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ABSTRACT 
 

Support Vector Machine (SVM) is a new but prospective 
technique which has been used in pattern recognition, data mining, 
etc. Taking the advantage of Kernel function, maximum margin 
and Lanrangian optimization method, SVM has high application 
potential in reliability data analysis. This paper introduces the 
principle and some concepts of SVM. One extension of regular 
SVM named Support Vector Regression (SVR) is discussed. SVR 
is dedicated to solve continuous problem. This paper uses SVR to 
predict reliability for repairable system. Taking an equipment 
from Swedish railway industry as a case, it is shown that the SVR 
can predict (Time to Failure) TTF accurately and its prediction 
performance can outperform Artificial Neural Network (ANN).    
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1. INTRODUCTION 
As a new trend of statistical learning theory [7,8], Support Vector 
Machine (SVM) is gaining popularity and lots applications of it 
have been found in state of art. The principle of SVM is shown in 
Figure 1. Provided a set of empirical data (xi,yi), xi, yi denotes the 
input and output value(response variable) respectively. SVM will 
adjust its internal parameters to fit the input data. SVM tries to 
minimize the margin between real output yi and predicted yi.  
Furthermore, take an example of binary classification and suppose 
the real output and the predicted output is identical, i.e. margin 
error is zero. SVM then further employs another tactic named 
regularization to maximize distance of the two collections, where 
each collection leads to one output class. Section 2.3 presents an 
example to demonstrate it.   

 

Figure 1. SVM Leaning Process  

This paper first describes the basic theory of SVM. Later on the 
paper presents an application of Support Vector Regression (SVR) 
to predict Time To Failure (TTF) for Crossings and Switches 
(C&S) from railway industry.       

2. Basic of SVM  
2.1 Principle of SVM 
SVM was originally developed as classifier. Regression analysis 
and principle component analysis can be regarded as special case 
of classifiers. A simple illustration is introduced here to 
demonstrate the principle of SVM. As shown in Figure 2, there 
are two kinds of dots (black and white). Suppose one line existing 
to separate them. Obviously the line should locate between these 
two groups, as the solid line in Figure 2. The line is called 
separator or Hyperplane. SVM tries to find the optimal line 
which maximizes the distance between these two groups of dots. 
Usually, Lagrangian optimization approach is used to find the 
optimal line.  

 

Figure 2. Separator for dots 

Support Vector: From geometry’s view, each dot can be 
represented by an n-dimension vector, for example, in Figure 2, 
each dot can be represented by a 2-dimension vector. d1, d2  are 
nearest and locate in the edge of their respective group. When the 
solid line in Figure 2 is selected as their separators, only d1, d2  

take effect. d1, d2 is the so-called support vectors.   

Learning Machine (Machine): Imitating the learning process of 
human being, SVM is capable of learning from given empirical 
data. During leaning, SVM extracted features from these 
empirical data. From statistical learning’s point of view, the 
process is automatically completed. So it is called learning 
machine.   

2.2 Architecture of SVM  
Figure 3 illustrates the architecture of SVM. SVM obtains its 
hyperplane (i.e. separator) from a given training data set. 
Lagrangian optimization method is used to obtain optimal 
solution during this procedure. After training, the SVM is built up, 
i.e. the hyperspace is found. After that, given an input data set, 
SVM can generate its predicted output value by the hyperplane, 
e.g. identify the group the dot belonging to.  
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Kernel function comprises a methodology to measure the distance 
between two vectors. Kernel Function can transform the input 
vector. For example, transform the lower dimensions input vector 
to higher dimensions. In kernel function, inner dot product is the 
most simple and common measurement to measure distance.        

Figure 3. Architecture of SVM 

2.3 A Simple Linear SVM  
In order to illustrate SVM, a simple SVM named linear SVM 
classifier is presented in this section. The objective of this SVM is 
to classify the dark dots from white dots as shown in Figure 4. 
Obviously, any line locating between the nearest dots (d1,d2) 
between these two classes can separate these two classes. Sharing 
a same normal line W1, among L1, L2, L3, the most reasonable 
separator line should be L2. The distances from d1 to L2 and from 
d2 to L2 are equal.    

