pseudo-capacitance, 1

Pjj
, of the j:th node, at an

earlier instance in time, (t − τij). A PEEC model only consisting of partial coefficients
of potential is entitled a (P )PEEC model.
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4.1.4.3 Resistances

The first term in (4.23) can be shown to equal the resistive voltage drop over the volume
cell. By assuming a constant current density over the volume cell the term is rewritten
as

�JC
γ

σγ

=
Iγ

aγσγ

(4.33)

where aγ is the cross section of the volume cell normal to the γ direction. The resistance
is then calculated as

Rγ =
lγ

aγσγ

(4.34)

where lγ is the volume cell length in the γ direction.The interpretation of the first term
in (4.23) as the voltage drop in a conductor results in a lumped resistance connection
between the nodes in the PEEC model. A PEEC model only consisting of volume cell
resistances is entitled a (R)PEEC model.

4.1.4.4 Combined (Lp)PEEC, (P )PEEC, and (R)PEEC Models.

When partial inductances are used in the (R)PEEC model a series connection of the
resistance and partial inductance is made. This results in a (Lp, R)PEEC model. The
inclusion of partial coefficients of potential results in a (Lp, R, P )PEEC model, Fig. 4.2.
In the figure, one surface cell at each node is used to account for the capacitive coupling
to corresponding node.

4.1.5 Solution of Time- and Frequency Domain PEEC Models

For the solution of PEECs in the time and frequency domain an Admittance Method or
a Modified Nodal Analysis (MNA) [18] method can be used. The Admittance Method
produces a minimal but dense system matrix to obtain the voltages in the structure.
The MNA solves for both voltages and currents in a structure and therefore produces a
larger, and sparse, system matrix. The MNA method is widely used in modern circuit
analysis software due to its full-spectrum properties and flexibility to include additional
circuit elements. The choice between the two methods depends on the specific problem
at hand and the computational resources available.

4.2 Practical PEEC Modeling

The basic procedure for creating PEEC models is illustrated in Fig. 4.3 illustrating all the
essential blocks required in a PEEC based electromagnetic solver. Shortly, a graphical
tool is needed to draw and edit a structure, a routine then performs the discretization
of the structure, the PEEC engine then calculates the partial elements and creates and
solves the linear system (for both time and frequency domain simulations). Finally, if the
system is stable, the solution variables (currents and voltages) are exported to a graph
viewer for further inspection.
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Figure 4.2: (Lp, R, P)PEEC model for volume cell m connecting node i and j.

4.3 The Parallel Algorithm of Grid-PEEC

By defining a grid as a system of distributed computers via a network, the main purpose of
Grid PEEC computing is to improve the computational time by an object-oriented code
which is more time efficient, more structured, and less memory consuming. Grid (parallel)
computing is of practical importance where there is no availability to super computers
for solving numerically large problems. A major issue within parallel computing is that
if/how the main problem can be divided into sub-problems which will be solved by several
processing units. The communication time between these processing units is an another
crucial issue.

In the nonorthogonal PEEC method, conductors and dielectrics, can be both or-
thogonal and non-orthogonal quadrilateral (surface) and hexahedral (volume) elements.
The formulation utilizes a global and a local coordinate system where the global coor-
dinate system uses orthogonal coordinates x, y, z where a global vector �F is defined as
�F = Fx

�̂x + Fy
�̂y + Fz

�̂z. A vector in the global coordinates are marked as �rg. The local
coordinates a, b, c are used to separately represent each specific possibly non-orthogonal

object and the unit vectors are �̂a,
�̂
b, and �̂c, see further [19] and Fig. 4.4. The model in

Fig. 4.5 consists of:

• partial inductances (Lp) which are calculated from the volume cell discretization
using a double volume integral.

• coefficients of potentials which are calculated from the surface cell discretization
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Figure 4.3: Work flow when creating PEEC models.

a

b

c

Figure 4.4: Nonorthogonal element created by the mesh generator with associated local coordi-
nate system.

using a double surface integral.

• retarded current controlled current sources, to account for the electric field cou-
plings, given by I i

p =
pij

pii
Ij
C(t − tdij

) where tdij
is the free space travel time (delay

time) between surface cells i and j,

• retarded current controlled voltage sources, to account for the magnetic field cou-
plings, given by V n

L = Lpnm
∂ Im(t−tdnm)

∂t
, where tdnm is the free space travel time

(delay time) between volume cells n and m.
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Figure 4.5: (Lp,P ,τ)PEEC model for metal patch in Fig. 4.4 discretized with four edge nodes.
Controlled current sources, In

p , account for the electric field coupling and controlled voltage
sources, V n

L , account for the magnetic field coupling.

By using the MNA method, the PEEC model circuit elements can be placed in the
MNA system matrix during evaluation by the use of correct matrix stamps [18]. The
MNA system, when used to solve frequency domain PEEC models, can be schematically
described as

jωP−1V −AT I = Is

AV − (R + jωLp)I = Vs
(4.35)

where: P is the coefficient of potential matrix, A is a sparse matrix containing the con-
nectivity information, Lp is a dense matrix containing the partial inductances, elements
of the type Lpij, R is a matrix containing the volume cell resistances, V is a vector
containing the node potentials (solution), elements of the type φi, I is a vector contain-
ing the branch currents (solution), elements of the type Ii, Is is a vector containing the
current source excitation, and Vs is a vector containing the voltage source excitation.
The first row in the equation system in (4.35) is Kirchoff’s current law for each node
while the second row satisfy Kirchoff’s voltage law for each basic PEEC cell (loop). The
use of the MNA method when solving PEEC models is the preferred approach since ad-
ditional active and passive circuit elements can be added by the use of the corresponding
MNA stamp. For a complete derivation of the quasi-static and full-wave PEEC circuit
equations using the MNA method, see for example [21].

4.3.1 Grid-PEEC by Alchemi

There exist various software for creating grid applications. The choice of method is, for
instance, dependent on the purpose and performance of the final task and the possibility
to put in time and effort in the creation of the grid application. Alchemi [22] is a part
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of the GRIDBUS project [23] and is a .NET-based grid computing framework (grid mid-
dleware) that provides the runtime machinery and programming environment required
to construct desktop grids and develop grid applications [23].

