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Abstract 
 
This paper discusses a lean instrumentation framework for guiding the introduction of 
the lean concept in condition monitoring in order to enhance the organizational 
capability (i.e. human, technical and management trichotomy) and reduce the 
complexity in the maintenance management systems of industrial companies. 
Additionally, decision-making, based on severity diagnosis and prognosis in condition 
monitoring, is a complex maintenance function which is based on large data-set of 
sensors measurements. Yet, the entirety of such decision-making is not dependent on 
only the sensors measurements, but also on other important indices, such as the human 
factors, organizational aspects and knowledge management. This is because, the ability 
to identify significant features from large amount of measured data is a major challenge 
for automated defect diagnosis, a situation that necessitate the need to identify signal 
transformations and features in new domains. The need for the lean instrumentation 
framework is justified by the desire to have a modern condition monitoring system with 
the capability of pruning to the optimal level the number of sensors required for 
efficient and effective serviceability of the maintenance process. It is concluded that 
there are methodologies that can be developed to enable more efficient condition monitoring 
systems, with benefits for many processes along the value chain. 
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1. Introduction 
 
Today’s competitive business climate has given rise to the need for faster time-to-
market, lower costs and increased initial product quality. In the process industry, 
increased automation has made the competitive business climate even tougher 
(Abrahamsson & Johansson, 2009). In most industrial companies, increased automation 
in the process chain could also imply increased complexity of carrying out some key 
decision-making tasks, such as condition monitoring, as a result of the increased level of 
instrumentation involved. Decision-making (i.e. severity diagnosis and prognosis) in 
condition monitoring is a complex maintenance function which is based on hundreds of 
sensors measurements. Yet, the entirety of such decision-making is not dependent on 
only the sensors measurements, but also on other important indices, such as the human 
factors, organizational aspects and knowledge management. Unreliable decisions can 
emanate from the diagnosis of machinery whose failure modes are hidden, and thus do 
not show a visible pathology to the human operator. The consequence of such unreliable 
decisions is the increase in maintenance and operational costs derived from the costs of 
human/labour intervention, replacement of failed parts, and lost production. This issue 
therefore, brings to the fore the challenge of reducing or eliminating the complexity 
associated with condition monitoring and at the same time increasing its coast-
effectiveness as well as the reliability maintenance decisions emanating from the 
system.   
 
In attempts to address this issue, non-destructive methods (e.g. the analysis of vibration 
in rotating machinery) have been used to diagnose machinery with such failure non-
detectability consequences. Yet, the use of these methods entailed the adaption of new, 
but very expensive technological instruments which increase the cost of maintaining the 
production system. Such increase in maintenance cost against the backdrop of increased 
industrial competition signifies a productive challenge that confronts most firms. In 
order to overcome this challenge, firms need to be provided with a cost-effective and 
less complex condition monitoring design approach that consists of the requisite level of 
instrumentation to facilitate efficient and effective serviceability of the process value 
chain.  
 
Thus, the purpose of this paper is to introduce a new approach to lean instrumentation 
which allows for the embedment of lean capabilities inside the process value chain by 
reducing the complexity and enhancing the cost-effectiveness of maintaining and 
managing the process value chain of industrial companies. The objective is to develop a 
lean instrumentation framework for sensor pruning and optimization in condition 
monitoring of production systems. The question that necessitated the purpose is as 
follows. Can a combination of Lean-Thinking Philosophy (LTP) and Bio-Inspired 
Principles (BIP) be used as a conceptual base to develop a framework for pruning and 
optimizing the level of instrumentation in the production value chain? In other words, 
can a combination of LTP and BIP be used as a conceptual base to develop a framework 
for the pruning and optimization of the number of vibration-detecting sensors to be 
installed on industrial electric motors? This paper presents a conceptual framework that 
linking LTP and BIP that could be used to guide the pruning and optimization of the 
number of vibration-detecting sensors. 
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2. Traditional approach in condition monitoring 
 
Any manufacturing unit process can be regarded as a conversion process of material, 
energy, and information. The process should be monitored carefully to produce an 
output that can meet the requirements. When the process is operated by humans, it is 
monitored with sense organs such as vision, hearing, smell, touch, and taste. 
Sometimes, information obtained through multiple sense organs is used to guide 
decision making, and the brain plays an important role in processing such information. 
In general, humans are very capable as process monitors because of the high degree of 
development of their sensory abilities, essentially noise-free data (unique memory 
triggers), parallel processing of information, and the knowledge acquired through 
training and experience. Limitations are seen when one of the basic human sensor 
specifications is violated; something happening too fast to see or out of range of hearing 
or visual sensitivity owing to frequency content. These limitations have always served 
as some of the justification for the use of sensors. The sensor system is generally 
composed of sensing, transformation/conversion, signal processing, and decision-
making. The output of the sensor system is either given to the operator via a human-
machine interface or directly utilized to control the machine. Objectives, requirements, 
demands, boundary conditions, signal processing, communication techniques, and the 
human-machine interface of the sensor system have to be described. 
 