 

Figure 4.  Linear SVM 

Other than these, there are some other lines can separate these two 
classes with another normal line, e.g. L1, L2, L3. In order to 
separate the two classes as far as possible, the line with normal 
line perpendicular to line d1d2 is optimal, i.e. W2 is selected as the 
optimal line’s normal line.  So, the Line L2 is the best (optimal) 
separator. Formulate the problem into a constrained optimization 
problem.   
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Each dots in Figures 4 has been transformed to a constraints. 
SVM uses Lagrangian Relaxation Method to obtain optimal 
solution. By introducing Lagrange multipliers, Formula (1) is 
rewritten to: 
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Nevertheless, in practice, the separator may not exist, i.e. there 
are no any line can separate these dots. Then error tolerance 
should be introduced. We loose these constraints in Formula (1) 

by introducing slack variables. The corresponding Lagrangian 
Formulation is thereby written to: 
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The optimal hyperplane can be obtained from above formulations. 
Given new xi, the following formulation is used to decide which 
class the dot belong to. 

)),(sgn()(
1
∑
=

+=
m

j
jijji bxxKyxf α                       (4) 

2.4 Support Vector Regression 
Support vector regression estimates continuous function given 
definite training data sets. Analogous to support vector classifier, 
SVR uses soft margin to separate features which denote the 

characteristics of the desired function . Usually)(xf ε -

insensitive loss function (See Scholkopf and Smola 2002) is used 
to balance the accuracy of approximation and computation 
complexity[1,2]. A constrained optimization problem is 
constructed to approximate the desired function as follows:  
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The above formula is called primal problem. By introducing 
Lagrangian multipliers, the corresponding dual problem of 
Formula (5) is: 
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Substitute <xi,xj> in above Formula(6) with K<xi,xj>, which is 
called kernel function. The desired function is approximated as 
follows[5,6]:  
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3. A Case Study  

3.1 Switches and Crossings  
The railway infrastructure of Sweden has in total 17,000 km of 
railway and about 12,000 switches and crossings. Crossings and 
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Switches (C&S) is a mechanical installations enabling railway 
trains to be guided from one track to another at a railway junction 
[4],and allowing slower trains to be overtaken. Functions of an 
S&C can be summarized as: 

• Carry load 
• Be part of the track signaling circuit. 
• Act as flange protection. 
• Move the switch blade to enable one of two or more 

alternative ways. 
• To enable train to move from sidings and re-enter main 

track. 
 

 
Figure 5. A kind of Switches and Crossings 

 The life of S&C is approximate 40 years. As a result of analysis 
for cause of delay time, the C&S related failures contribute 14% 
of total causes of train delay time. “That means roughly 15 
minutes delay time per S&C/year, assuming on C&S in main 
track per 2km and 50 trains per day”. Furthermore, the C&S cost 
covers at least 13% of the total maintenance cost. Consequently, 
C&S plays an important role in railway industry both from 
functional and financial point of view [4]. Analyzing the 
reliability of C&S is hence necessary.  

3.2 Data Collection 
The data has been collected from Swedish Banverket’s asset 
register system BIS and failure reporting system 0felia.  Database 
BIS is collecting all features concerning C&Ss, such as track 
section, C&S type, Put in place year and so on. 0felia is collecting 
data covers Failure reported data and time, time for maintenance, 
failure symptom and so on.  

 
In order to demonstrate the proposed methodology, we select a 
C&S in Section 111 as example, which locates between Kiruna 
and Riksgränsen in Northern Sweden where failures are more 
frequent due to severe natural weather. The data concerning asset 
No.1 is collected. This asset is put into service in 2005. We 
collected the data from 2005 to 2007. Part of these data is 
tabulated as follows.   