The purpose of applying the Grid-PEEC is to improve the performance of a 3D, quasi-
static, frequency domain, PEEC-based EM solver capable of handling nonorthogonal
structures. The original code is written in C++ and runs on a Windows environment.
This type of code (quasi-static, Finite-Difference based, and nonorthogonal) was chosen
since

• Quasi-static, frequency domain PEEC solvers operate on static partial elements
with the multiplication of the phase shift at each frequency thus there is no need
for recalculating the elements at each frequency (as for full-wave solvers) which
simplifies the task.

• Nonorthogonal partial elements are time consuming to calculate and thus a con-
siderable speed up could be expected. Consider the calculation of nonorthogonal
partial inductances using a simple Gauss-Legendre quadrature. In the current code
this takes 13 ms/inductance when using 5 weights for the length and width di-
rection respectively and 2 weights in the thickness direction. For near couplings,
8th order Gauss-Legendre quadrature can be necessary increasing the time to 75
ms/inductance. Coefficients of potentials are somewhat faster to calculate since it
is assumed that the charges to reside on the surface of the conductors converting a
volume integral to a surface integral, as depicted in the previous section.

• To solve for each frequency point no history of previous voltages and currents are
needed as for time domain solvers thus simplifying the task.

There are three grid applications created by the grid-PEEC program. The first one is the
Calculation of Coefficients of Potentials, grid application two is the Calculation of Partial
Inductances, and the third is the Solution of Frequency Domain Problem. The PEEC
program will execute these grid applications one at a time starting with Calculation of
Coefficients of Potentials, then in turn follows as the above mentioned order. The PEEC-
program creates a thread that creates a grid application that sends the calculations out on
the grid. The thread that started the grid application is in the meantime stopped/paused
until its grid calculations is carried out. The choice of Alchemi in this grid application is
based ,firstly, on the usage of the old code written in C++ without major modifications
and, secondly, on the simplicity to setup and manage the grid application. The modified
code works as follows:

1. Manager performs:

• parsing and meshing,.

• calculations of A and R.

• setup IS and V.

• check how many executors.
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2. Partition calculation of coefficients of potentials on the connected executors (fill
P). Keep track of non-fill-ins.

3. Partition calculations of partial inductances on the connected executors (fill L).
Keep track of non-fill-ins.

4. Solve Eq. (4.35) on the executors. Collect the results.

Results from the above applications show that the partial element calculation time is not
improved by the grid-PEEC application but the frequency sweep time is clearly improved
by this application.

4.4 Dyadic Green’s Function, the Method of Com-

plex Images and PEEC

Pii
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Figure 4.6: Basic PEEC building block for conducting wire.

In the PEEC method, the integral form of Maxwell’s equations is interpreted as
Kirchoff’s voltage law applied to a basic PEEC cell which results in a complete circuit
solution for 3D geometries, see Fig. 4.6 for the basic circuit. The equivalent circuit formu-
lation allows for additional SPICE-type circuit elements to easily be included. Further,
the models and the analysis apply to both the time and the frequency domain.

The circuit equations resulting from the PEEC model are easily constructed using a
condensed modified loop analysis (MLA) or modified nodal analysis (MNA) formulation.
In the MNA formulation, the volume cell currents and the node potentials are solved
simultaneously for the discretized structure. To obtain field variables, post-processing of
circuit variables are necessary.

Solving Maxwell’s equations for systems which include a source above a dielectric
surface desires application of the CIM and dyadic Green’s functions. A dyad is a rank
two tensor that can be represented as a matrix. Hence, a multiplication of a vector �A



and the dyad D can be represented as

D �A =

⎡
⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦

⎡
⎣ A1

A2

A3

⎤
⎦ (4.36)

A dyad may be represented as a pair of vectors without any sign between and a (3 × 3)
dyad is represented as a linear combination of three of such dyads as

D = �A�B + �P �Q + �R�S (4.37)

Multiplication between vectors and dyads is defined such that a product of the identity

dyad I = x̂x̂ + ŷŷ + ẑẑ and any vector �V yields the vector itself, that is

I · �V = (x̂x̂ + ŷŷ + ẑẑ) · (v1x̂ + v2ŷ + v3ẑ)

= x̂v1 + ŷv2 + ẑv3

= �V (4.38)

The electric field Ē for a layered medium is a three-dimensional convolution between the
dyadic Green’s function and the source current density J̄ . This convolution integral is
strongly singular which makes the numerical integration very time-consuming. Solving
this type of integral is one of the topics within electromagnetism. By using the CIM,
the appropriate Green’s function is obtained much easier in terms of, for instance, spher-
ical wave components where the real and imaginary sources are expressed in a series
of summations [24, 3]. As a result, the time complexity for computing coefficients of
potential Pij and partial inductances Lpij within PEEC is improved. The appropriate
Green’s functions, obtained in this process, will also be used to determine the volume
cell currents I and node voltages V in a structure.

Electric and magnetic field of an electric dipole in the vicinity and within an infinite
perfect electric conductor (PEC)- or dielectric plane are subjects that can be studied
and facilitated by applying the image methods (IM) and the complex image methods
(CIM). For a layered medium, the idea of the CIM is to transform the problem into a
combination of the source dipole and image dipoles with real and complex locations in
space and in the absence of the layered medium, see Fig. 4.7. The radiation dyadic
integral is expressed as

Ē(�r, ω) = −jωμ

[
I +

1

β2

] ∫
G(�r, �r′)d�r′ (4.39)

where ω and μ are the angular frequency and the magnetic characteristic, respectively. �r
is the observation point distance to the origin and �r′ is the distance from the origin to the

source point. The identity dyad I is defined as I = x̂x̂ + ŷŷ + ẑẑ. The radiation integral
in (4.39) gives the solution of the Maxwell’s equations in terms of a Green’s function
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Figure 4.7: Real and complex images for a vertical dipole above a dielectric plane.

formulation. The Green’s function in this case will be a 3 × 3 matrix of functions, or
dyadic as

G =

[
I +

1

β2
∇∇

]
ejβ|
r−
r′|

4π|�r − �r′| (4.40)

The integral in (4.39) is strongly singular which makes the numerical integration very
time-consuming. As mentioned earlier, solving this type of integral is one of the topics
within electromagnetism. For the case of an infinitesimal vertical dipole above a dielectric
half-plane, (4.39) can be rewritten as