2.1.  Vibration analysis 
 
Traditionally, machine operators have used auditory techniques to detect specific problems in 
rotating machines. Typical problems (e.g., due to wear or insufficient lubrication) cause 
excessive vibration of the machine or some of its parts. This vibration can often be perceived by 
a trained operator if the background noise is not too high, but the subjective nature of the 
approach makes it inaccurate and inefficient in determining if the overall situation is acceptable 
or not. In particular, it is difficult to reliably estimate the remaining useful life via manual 
inspection, which is a key variable for optimal maintenance, production and business decisions.  
Nowadays, systematic approaches are therefore used to measure vibrations, and to detect and 
identify problems in machine components. 

 
2.2.  Number and position of measurement devices 
 
The International Standard organization has provided a standard (ISO 10816-1/6) for 
the evaluation of machine vibration by measurements on non-rotating parts. The 
standard guides in locating and measuring specific points of vibration in the horizontal, 
vertical and axial planes, and thus makes data analysis easier. The orientation of each 
point of measurement is an important consideration in configuring the database for 
analysis. There is an optimal orientation for each measurement point of the machine in a 
predictive maintenance program. The measurement points should be numbered 
sequentially starting with the main drive. Any numbering convention may be used, but 
this must be consistent in order to allow for the immediate identification of point 
locations during the analysis and diagnosis. The cluster of points per axis must also 
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allow the analyst a clear view of the problems in each component. In the case of electric 
motors, two points of measurement corresponding to the housing of the bearings are 
required. At each point, it is normal to take two measurements, in a horizontally and 
vertically, reflecting different pathologies vibration obtained in two different directions, 
despite being the same pocket. This allows the analyst a clear view of the problems in 
each component. In the case of a more complex machine that is coupled to fan motors 
or pumps, but having a single speed, it would act similarly. Some configurations have 
more points of measurement. A case in point is driver (motor or turbine) with a gearbox 
and pump. In this configuration, eight bearings, with their pockets can be found, as it is 
shown in figure 1 below for a turbine coupled to a gearbox and a pump. In this case, the 
following points are measured; 

 
 Turbine: 1A, 1H, 1V, 2H, 

2V. 
 Gearbox: 3H, 3V, 4ª, 4H, 

4V, 5ª, 5H, 5V, 6H, 6V. 
 Pump: 7A, 7H, 7V, 8H, 

8V. 
 

 
1 Turbine Non Coupling Side 5 Gearbox Low Speed Non Coupling Side 
2 Turbine Coupling Side 6 Gearbox Low Speed Coupling Side 
3 Gearbox High Speed Coupling Side 7 Pump Coupling Side 
4 Gearbox High Speed Non Coupling 

Side 
8 Pump Non Coupling Side 

 
Figure 1. Details of the measuring points on a machine train: turbine-gear-pump 

 
 
For this machinery, 20 measures of vibration velocity are obtained at different points, 
which give an idea of the complexity of measurement process in such machines. A 
serious problem in developing a vibration-based damage detection method is that a large 
number of sensors are needed to locate damage on large structures (Doebling, 1996; 
Friswell, 1997). Unfortunately, vibration monitoring has become a labour intensive and 
time consuming job which made it impractical for large scale use without increasing 
enormously the complexity of the manufacturing system and resources devoted.   
 