Table 1. Failure Report for S&C 

Report ID Failure Declaration Time …. 

FR00324115 2005-09-15 06:05 … 

FR00325402 2005-09-24 08:52  

FR00326198 2005-09-30 14:19  

FR00326495 2005-10-03 17:22  

FR00327341 2005-10-10 06:48 … 

… … … 

FR00332014 2005-11-14 20:43  

FR00347162 2006-02-18 15:18  

FR00347301 2006-02-19 23:31  

FR00349796 2006-03-05 15:27  

FR00350165 2006-03-06 23:02  

… ...  

3.3 Data transformation 
In order to facilitate failure analysis, the calendar failure time in 
Table 1 is transformed into accumulate time to failure. It is 
tabulated in Table 2.  

Table 2. Transformed Time to Failure Data  

No. Failure Time Time To Failure

1 2005-09-24 08:52 218,7863889

2 2005-09-30 14:19 149,4422222

3 2005-10-03 17:22 75,06027778

4 2005-10-10 06:48 157,4258333

5 2005-10-13 21:18 86,50583333

6 2005-10-23 14:57 233,6477778

7 2005-11-05 14:43 311,7713889

8 2005-11-14 08:10 209,4413889

9 2005-11-14 20:43 12,55361111

10 2005-12-27 06:51 1018,124722

… 

3.4 Predict Time to Failure 
Use the approach described in Section 2.4. Among the 41 data 
sets tabulated in Table 2. Take last 4 data to validate the model. 
There are 37data sets therefore remaining. In order to obtain the 
optimal parameter for SVR for this problem, last 4 out of the 
remaining 37 data sets are used to supervise the parameter tuning. 
Using these 4 out of 37 data sets, the desired optimal parameter is 
parameter with a minimum total error between predicted TTFs 
and real TTFs.  

 

After the optimal parameter obtained, we take the whole 40 data 
sets as training data to train the SVR again. Then use the trained 
SVR to predict TTFs for the remaining 4 data sets.  

   Table 3 n-step lagged input array and its corresponding 
output  

x(input) y(outp
ut) 

x1 x2 …. xm-1 xm xm+1

x2 x3 …. xn-2 xn-1 xm+1

… … …. … … … 

xn-m xn-m+1 …. xn-2 xn-1 xn

 
SVR approach also uses n-lagged time series as input to train and 
predict the TTF. The input of the SVR is shown in Table 3. After 
trying of several n-lagged time series (change the step size n), the 
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best performance comes out with 2-lagged time series. The 
consequently predicted TTFs are tabulated in Table 4, along with 
the predicted result yielded from the other techniques: Artificial 
Neural Network (ANN)[3].   

Table 4. Comparison of real TTF with predicted TTF 

No. Real TTF ANN SVM

1 1211,4 1200,69 1204,30

2 1212,0 1197,60 1212,30

3 1220,54 1210,06 1222,23

4 1223,49 1212,30 1224,56

In order to facilitate the comparison among different techniques, 
the data in Table 4 are plot in the Figure 6. It is shown that the 
SVR outperform ANN.  

38 38.5 39 39.5 40 40.5 41
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SVM

ANN

 

Figure 6 Predicted TTFs and real TTFs 

Measures TE, MTE and NRMSE are used to compare their 
performance. They are tabulated in Table 5. 

 

 

 

 

 

 

 

 

Table 5. Comparison of real TTF with predicted TTF 

 TOTAL 
ERROR 

SSE MSE NRMSE 

ANN 36.6347 558.4198 139.6049 0.0097 

SVR 4.1131 55.4053 13.8513 0.0031 

 

According to all the three measures, the total error of SVR is less 
than the corresponding ANN. Consequently, the proposed SVR 
can obviously outperform ANN for this case.  

4. Conclusion  
By comparing the results predicted both from ANN and SVR, it is 
evident that SVR can outperform ANN. The result experimentally 
proves the regularization part of SVM is effective. 
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