Ez(z) =
1

jωε0

∫
z′

(
β2

0 +
∂2

∂z2

)
Gzz

A I(z′)dz′ (4.41)

where β0 is the free-space wave-number and Gzz
A is the dyadic Green’s function for the

vector potential A. It is shown that the dyadic Green’s function in the above equation
takes the form of a Sommerfeld-type integral for an infinitesimal vertical dipole located
at (x′, y′, z′) above a dielectric half-space with the relative permittivity εr [25]. This is
an slowly convergent integral which is cumbersome to solve numerically. However, by
complex image methods, as it is illustrated in Fig. 4.7 this dyadic Green’s function can
be solved much easier in terms of spherical wave components as [24]

Gzz
A =

e−jβ0Rs

4πRs

− K
e−jβ0Rq

4πRq

+
N∑

i=1

e−jβ0Ri

4πRi

, N = 3 ∼ 5 (4.42)

where K = (1 − εr)/(1 + εr), and Rs, Rq, and Ri are distances from the source point,
real image point (quasidynamic image), and i-th image respectively to the field point.
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Coefficients of potential and partial inductances for a layered medium can generally be
determined by [26]

Pij =
Ai

4πε

∫
Sj

Gφ(rci
, r′)dr′ (4.43)

and

Lij =
μ

4π

∫
Vi

∫
Vj

GA(r, r′)l̂j l̂idr′dr (4.44)

respectively, where Gφ and GA are the scalar Green’s function and the vector Green’s

function. V and S are the union of conductor volumes and surfaces; l̂ = [lx, ly, lz] is the
direction in which a constant current density flows; the associated volume current and
the surface charge of the conductor are approximated so that the discretized conductor
volumes are assumed to be short and thin by a finite length and a cross sectional area.
The conductor surfaces are also discretized into small panels each by a small area S and
a centroid location rc. For a layered medium, GA, i.e. the vector Green’s function, is
defined as

GA =

⎡
⎣ GA

xx 0 0
0 GA

yy 0
GA

xz GA
yz GA

zz

⎤
⎦ (4.45)

where the matrix elements will be determined by the method of the complex images
by definition of �r′ = [x′, y′, z′] as a vector from the origin to the source point. For
the free-space, �r = [x, y, z] and for a real image, �r = [x, y,−z]. For a complex image,
�r = [x, y,−z + jb] where the real b will be determined by, for example, Prony’s method
[3][4].
Based on the PEEC method, the coefficients of potential are obtained by

pij =
1

SiSjε

∫
Sj

∫
Si

G(�ri, �rj)dSjdSi (4.46)

where Si and Sj are the surface areas of cell i and j, created in the PEEC discretization.
The Green’s function in the above case, i.e. in the case of a vertical dipole above a PEC
plane, is shown to be [24] G = Gfree−space − Gimage where

Gfree−space =
1

4π|r̄i − r̄j| , Gimage =
1

4π|r̄i − r̄q| (4.47)

in which |r̄i − r̄j| and |r̄i − r̄q| represent respectively the distances to the field point from
the source point and to the quasi-dynamic image, i.e. the distance between the source
point and its classical real image. This means that each element in the matrix for partial
element potential coefficients pij includes the subtraction Gfree−space − Gimage.

Determining of the total partial self- and mutual inductances for a structure above a
PEC plane will be analogous to that of the partial coefficients of potential [27], that is

Ltotal = Lfree−space − Limage (4.48)
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where the elements in the matrix Lfree−space are the partial self- and mutual inductances
for the physical segments; Limage is the matrix including partial mutual inductances
between the physical segments and their images.

Based on the coupled formulation of the PEEC method and CIM, a so-called Z-
section test was done where the system was consisted of two rails, a ground plane, and
a discontinuity, see Fig. 4.8. The computational time was considerably reduced by
approximating the ground effects and the reduced number of unknowns, in comparison to
the case where the ground were gridded. Some of the case studies showed computational
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Figure 4.8: Voltages and currents in a Z-section test .

speed ups for EM problems containing large ground planes where the PEEC method and
the CIM were applied. These results are as follows:

• In the case of the PIFA test from paper A, the frequency domain, quasi-static
solution by 100 steps and gridded ground plane resulted into 585 + 322 unknowns.
This was solved by regular PEEC in 1 minute, 44 seconds. Removed ground plane
resulted into 155 + 91 unknowns by the solution time of 3 seconds.

• In the case of the Z-section test, mentioned in Chapter 4, the frequency domain,
quasi-static solution by 100 steps and gridded ground plane resulted in 2270+1275
unknowns. This was solved by regular PEEC in 56 minutes. Removed ground
plane resulted in 200 + 204 unknowns. This was solved in 5 seconds.

It should be mentioned that the speed ups were strongly application dependent.



Chapter 5

Paper Summaries

In this chapter, summaries of two conference contributions are presented.
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5.1 Paper A: Antenna Analysis Using PEEC and the

Complex Image Method

The PEEC method is a 3D, full wave modeling method suitable for combined electro-
magnetic and circuit analysis. In the PEEC method, the integral equation is interpreted
as Kirchoff’s voltage law applied to a basic PEEC cell which results in a complete cir-
cuit solution for 3D geometries. The equivalent circuit formulation allows for additional
SPICE-type circuit elements to easily be included. Further, the models and the analysis
apply to both the time and the frequency domain.

The circuit equations resulting from the PEEC model are easily constructed using a
condensed modified loop analysis (MLA) or modified nodal analysis (MNA) formulation.
In the MNA formulation, the volume cell currents and the node potentials are solved
simultaneously for the discretized structure. To obtain field variables, post-processing of
circuit variables is necessary.

In this paper, it is shown that how the PEEC method is applied to model antenna
characteristics, including input impedance and radiation diagrams, by use of the appro-
priate Green’s function in the calculation of partial elements. The electric field for a
layered medium is a three-dimensional convolution between the dyadic Green’s function
and the source current density. This convolution integral is strongly singular which makes
the numerical integration very time-consuming. Solving this type of integral is one of
the topics within electromagnetism. By using the complex image method (CIM), the
appropriate Green’s function is obtained much easier in terms of, for instance, spherical
wave components where the real and imaginary sources are expressed in a series of sum-
mations. As a result, the time complexity for computing coefficients of potential Pij and
partial inductances Lpij within PEEC is improved. The appropriate Green’s functions,
obtained in this process, will also be used to determine the volume cell currents I and
node voltages V in a structure.