 
3. Introducing the lean thinking 
 
The core philosophy of lean thinking is to maximize productive value through the 
minimization of wastes in the process chain.  Thus the introduction of the lean concept  
(Womack and Jones, 1996) in the condition monitoring component of a firm’s 
maintenance system will require the analysis and optimization of the value, value 
stream, flow, pull, and perfection of the firm’s system in order to remove non-value 
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added activity, or waste. The issue of value in maintenance is a complex one requiring 
several different value strategies to be combined within one system. Humphreys (2008) 
has noted that complexity drives entropy which absorbs resources and energy from 
surrounding sources. These sources could be related to waste which forms an 
interrelationship with a complex system.  In a firm, technicians might have a definition 
of value which may differ from those of their managers. According to Green (1994), 
this is a problem at the heart of value management issues. In contrast, Garnett, Jones, 
and Murray, (1998) noted that several key differences of value management could 
become immediately apparent when the principle of lean thinking is applied to the 
condition monitoring task in the maintenance system with a focus on meeting customer 
needs. Focusing on customer will also require that the condition monitoring task in the 
maintenance system also adopt a product focus, in order to enable a long-term dialogue 
between the nature of value and how the product delivers it. The value stream identifies 
all those steps required to make a product. The key technique behind the value stream is 
that of process mapping (Garnett, et al., 1998). However, it is process mapping for 
understanding how value is built in to the building product from the point of view of the 
client. At a strategic level it offers a perspective on defining what is to be done.  
 
The traditional condition monitoring process pushes the technician into an often 
protracted development process where risk and uncertainty are prevalent. The principle 
of flow suggests a vision where the ability to define quickly what the technician 
measures and interprets in condition monitoring and subsequently customising a well 
understood process to best fit those process means that severity measurements in 
condition monitoring can be carried out more predictably when required. This is a key 
concept at the strategic level because it defines the need for a way of working and 
organising condition monitoring task that could make it to become a way of life with an 
inherent culture. To achieve perfection means constantly considering what is being done 
and how it is being done and harnessing the expertise and knowledge of all those 
involved in the processes to improve and change it (Garnett, et al., 1998). The 
traditional condition monitoring process is ineffective in developing products, choosing 
the key components for the maintenance system, coordinating the instrumentation 
design and managing the supply chain. This leads to an inefficient and time consuming 
process of design coordination once key contracts have been let and a poor engineering 
fit on site.  
 
The traditional condition monitoring process assumes that technician make can make 
good subjective decisions from their comparison of the point to point vibration 
measurements to the ISO standards measures. Consequently there are no arrangements 
within the structure for learning, innovation or the development of skilled people 
needed to deliver quality and efficiency in the process. The starting point for the lean 
instrumentation process in condition monitoring is the premise that fewer sensors usage 
will result in an efficient and effective system design that allows for simultaneous data 
measuring and interpretation. Over time, these products (i.e. maintenance system) 
become increasingly customer focused, more cost effective and have an ability to be 
delivered very quickly. This develops a culture, which can define value because it 
understands both the customer and the product in great detail (Garnett, et al., 1998). 
This will lead the company to redefine its maintenance system through the application 
of the lean thinking principles at a strategic level.  
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3.1. Lean sensor 
 
 
Lean sensor is a form of lean approach that can be used to design the optimization of the 
number of vibration-detecting sensors to be installed on industrial electric motors. This 
will enhance knowledge creation in the shift from the complexity of the traditional 
condition monitoring approach to a lean one. Truchard (2004) noted that virtual 
instrumentation (i.e. using  customizable software and modular measurement hardware 
to create user-defined measurement systems) can be used to optimize the product design 
and development process by delivering an overall leaner and more streamlined method 
to link test and design. That is, it can be used to overcome the challenges of introducing 
lean sensors in the maintenance process of condition monitoring by using a flexible test 
platform that adapts to new technologies and facilitates the integration of real-world 
data into all stages of the design flow. Truchard (2004) explained that virtual 
instrumentation solidifies the relationship between lean design (i.e. using test data to 
improve simulation models) and lean test (i.e. using simulation results to refine tests) by 
facilitating the use of real-world data to improve the quality and accuracy of design 
iterations and simulations. In condition monitoring process, the diagnosis component is 
reflected by the lean design aspect of the virtual instrumentation, while the prognosis 
component is reflected by the lean test aspect of the virtual instrumentation. According 
to Truchard (2004), virtual instrumentation pulls together diverse system components to 
create an open test platform that takes advantage of the latest technologies, and with 
advances in virtual instrumentation software, the complexities of test technologies, such 
as condition monitoring, could be minimized so that maintenance engineers can focus 
on developing a better systems.  
 