5.2 Paper B: Optimization of PEEC Based Electro-

magnetic Modeling Code Using Grid Computing

Different speed-up approaches for PEEC have been presented by, for instance, using
wavelet transform and fast multipole method . This paper presents a grid based ap-
proach with the potential of speeding up both partial element computations and the
solution of the resulting equation system. Therefore, three different grid applications are
created by a grid-PEEC program which handles the calculation of coefficients of poten-
tials, the calculation of partial inductances, and the solution of the frequency domain
circuit equations.

This paper deals with the optimization of an existing frequency domain, nonorthog-
onal partial element equivalent circuit based electromagnetic analysis code using the
freeware Alchemi toolkit in a Windows environment. The purpose is to speed up both
the calculation of the nonorthogonal partial elements and the solution of the frequency
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domain systems. To enable satisfactory results, construction of a linear algebra library
was required. The original PEEC code uses the Matrix TCL Pro 2.12 and a complex
linear algebra library.
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Chapter 6

Conclusions and Further Work
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6.1 Conclusions

The main objective of this thesis has been to reduce the computational time for numer-
ically large problems, resembling the railway system in which numerical solution of the
electromagnetic modeling has been a bottleneck, due to the ground effects. To deal with
this complication, the image methods and complex image methods were applied to differ-
ent structures above a PEC surface by infinite extent. Results of the case studies showed
a radical reduction in computational time, see results in Ch. 4.4. In these case studies,
the PEEC method and complex image methods were applied. For nonorthogonal struc-
tures, grid-computing technology was applied to optimize a 3D, quasi-static, frequency
domain PEEC-based EM-solver. By this technology, the calculation time results for the
partial elements could not be improved but the solution time for the frequency domain
systems were considerably reduced, see Paper B.

Although the solved problems had an idealized nature, a huge amount of computa-
tional memory was used which implies that the PEEC-based electromagnetic field solu-
tion is expected to rely more on parallel algorithms in circumstances where the access to
super computers is limited. The electromagnetic modeling will be a completion to EMC
tests to constitute an indicator when maintaining of the railway system. In order to the
radical improvement of these electromagnetic calculations by these methods, it will be
possible to design a more developed maintenance program in which EMC, as a whole,
constitutes an indicator within railway maintenance.

6.2 Further work

Further work will include a robust implementation of the theory presented here. Then,
extensive testing of the improvement, firstly on problems with large ground plane and
secondly on problems with large planes of dielectric material is needed. In future work
and in the railway applications, the ground should be assumed as a dielectric medium
which requires naturally more complicated electromagnetic modeling. A combination of
complex image methods and grid computing technology will, in this case, be applicable in
order to electromagnetic modeling of the ground as a dielectric media and as a numerically
large system.

The combination of PEEC and CIM can further be applied to analysis of other layered
media, for example, printed circuit boards.
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Antenna Analysis Using PEEC and the Complex

Image Methods

Farid Monsefi and Jonas Ekman, Department of Computer Science and Electrical
Engineering, Lule̊a University of Technology, Sweden

Abstract

The partial element equivalent circuit (PEEC) method has been developed from VLSI
inductance calculations in the early 70s. The method is still evolving and new application
areas are continuously reported. In this paper we show how the PEEC method is utilized
to model antenna characteristics by the use of the appropriate Green’s functions. By
applying the complex image methods due to a layered medium, the potential, generated
by a source, will be the same as the sum of potentials by a combination of the source itself
and image sources including both real and image locations. Calculated and analytical
results are compared for dipoles while more complex antenna designs are compared with
published results by other researchers. Fast and accurate results encourage for further
work.

1 Introduction

Image methods are applied within antenna theory to give an equivalent system near an
infinite plane conductor or dielectric where there exists symmetry in the geometry of the
problem [1]. In this paper, it will be shown that how the PEEC method [2, 3] is utilized to
model antenna characteristics, including input impedance and radiation diagrams, by use
of the appropriate Green’s function in the calculation of partial elements. The electric
field Ē for a layered medium is a three-dimensional convolution between the dyadic
Green’s function and the source current density J̄ . This convolution integral is strongly
singular which makes the numerical integration very time-consuming. Solving this type
of integral is one of the topics within electromagnetism. By using the complex image
methods (CIM), the appropriate Green’s function is obtained much easier in terms of, for
instance, spherical wave components where the real and imaginary sources are expressed
in a series of summations [4, 5]. As a result, the time complexity for computing coefficients
of potential Pij and partial inductances Lpij within PEEC is improved. The appropriate
Green’s functions, obtained in this process, will also be used to determine the volume
cell currents I and node voltages V in a structure.
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Figure 1: Basic PEEC building block for conducting wire.

2 Basic PEEC Theory

The PEEC method is a 3D, full wave modeling method suitable for combined electro-
magnetic and circuit analysis. In the PEEC method, the integral equation is interpreted
as Kirchoff’s voltage law applied to a basic PEEC cell which results in a complete circuit
solution for 3D geometries, see Fig. 1 for the basic circuit. The equivalent circuit formu-
lation allows for additional SPICE-type circuit elements to easily be included. Further,
the models and the analysis apply to both the time and the frequency domain. The cir-
cuit equations resulting from the PEEC model are easily constructed using a condensed
modified loop analysis (MLA) or modified nodal analysis (MNA) formulation. In the
MNA formulation, the volume cell currents and the node potentials are solved simulta-
neously for the discretized structure. To obtain field variables, post-processing of circuit
variables are necessary.

3 Image Methods and Complex Image Methods

Electric and magnetic field of an electric dipole in the vicinity and within an infinite
perfect electric conductor (PEC)- or dielectric plane are subjects that can be studied and
facilitated by applying the image methods (IM) and the complex image methods (CIM)
[4][5]. Due to a layered medium, the idea of the CIM is to transform the problem into
a combination of the source dipole and image dipoles with real and complex locations
in space and in the absence of the layered medium, see Fig. 2. The radiation dyadic
integral is expressed as

Ē(�r, ω) = −jωμ

[
I +

1

β2

] ∫
G(�r, �r′)d�r′ (1)

where ω and μ are the angular frequency and permeability, respectively. �r is the obser-
vation point distance to the origin and �r′ is the distance from the origin to the source

point. The identity dyad I is defined as I = x̂x̂ + ŷŷ + ẑẑ. The radiation integral in (1)
gives the solution of the Maxwell’s equations in terms of a Green’s function formulation.
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Figure 2: Real and complex images for a vertical dipole above a dielectric plane.

The Green’s function in this case will be a 3 × 3 matrix of functions, or dyadic as

G =

[
I +

1

β2
∇∇

]
ejβ|
r−
r′|

4π|�r − �r′| (2)

The integral in (1) is strongly singular which makes the numerical integration very time-
consuming. Solving this type of integral is one of the topics within electromagnetism.
For the case of an infinitesimal vertical dipole above a dielectric half-plane, (1) can be
rewritten as

Ez(z) =
1

jωε0

∫
z′

(
β2

0 +
∂2

∂z2

)
Gzz

A I(z′)dz′ (3)

where β0 is the free-space wave-number and Gzz
A is the dyadic Green’s function for the

vector potential A. It is shown that the dyadic Green’s function in the above equation
takes the form of a Sommerfeld-type integral for an infinitesimal vertical dipole located
at (x′, y′, z′) above a dielectric half-space of the relative permittivity εr [6]. This is
an slowly convergent integral which is cumbersome to solve numerically. However, by
complex image methods, as it is illustrated in Fig. 2 this dyadic Green’s function can be
solved much easier in terms of spherical wave components as [4]

Gzz
A =

e−jβ0Rs

4πRs

− K
e−jβ0Rq

4πRq

+
N∑

i=1

e−jβ0Ri

4πRi

, N = 3 ∼ 5 (4)

where K = (1 − εr)/(1 + εr), and Rs, Rq, and Ri are distances from the source point,
real image point (quasidynamic image), and i-th image respectively to the field point.
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The classical image solution of an infinitesimal vertical dipole above a PEC plane can be
derived where the third term in (4) is vanished. This Green’s function is

Gzz
A =

e−jβ0Rs

4πRs

− e−jβ0Rq

4πRq

(5)

By applying image methods, the input impedance of a horizontal dipole above a PEC
plane, as described in [1], can be calculated as a summation of self- and mutual impedances.
For determining the input impedance for a horizontal dipole located above a PEC plane,
a side-by-side configuration can be applied. For this case, the self-impedance Z11 will
be computed as Z11 = R11 + jX11 where R11 and X11 are input- resistance and reac-
tance. The mutual impedance for a side-by-side dipole configuration is computed as
Z21 = R21 + jX21 where R21 and X21 are the mutual- resistance and reactance. This
computation of the input impedance is based on the current at the input.

4 Combining PEEC and CIM

Coefficients of potential and partial inductances as calculated in the PEEC method, for
a layered medium are generally determined by [7]

Pij =
Ai

4πε

∫
Sj

Gφ(rci
, r′)dr′ (6)

respectively

Lij =
μ

4π

∫
Vi

∫
Vj

GA(r, r′)l̂j l̂idr′dr (7)

where Gφ and GA are the scalar Green’s function and the vector Green’s function. V and

S are the union of conductor volumes and surfaces; l̂ = [lx, ly, lz] is the direction in which
a constant current density flows; the associated volume current and the surface charge of
the conductor are approximated so that the discretized conductor volumes are assumed
to be short and thin by a finite length and a cross sectional area. The conductor surfaces
are also discretized into small panels each by a small area S and a centroid location rc.
For a layered medium, GA, i.e. the vector Green’s function, is defined as

GA =

⎡
⎣ GA

xx 0 0
0 GA

yy 0
GA

xz GA
yz GA

zz

⎤
⎦ (8)

where the matrix elements will be determined by the method of the complex images
by definition of �r′ = [x′, y′, z′] as a vector from the origin to the source point. For
the free-space, �r = [x, y, z] and for a real image, �r = [x, y,−z]. For a complex image,
�r = [x, y,−z + jb] where the real b will be determined by, for example, Prony’s method
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[5]. The induced electric field for an infinitesimal vertical dipole (or PEEC model volume
cell) above a PEC plane, see Fig. 2, due to far-field observation is [1]

Eθ = jη
βI0le

−jβ
r

4πr
sinθ [2cos (βh cos θ)] (9)

where h is the vertical distance between the PEC plane and the closest end of the dipole,
l is the length of the dipole, and I0 is the constant electric current. Further, θ is the angle
between z-axis and �r which is the radial distance between the original of the coordinate
system and the observation point. An equivalent formulation can be used where the
dipole is divided into N infinitesimal vertical dipoles, located along the positive z-axis.
The far-zone electric field, caused by contribution from all of these infinitesimal vertical
dipoles, can be written as

En
θ 	

N∑
n=1

jη
βI

(n)
0 lne−jβ
r

4πr
sin θ × {2 cos[(h +

2n − 1

2
ln)β cos θ]} (10)

for z > 0. The strategy is to mesh structures according to PEEC method where the length
ln of the cell n coincides with an appropriate infinitesimal vertical dipole along one axis.
In
0 , is the volume cell currents give by the PEEC solver using the partial elements from

(6) and (7).

4.1 Partial Element Calculations Applying PEEC and IM

Based on the PEEC method, the coefficients of potential are obtained by

pij =
1

SiSjε

∫
Sj

∫
Si

G(�ri, �rj)dSjdSi (11)

where Si and Sj are the surface areas of cell i and j, created in the PEEC discretization.
By application of (5), the Green’s function in the above case, i.e. in the case of a vertical
dipole above a PEC plane, is shown to be [4] G = Gfree−space − Gimage where

Gfree−space =
1

4π|r̄i − r̄j| , Gimage =
1

4π|r̄i − r̄q| (12)

in which |r̄i − r̄j| and |r̄i − r̄q| represent respectively the distances to the field point
from the source point and to the quasidynamic image, i.e. the distance between the
source point and its classical real image. This means that each element in the matrix
for partial element potential coefficients pij includes the subtraction Gfree−space −Gimage.
Determining of the total partial self- and mutual inductances for a structure above a
PEC plane will be analogous to that of the partial coefficients of potential [8], that is

Ltotal = Lfree−space − Limage (13)

where the elements in the matrix Lfree−space are the partial self- and mutual inductances
for the physical segments; Limage is the matrix including partial mutual inductances
between the physical segments and their images.
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5 Numerical Results

This section gives two examples for PEEC models utilizing the theory described in pre-
vious sections.