3.2. Bio-inspired principles 
 
Biologically-inspired computing is an active and innovative area of research and 
scientific discipline. The overall goal is to observe and understand the functional 
processes in living organisms, and which understanding are then translated into 
computing methods for solving complex problems in engineering as well as in other 
scientific disciplines. By relying on well-established biological and social paradigms, 
large quantities of small processing units, particularly sensors and actuators, that show 
capabilities of self-management are designed and implemented in engineering systems. 
This meant that complex system behaviour at the macroscopic level can be mapped in a 
non-linear fashion derived from the heterogeneous interactions at the microscopic level. 
Biologically-inspired approaches that are used in this wise include; artificial neural 
networks, reservoir computing, evolutionary algorithms, cellular automata, amorphous 
computing, and computer immune systems, among others. Arguing from the perspective 
of virtual instrumentation, bio-inspired lean thinking in condition monitoring (CM) 
could be conceived by solidifying the relationship between a “lean CM design” that 
need to be firstly developed by using test data to improve simulation models, and a 
“lean CM test” whose development could be bio-inspired through the use of a biological 
process to simulate results that could be used to refine tests. As Truchard (2004) noted, 
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this bio-inspired lean CM test approach could facilitate the use of real-world data to 
improve the quality and accuracy of CM design iterations and simulations. 
 
  
4. Conceptual framework for lean instrumentation 
 
Based on the reviewed literature, the bio-inspired lean instrumentation process for 
sensor installation can be conceived to entail four stages as highlighted in figure 2 
below. The first stage is to generate sensor data using the usual traditional measurement. 
The second stage is to use the decision derived from stage 1 to generate knowledge by 
carrying out a diagnosis of the sensor data (lean design) and then a prognosis (lean test). 
The third stage is to carry out sensitivity analysis for sensor pruning using a bio-inspired 
medium. This test helps in determining whether an installed sensor could be classified 
as redundant or otherwise, based on the level of its measured sensitivity. The fourth 
stage is to introduce tools for decision-making in space to enhance sensor removal. In 
this stage redundant sensors can be removed, and maintenance people can rely on 
measures from the remaining sensors to make accurate decision.  
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Figure 2. Framework for lean instrumentation process 
 
 
The framework shown in figure 2 above has the potential of assisting in finding out the 
right domains where instrumentation redundancies could be easily identified. The 
identification of the redundant sensors could be used as platform to develop new sensors 
with distributed and embedded capabilities that could result in an autonomous decision-
making process. The evolution of such autonomous decision-making process will 
therefore eliminate the complexity entailed in the work organization of traditional 
processes for which decision-making requires a significant amount of sensor-output 
measuring time and strenuous human effort. In other words, the autonomous decision-
making process is reflective of lean, due to its introduction of economy in human effort 
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and also efficiency in the work organization. In the case of condition monitoring (CM), 
the block diagram shown in figure 3 below could be used to guide the application of the 
lean instrumentation framework (figure 2 above) to reduce the complexity of the CM 
measurement process towards improving both the technical and human activities, as 
well as enhancing the firm’s productive capacity and customers’ satisfaction to service 
delivery. 
 

 

 

SENSITIVITY 
ANALYSIS 

FOR 
PRUNING 

 
 

Figure 3: Block diagram for applying the lean instrumentation (sensors) 
framework in condition monitoring 

 
 
For this purpose some signal transformations and features in new domain have to be 
found. Identifying significant features from large amount of measured vibration data is 
one of the major challenges for bearing defect detection, diagnosis and automated defect 
diagnosis. Feature extraction helps to maximize the useful information from the raw 
data. Identifying relevant features leads to accurate, faster and easy defect diagnosis. 
Selected features should be sensitive to machine faults. They should also be robust to 
background noise. Another important consideration in feature selection is that 
computation requirement for extracting features from condition monitoring data should 
be less. Features are extracted from raw vibration data using various signal processing 
methods such as time domain, frequency domain and time-frequency analysis. Feature 
extraction consists of feature construction and feature selection. 
 
 
5. Sensor pruning in condition monitoring: A case study 
 
This case study was conducted within the proposed framework (see figure 2 above) to 
find out the right sensor domains where redundancies are easily identifiable and which 
could be used as a platform for the introduction of lean instrumentation in the 
production system. This is because the traditional approach of point by point 
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comparison denies the possibility of disagreement between vibrations in different 
locations that could arise due to machine age or installation problems. The consequence 
of this is that it can lead to false alarms and unnecessary interventions, and by 
implication increases maintenance cost. 
 
5.1. Methods and materials 
 
3.1.1 Data Collection 
Guided by the proposed framework for bio-inspired lean instrumentation process (figure 
2), and the block diagram for applying the lean instrumentation framework (figure 3), 
the following three stages were used to guide data collection. In the first step, data 
generated using the traditional measurement approach. In the traditional conditioning 
monitoring approach (i.e. step 1), vibrations are measured by trained individuals at 
several points along the machinery, as highlighted in figure 4 below. 
 