5.1 λ
2Dipoles

The first example is a horizontal, thin wire dipole of length 50 mm and radius 0.01
μm, located above a PEC-plane as studied in [9]. For numerical modeling, a PEEC-

Figure 3: Resonance frequency results for a λ
2dipole above a PEC plane modeled using a com-

bination of PEEC and IM.

based solver utilizing the modified computation of the partial elements from Chapter 4
to account for a PEC plane at z = 0 is used. Fig. 3 shows the computed driving point
impedance of the dipole at various heights above the PEC-plane which compares well
with the results from [9]. Fig. 4 shows the computed electric field strengths for two
different heights above the PEC-plane. These results compare well with results from [1].
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YZ-Plane

Figure 4: Electric field for different heights above a PEC-plane for a λ
2dipole modeled using a

combination of PEEC and IM.

5.2 Dual-band antenna (PIFA)

The second numerical example is the dual-band, PIFA antenna studied in [10]. The
antenna consists of two interconnected, by an LC-trap, antenna elements (20 × 10 mm
and 10 × 10 mm) above a PEC-plane. By using the traditional PEEC method, the
antenna can be studied by modeling the PEC-plane. However, here we show the results
by using the theory from above compared to a free-space situation (no PEC-plane). The
PIFA-antenna is designed to have resonance frequencies around 900 and 1 800 MHz
depending on the LC-trap. By using one of the suggested L-C-combination in [10], the
Image-PEEC solver gives the result in Fig. 5. The resonance frequencies are 1 000 and
1 750 MHz without altering the L-C-combination which has to be considered well in
comparison with the published results.
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6 Conclusions and Discussion

In this work, we have shown that how image- and complex image methods can be com-
bined with the partial element equivalent circuit (PEEC) method. The theory has been
tested by inclusion in an existing PEEC solver and a few illustrative examples have been
shown. For computing input impedance and the resonance frequency, there were small
discrepancies between the already existing analytic solutions and the solutions which were
given by the PEEC-image method. Further, the Green’s functions which are obtained
by both the image and the complex image method improve the computation time of the
PEEC based solver by reducing the number of unknowns in the solution. Further work
involves the study of infinite dielectric planes by using CIM and PEEC.
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Figure 5: Resonance frequencies for a dual-band antenna (PIFA) above a PEC plane.
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Optimization of PEEC Based Electromagnetic

Modeling Code Using Grid Computing

Jonas Ekman and Farid Monsefi, Department of Computer Science And Electrical
engineering , Lule̊a University of Technology, Sweden.

Abstract

This papers deals with the optimization of an existing frequency domain, nonorthogonal
partial element equivalent circuit based electromagnetic analysis code using the freeware
Alchemi toolkit in a Windows environment. The purpose is to speed up both the cal-
culation of the nonorthogonal partial elements and the solution of the frequency domain
systems. The technology with this type of heterogeneous grid computing was shown to
be very young and extensive work, including the construction of a linear algebra library,
was required to enable satisfactory results.

1 Introduction

Partial element equivalent circuit (PEEC) models [1, 2, 3] are ideal for solving mixed
circuit and electromagnetic problems. However, the newly introduced nonorthogonal
PEEC formulation [4] is computationally demanding for partial element computations
since semi-analytic computation routines can not be used. Worse case is for PEEC-based
frequency domain, full-wave solvers which require the partial elements to be recomputed
at each frequency step. Different speed-up approaches for PEEC have been presented
by, for instance, using wavelet transform [5] and fast multipole method [6]. This paper
presents a grid based approach with the potential of speeding up both partial element
computations and the solution of the resulting equation system. Therefore, three differ-
ent grid applications are created by a grid-PEEC program which handle the calculation
of coefficients of potentials, the calculation of partial inductances, and the solution of
the frequency domain circuit equations. Section 2 derives concisely the integral-based
method of partial element equivalent circuit (PEEC). In Sec. 3, different kinds of soft-
ware for grid computing are presented. The choice of method, which for instance, is
dependent on the purpose and performance of the final task follows in this section. Also
discussed is the possibility to put in time and effort in the creation of the grid application.
The main purpose of this paper is handled in Sec. 4 where the attempt is to improve
the performance of a 3D, quasi-static, frequency domain, PEEC-based EM-solver for
nonorthogonal structures. Result for two test objects follows in Sec. 5. These are an
orthogonal λ

2
dipole, and a nonorthogonal transmission line, respectively. Conclusions

and discussion are found in Sec. 6.
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2 Basic PEEC Theory

The PEEC method is a 3D, full wave modeling method suitable for combined electro-
magnetic and circuit analysis. In the PEEC method, the integral equation is interpreted
as Kirchoff’s voltage law applied to a basic PEEC cell which results in a complete cir-
cuit solution for 3D geometries. The equivalent circuit formulation allows for additional
SPICE-type circuit elements to easily be included. Further, the models and the analysis
apply to both the time and the frequency domain. The circuit equations resulting from
the PEEC model are easily constructed using a condensed modified loop analysis (MLA)
or modified nodal analysis (MNA) formulation [8]. In the MNA formulation, the volume
cell currents and the node potentials are solved simultaneously for the discretized struc-
ture. To obtain field variables, post-processing of circuit variables are necessary. This
section gives an outline of the nonorthogonal PEEC method as fully detailed in [4]. In
this formulation, the objects, conductors and dielectrics, can be both orthogonal and non-
orthogonal quadrilateral (surface) and hexahedral (volume) elements. The formulation
utilizes a global and a local coordinate system where the global coordinate system uses
orthogonal coordinates x, y, z where a global vector �F is of the form �F = Fx

�̂x+Fy
�̂y+Fz

�̂z.
A vector in the global coordinates are marked as �rg. The local coordinates a, b, c are used
to separately represent each specific possibly non-orthogonal object and the unit vectors

are �̂a,
�̂
b, and �̂c, see further [4]. The starting point for the theoretical derivation is the

total electric field at a conductor expressed as

�Ei(�rg, t) =
�J(�rg, t)

σ
+

∂ �A(�rg, t)

∂t
+ ∇φ(�rg, t), (1)

where �Ei is the incident electric field, �J is the current density in a conductor, �A is
the magnetic vector potential, φ is the scalar electric potential, and σ the electrical
conductivity. The dielectric areas are taken into account as an excess current with the
scalar potential using the volumetric equivalence theorem. By using the definitions of the
vector potential �A and the scalar potential φ we can formulate the integral equation for
the electric field at a point �rg which is to be located either inside a conductor or inside
a dielectric region according to

�Ei(�rg, t) =
�J(�rg, t)

σ
(2)

+ μ

∫
v′

G(�rg, �rg′)∂
�J(�rg′, td)

∂t
dv′

+ ε0(εr−1)μ

∫
v′
G(�rg, �rg′)∂

2 �E(�rg′, td)
∂t2

+
∇
ε0

∫
v′

G(�rg, �rg′)q(�rg′, td)dv′.

Eq. (2) is the time domain formulation which can easily be converted to the frequency
domain by using the Laplace transform operator s = ∂

∂t
and where the time retardation
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a

b

c

Figure 1: Nonorthogonal element created by the mesh generator with associated local coordinate
system.

τ will transform to e−sτ . The PEEC integral equation solution of Maxwell’s equations
is based on the total electric field, e.g. (1). An integral or inner product is used to
reformulate each term of (2) into the circuit equations. This inner product integration

converts each term into the fundamental form
∫

�E · dl = V where V is a voltage or
potential difference across the circuit element. It can be shown how this transforms the
sum of the electric fields in (1) into the Kirchoff Voltage Law (KVL) over a basic PEEC
cell [3]. Fig. 2 details the (Lp,P ,τ)PEEC model for the metal patch in Fig. 1 when
discretized using four edge nodes (dark full circles). The model in Fig. 2 consists of:

• partial inductances (Lp) which are calculated from the volume cell discretization
using a double volume integral.

• coefficients of potentials which are calculated from the surface cell discretization
using a double surface integral.

• retarded current controlled current sources, to account for the electric field cou-
plings, given by I i

p =
pij

pii
Ij
C(t − tdij

) where tdij
is the free space travel time (delay

time) between surface cells i and j,

• retarded current controlled voltage sources, to account for the magnetic field cou-
plings, given by V n

L = Lpnm
∂ Im(t−tdnm)

∂t
, where tdnm is the free space travel time

(delay time) between volume cells n and m.

By using the MNA method, the PEEC model circuit elements can be placed in the
MNA system matrix during evaluation by the use of correct matrix stamps [8]. The
MNA system, when used to solve frequency domain PEEC models, can be schematically
described as

jωP−1V −AT I = Is

AV − (R + jωLp)I = Vs
(3)

where: P is the coefficient of potential matrix, A is a sparse matrix containing the con-
nectivity information, Lp is a dense matrix containing the partial inductances, elements
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Figure 2: (Lp,P ,τ)PEEC model for metal patch in Fig. 1 discretized with four edge nodes.
Controlled current sources, In

p , account for the electric field coupling and controlled voltage
sources, V n

L , account for the magnetic field coupling.

of the type Lpij, R is a matrix containing the volume cell resistances, V is a vector con-
taining the node potentials (solution), elements of the type φi, I is a vector containing the
branch currents (solution), elements of the type Ii, Is is a vector containing the current
source excitation, and Vs is a vector containing the voltage source excitation. The first
row in the equation system in (3) is Kirchoff’s current law for each node while the second
row satisfy Kirchoff’s voltage law for each basic PEEC cell (loop). The use of the MNA
method when solving PEEC models is the preferred approach since additional active and
passive circuit elements can be added by the use of the corresponding MNA stamp. For
a complete derivation of the quasi-static and full-wave PEEC circuit equations using the
MNA method, see for example [9].

3 Grid Software

There exist various software for creating grid applications. The choice of method is, for
example, dependent on the purpose and performance of the final task and the possibility
to put in time and effort in the creation of the grid application. Below follows a short
introduction to two technologies.

3.1 Alchemi

Alchemi [10] is a part of the GRIDBUS project [11] and is a .NET-based grid comput-
ing framework (grid middleware) that provides the runtime machinery and programming
environment required to construct desktop grids and develop grid applications [11]. Al-
chemi is free and relatively simple to use and a cross-platform support is provided via a
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web services interface and an execution model that supports dedicated and non-dedicated
(voluntary) execution by grid nodes. It has been designed with the goal of being easy
to use and thus more advanced features and performance have been cut. Security fea-
ture all programs trying to connect to the manager needs a username and password to
an account on the manager. There are three different groups of accounts Executors,
Users, and Administrators. Each activity that the manager can perform is accessed with
permission.

3.2 Cactus

Cactus [12] originates from the research community where it have been used and de-
veloped for many years. One might consider to use Cactus software to perform parallel
programming across different architectures using F77, F90, C, and C++. Cactus supports
most of the OS architectures on the market today, including Windows. Cactus provides
with access to many software technologies for example the Globus Toolkit, HDF5 paral-
lel file I/O, the PETSc scientific library, adaptive mesh refinement, web interfaces, and
visualization tools. Cactus is Open Source and the languages C and C++ can be used.

3.3 Globus Toolkit

The Globus Toolkit [13] is an open source toolkit for projects that want to make use
of a grid solution. It is not a complete solution, more like a help to get moving in the
right direction. Globus security features are divided in to four different parts: Basic
security mechanisms, components for credential generation, components for credential
management, and components for access control and authorization. Support in setting
up security mechanisms in your grid and grid application is provided. The toolkit is for
experienced users, and is not a plug-and-play environment like the previous Alchemi.

4 Grid-PEEC

The purpose is to improve the performance of a 3D, quasi-static, frequency domain,
PEEC-based EM solver capable of handling nonorthogonal structures. The original code
is written in C++ and runs on a Windows environment. This type of code (quasi-static,
FD, and nonorthogonal) was chosen since;

• Quasi-static, frequency domain PEEC solvers operate on static partial elements
with the multiplication of the phase shift at each frequency thus there is no need
for recalculating the elements at each frequency (as for full-wave solvers) which
simplifies the task.