 
 

Figure 4: Layout of centrifugal pump showing point to point measurement nodes 
 
 
Afterwards, the individual compares these point to point measurements to the reference 
values in the standard chart in order to be able to identify points with significant 
severity of vibration, and then take appropriate maintenance decisions. In the second 
step, the data generated in the first step was used to create knowledge by carrying out a 
diagnosis of the data (lean design) and then a prognosis (lean test). In the knowledge 
creation through lean instrumentation (i.e. step 2), the diagnosis of the test data from the 
traditional measurements (step 1) is used to introduce a lean sensor architecture design 
that can be used to simulate and improve installed sensors. A prognosis (i.e. lean test) is 
then carried out by using the simulation results to refine tests by facilitating the use of 
real-world data to improve the quality and accuracy of design iterations and simulations. 
In the third step, the knowledge generated in the second step is fed into a bio-inspired 
medium (artificial neural network) to carry out sensitivity analysis for pruning the 
traditionally installed sensors. In this step, new features extracted from the traditional 
installed sensors are pruned in order to eliminate redundant channels which contribute 
irrelevant information.   
 
3.1.2   Data Analysis 
Identifying significant features from large amount of measured vibration data is one of 
the major challenges for bearing defect detection, diagnosis and automated defect 
diagnosis. Feature extraction helps to maximize the useful information from the raw 
data creating new information embedded into these data which could otherwise remain 
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useless. Identifying relevant features leads to accurate, faster and easy defect diagnosis. 
Selected features should be sensitive to machine faults. They should also be robust to 
background noise. Another important consideration in feature selection is that 
computation requirement for extracting features from condition monitoring data should 
be less. Features are extracted from raw vibration data using various signal processing 
methods such as time domain, frequency domain and time-frequency analysis. Feature 
extraction consists of feature construction and feature selection. The time domain 
method has been used to analyze the vibration signal in the condition monitoring of the 
rolling element bearings, creating new features based on current raw data (Shiroishi, 
1997; Azovtsev, 1996). In the traditional time domain technique, shock pulse values and 
values of the statistical parameters such as peak value (Pv), root mean square value 
(RMS), kurtosis value (Kv) of the signal which are used to monitor the condition of the 
bearing were extracted. Non-dimensional statistical parameters such as crest-factor 
(Crf), clearance factor (Clf), impulse factor (Imf) and shape factor (Shf) were also 
extracted.  Weibull negative log-likelihood value (Wnl) and normal negative log-
likelihood value (Nnl) were also extracted. The extraction of each respective parameter 
is achieved by applying the appropriate equation as highlighted below. 
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If ),;( 21 ixf is the probability density function (pdf), negative likelihood function can 

be computed as: 

  


N

i ixf
1 21 ,;(log   

 
Wnl and Nnl can be computed by substituting Weibull pdf and normal pdf in previous 
equation.  

 
In the sensitivity analysis for sensor pruning, irrelevant input features were identified 
and removed, which reduced the size of the network, the complexity and the training 
time. Sensitivity based pruning method is used to evaluate the effect of removing an 
input variable from the fully connected network. With this algorithm, candidate 
architectures are constructed by evaluating the effect of removing an input variable from 
the fully connected network. These are ranked in order of increasing training error.  
Inputs are then removed following a “Best First” strategy (i.e. selecting the input that, 
when removed, increases the training error least). 
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4. Results  
 
Vibration signal parameters calculated for each point in the machine layout (figure 2) 
using raw data in time domain obtained from the traditional measurement created new 
knowledge in the form of transformed vibration signals in a new space and time 
domain. The extracted parameters that constituted the new coordinate space in the new 
transformed domain are the peak values (Pv), root mean square values (RMS), kurtosis 
values (Kv), crest factors (Crf), (v) clearance factors (Clf), (vi) impulse factors (Imf), 
shape factor (Shf), Weibull negative log-likelihood values (Wnl), and the normal 
negative log-likelihood value (Nnl). The results obtained from the defect diagnosis 
performed with artificial neural network trained using all the 10 time domain input 
features (see figure 4 above) obtained from the signals for the different measurement 
points is shown in figure 5 below.  
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Figure 5: Defect diagnosis performed with artificial neural network showing 
trained input features obtained from signals for the different measurement points. 
 