• Nonorthogonal partial elements are time consuming to calculate and thus a con-
siderable speed up could be expected. Consider the calculation of nonorthogonal
partial inductances using a simple Gauss-Legendre quadrature. In the current code
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Figure 3: Calculation time for orthogonal partial elements when increasing the number of ex-
ecutors, (top) coefficients of potentials and (bottom) partial inductances.

this takes 13 ms/inductance when using 5 weights for the length and width di-
rection respectively and 2 weights in the thickness direction. For near couplings,
8th order Gauss-Legendre quadrature can be necessary increasing the time to 75
ms/inductance. Coefficients of potentials are somewhat faster to calculate since
we assume the charges to reside on the surface of the conductors converting the
volume integral from the last term in eq. (2 to a surface integration.

• To solve for each frequency point no history of previous voltages and currents are
needed as for time domain solvers thus simplifying the task.

The choice to use Alchemi was based on the usage of the old code written in C++
without major modifications the simplicity to setup and manage the grid application.
There are three grid applications created by the grid-PEEC program. The first one is the
Calculation of Coefficients of Potentials, grid-application two is the Calculation of Partial
Inductances, and the third is the Solution of Frequency Domain Problem. The PEEC
program will execute these grid applications one at a time starting with Calculation of
Coefficients of Potentials, then in turn follows as mentioned above. The PEEC-program
creates a thread that creates a grid-application that sends the calculations out on the
grid. The thread that started the grid application is in the meantime stopped/paused
until its grid-application calculations is carried out. The original PEEC code uses the
Matrix TCL Pro 2.12 and complex, linear algebra library. Since these are written in
C/C++ and this causes problems when used in a DLL that is used on an Alchemi Grid
writing new libraries for matrices and complex numbers in Managed C++ solved this
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problem. The modified code works as follows:

1. Manager performs:

• parsing and meshing,.

• calculations of A and R.

• setup IS and V.

• check how many executors.

2. Partition calculation of coefficients of potentials on the connected executors (fill
P). Keep track of non-fill-ins.

3. Partition calculations of partial inductances on the connected executors (fill L).
Keep track of non-fill-ins.

4. Solve eq. (3) on the executors. Collect the results.

5 Result

5.1 Test Environment

The test was preformed with different numbers of executors (1, 2, 6, 12 and 20). All of
the executors were running on Dell Optiplex GX260, P4-2.0 GHz, 640 Mb RAM, and
Gigabit network card. The manager was run on an IBM Thinkpad R50p with a 1.5 GHz
Centrino, 512 Mb RAM, and a 100 Mbit/s network card. The executors where all located
in the same computer lab and the manager in a nearby office. The bandwidth of the
network between the two rooms is 100 Mbit/s. The Grid-PEEC program was run on the
same computer as the manager.

5.2 Test Object: Orthogonal λ
2 dipole

This section shows the results for a λ
2

dipole discretized using orthogonal cells thus
enabling the usage of analytical calculation routines for partial elements. These compu-
tations are performed in approximately μs and therefore no speed up can be expected du
to the slow connection of computers on the grid. Consider the results for the calculation
of partial elements as shown in Fig. 3. It is clear that grid computations are not suitable
for these type of structures.

5.3 Test object: Nonorthogonal Transmission Line

This section present results for a simple nonorthogonal transmission line, see Fig. 4. The
test object is generic in the sense that another object discretized in the same manner
would give the same speed up. The TL is differential fed with a unitary current source
and the near- and far- end is terminated using 50 Ω resistances. The TL is discretized



78 Paper B

using 200 nodes and the near- and far- end responses are calculated. The near end voltage
(magnitude and phase) calculated by the grid-PEEC solver is shown in Fig. 5.

Figure 4: Transmission line with nonorthogonal part.

5.3.1 Partial Element Calculations

The structure requires the calculation of

• 200 self and 19 900 mutual coefficients of potentials (cops) using a 5-5-1 Gauss-
Legendre quadrature rule and

• 198 self and 19 503 mutual partial inductances using a 5-5-2 Gauss-Legendre
quadrature rule.

The old code calculated the cops in 10 seconds and the partial inductances in 320 seconds.
The grid-PEEC calculation times for the partial elements are shown in Fig. 6 for an
increasing number of executors. It is clear that the partial element calculation time is
not improved by the grid-PEEC application.

5.3.2 Solution of Frequency Domain System

The frequency sweep is performed from 1 MHz to 10 GHz using 1 000 points. The old
code performed the 1 000 calculations (solutions) in 65 minutes on the manager computer
(IBM-R50). The grid-PEEC execution time for the frequency sweep is shown in Fig. 7
(left) for an increasing number of executors. From the figure, it is clear that the frequency
sweep time is clearly improved by the grid-PEEC application. However, five executors
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Figure 5: Transmission line input voltage (top-magnitude, bottom-phase).

Figure 6: Speed up when increasing the number of executors. (Left) shows the lack of speed up
for calculating coefficients of potentials while (right) shows the lack of speed up for calculating
partial inductances.

are required to improve the calculations, and by using 20 executors the time is reduced
by 78%.
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Figure 7: Speed up when increasing the number of executors. (Left) shows the speed up for the
repeated frequency domain solution while (right) shows the speed up for the total grid-PEEC
solver.

5.3.3 Total Solution time

Even if the grid code does not speed up the partial element calculations, as seen in Fig.
6, the overall solution time is improved due to the dominance of the solution time for the
frequency domain circuit equations which are clearly improved.

6 Conclusions & Discussion

From the results presented in Figs. 6 and Fig. 7 it is obvious that the calculations of
the partial elements could not be improved with the presented approach. However, the
solution time for the frequency domain systems were reduced by 50% by using 6 executors
and by 78% by using 20 executors. Looking at the total solver time this were reduced
by 46% by the use of 6 executors and by 71% by the use of 20 executors. One problem
with this approach was shown to be the case when an executor stopped executing the
thread that it was working on. This required matrix fill-in monitoring that possibly
had a negative influence on partial element calculation speed up. It is obvious that
grid computing on a LAN is not the most suitable for this type of problem even if a
considerable speedup is recorded. Therefore, current work involves the modification of
the code to run on a parallel cluster for high performance computing [14].
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