 
As it is shown in figure 5 above, and in relation to the lean instrumentation framework 
(see figure 2), selected features of vibration in time domain (new knowledge) from the 
signals for the different measurement points of 10 time domain input features were 
extracted. As it is observable from the different points, the generated features for the 
bearing diagnostics indicate sensor locations with redundant features, and which sensors 
do not impact on the measured vibrations for determining the condition state of bearings 
(i.e. either in good or bad conditions). These sensors with redundant features could 
therefore be pruned (i.e. removed) without any effect on the functionalities of the 
remaining sensors and the information to be generated in the transformed space. 
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5. Discussion 
 
The result has shown that no sensing device is one hundred percent reliable and it is 
possible to identify redundancies in installed sensors which could be removed and by 
implication introduces a sense of lean in sensor installations which also reduces the 
complexity of associated with the traditional condition monitoring process. Reliable 
theoretical models relating sensor output and process characteristics are often difficult 
to develop because of the complexity and variability of the process and the problems 
associated with incorporating large numbers of variables in the model. The results 
highlight the possibility of identifying and isolating redundant sensors, and also the 
identification of the relevant sensors that need to be installed and their installation 
points on machines. Ability to identify these relevant sensors and their positions on the 
machines makes it easier for the condition monitoring task to be carried out by the 
human, as well as provide a leeway for introducing innovation in sensors with increased 
reliabilitities to further enhance the condition monitoring process.  
 
A possible way to increase the reliability is to use virtual sensors (with performance 
capability of multiples of sensors) which will make the human-based monitoring system 
used in the traditional condition monitoring redundant. The fusion of variety of 
information is a very suitable means of obtaining a more comprehensive view of the 
state and performance of the process (Chiu et al., 1986). Sensor fusion is a powerful tool 
for making the monitoring system more flexible so that the various types of 
malfunctions that occur in the process can be detected. The virtual integration of similar 
types of sensors (i.e. a replicated sensor system) can contribute towards improving the 
reliability and robustness of the monitoring system. The virtual integration of different 
types of sensors (i.e. disparate sensors system) can also make the monitoring system 
more flexible by providing data for the decision-making process that has a low 
uncertainty. Virtual sensors could pull together diverse system components to create an 
open test platform that takes advantage of the latest technologies. By this, the 
complexities of test technologies, such as condition monitoring, could be minimized so 
that maintenance engineers can focus on developing a better systems. Therefore virtual 
sensors developed from the sensor pruning provides an avenue for reducing the 
complexity of integrating test equipment and interface technologies (as it is in condition 
monitoring) with software tools for design and simulation. Thus removal of the 
complexity associated with the traditional condition monitoring process would improve 
the work organization process with minimal decision-based work demand on the human 
operator whose functional development would be enhanced. By implication, the work 
system will entail an ability to define quickly what the human operator needs to measure 
and interpret in the condition monitoring process. This will signify a well understood 
work process whereby severity measurements in condition monitoring can be carried 
out more predictably when required. Thus the lean instrumentation framework can serve 
as an important tool for pruning the number sensors to be installed on production 
systems in order to allow a semblance of perfection in the production value chain and 
satisfaction to both the human operator and the client. This is because, the lean 
framework could help in the attainment of perfection in conditioning monitoring by it is 
character of guiding the pruning of sensors, and enabling the harness of expertise and 
knowledge of all those involved in the processes to improve and change it (Garnett, et 
al., 1998).  
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5. Conclusion 
 
In this paper we describe the value of introducing the lean concept in condition 
monitoring and we outline a framework that serves as a starting point for further 
development of methodologies and demonstrators. We discuss the role of excessive 
complexity in the condition monitoring instrumentation and the maintenance 
management system, and we outline how the complexity can be reduced in order to 
increase the production and organizational capacity (e.g., human, technical and 
management trichotomy). The decision-making process in condition monitoring is a 
complex maintenance function that requires efficient methods for the analysis of sensor 
data. This decision process depends also on other variables, such as business 
constraints, production constraints, organizational aspects, and human aspects. We 
discuss the possibility to use bio-inspired computing techniques to deal with the 
complexity in these systems, because the cost of a traditional model-based approach can 
prevent development of decision support systems that include the key aspects. Such 
systems should also address the important aspect of knowledge management. We 
conclude that there are methodologies that can be developed to enable more efficient 
condition monitoring systems, with benefits for many processes along the value chain. 
Further work is needed to evolve this framework and to develop demonstrators using 
some of the techniques introduced here. 
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