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ABSTRACT 
Railway infrastructure is a complex system which comprises different subsystems. Long useful 
life span is one of the important aspects of this prime mode of transport. The useful life 
length of its assets is highly dependent on the maintenance and renewal strategy used during 
its life cycle. Today’s demands on the railway industry call for increased capacity, including 
more trains, travelling at higher speeds with higher axle loads. This increased usage will result 
in higher degradation of railway asset and higher maintenance costs. However, due to the 
competitive environment and limited budgets, railway infrastructure managers are compelled 
to optimize operation and maintenance procedures to decrease operation and maintenance 
costs while meeting high safety standards. To assure track safety and maintain high quality, a 
cost effective track maintenance strategy is required, one based not only on technical and/or 
safety limits but also on cost-effective maintenance thresholds. RAMS (Reliability, 
Availability, Maintainability and Safety) and LCC (Life Cycle Cost) analyses, which are 
derived from reliable track condition data, provide an approach to specify cost effective 
maintenance strategy to lessen corrective maintenance actions and downtimes. 

One of the main parameters to assure railway safety and comfortable railway service is to 
maintain high quality of track geometry. Poor track geometry quality, directly or indirectly, 
may result in safety problems, speed reduction, traffic disruption, greater maintenance cost 
and higher degradation rate of the other railway components (e.g. rails, wheels, switch, 
crossings etc.). The aim of this study is to develop a methodology to optimize track geometry 
maintenance by using historical geometry data. The methodology is based on reliability and 
cost analysis and supports the maintenance decision-making process to identify cost-effective 
inspection interval. An important phase of track geometry maintenance optimization is to 
estimate the track degradation rate. Obtaining knowledge about degradation helps to 
properly schedule maintenance activities such as inspection and tamping. 

The thesis provides a methodology to identify a cost-effective inspection interval based on 
track degradation rate and cost drivers. It contains state-of-the-art track geometry 
maintenance optimization. It describes Trafikverket’s (Swedish Transport Administration) 
maintenance strategy regarding measurements, reporting on and improving track quality, and 
it evaluates the efficiency of this strategy. Finally, it includes a case study carried out on the 
iron ore line in north of Sweden that runs from Boden to Gällivare to evaluate track 
geometry degradation and analyze the probability distributions of failures. A cost model is 
developed in order to find optimal inspection interval. 

Keywords: Track geometry degradation, Track maintenance optimization, Maintenance 
planning, Tamping 
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INTRODUCTION 
Background
The railway is one of the prime modes of transportation for humans and materials.  
Safety, reliability, sufficient capacity and availability are main requirements of a railway 
network (Patra, 2009). With the advancement of technology and increasing 
competition in all sectors of transportation, railways must restructure and upgrade their 
management and technology (Profilidis, 2006). Due to the increased demands of 
operators and society in general, railway infrastructures must reduce operation and 
maintenance costs while improving network capacity. This can be accomplished by 
changing the culture within operation and maintenance departments by shifting from a 
reactive to a proactive strategy. 

In Europe, the government usually owns railway systems. This means that the strategic 
objectives of railway networks often are based on political decisions (Espling, 2007). 
However, the European Union is moving toward an open access model for railroads in 
which track infrastructure administration is separated from train operations (Resor and
Patel, 2002). In Sweden, Trafikverket (Swedish Transport Administration) is the 
government authority responsible for railway infrastructure administration as well as 
development of the railway sectors (Banverket, 2007; Espling, 2007). Trafikverket’s 
main objective is to ensure cost-effective and long-term provision of transportation for 
citizens and the business sector (Granström, 2005). To increase the effectiveness and 
efficiency of Sweden’s railway infrastructure, Traifkverket was divided into 
client/contractor organizations in 1998 (Espling, 2007). 

The railway system is divided into rolling stock and infrastructure. Correspondingly, 
the infrastructure system is divided into subsystems including the track, signalling, 
electrical and telecom systems. The functional requirement of the track subsystem is to 
provide safe and economic movement of rail traffic (Bing & Gross, 1983). In terms of 
safety and operational expenditures, the track is one of the main parts of infrastructure. 
To exemplify, in the Netherlands in 2006, 65% of the maintenance cost was allocated 
to the track and platforms (Profillidis, 2006).  

Track geometry is an important aspect of railway construction (Esveld, 2001), as 
indicated by Jovanovic (2004) in the following: 

The degradation of many other track components is closely related to track 
geometry condition; 

Track geometry is often used for triggering the entire range of track 
maintenance and renewals. 

Track with good inherent quality provides a good ride and needs little maintenance; 
conversely, track with poor inherent quality results in poor ride comfort and requires 
much maintenance (Selig and Waters, 1994). The monitoring and evaluation of track 
geometry is imperative if the infrastructure administration is to control safety and meet 
the needs of track maintenance (Berggren et al., 2008). 
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Track maintenance consists of inspections and interventions (Lyngby et al, 2008). 
Inspections are carried out to ensure track safety by monitoring track condition and 
obtaining the information necessary to set up maintenance scheduling. The inspection 
methods are divided into manual and automated inspections by vehicle. Intervention 
refers to preventive and corrective maintenance, as well as renewal actions carried out 
to improve track quality.

In the past, railway maintenance procedures were usually planned based on the 
knowledge and experience of the company involved. The main goal was to provide a 
high level of safety, and there was little concern for economic issues (Lyngby et al, 
2008; Carretero et al, 2003). Today, however, the competitive environment and 
budget limitations are forcing railway infrastructures to optimize operation and 
maintenance procedures. The primary goal of optimization is to reduce the operation 
and maintenance expenditures while still assuring high safety standards (Lyngby et al., 
2008; Carretero et al., 2003). 

Optimizing maintenance requires estimating track degradation and the consequence of 
this degradation, often in the form of cost (Lyngby et al., 2008). Obtaining knowledge 
about degradation helps a company estimate the right time for inspection, maintenance 
and renewal.  

Track geometry degradation is a complex phenomenon affected by dynamic loads 
(Esveld, 2001). The rate of degradation is a function of time and/or usage intensity 
(Lyngby et al., 2008). According to Lichtberger (2001), the initial track quality, the 
initial settlement and the deterioration rate are the major parameters of track quality 
deterioration.

Several attempts have been made to better understand the track geometry degradation 
and make empirical models for degradation mostly by the Railway Research Institutes 
like ERRI - European Rail Research Institute in Netherlands, TTCI in USA, RTRl 
in Japan, TU Graz in Austria, etc. 

Because early studies were carried out in the 1980s and 1990s when few condition data 
were available and computers were not powerful enough, the results ended up as 
simplified linear deterioration (Jovanovic, 2004). For instance, in 1987, Committee 
D161 of ORE (Office for Research and Experiments) conducted a comprehensive 
study of track geometry degradation based on historical data; it concluded that 
excluding sections with high deterioration rates, usually track quality deteriorates 
linearly with tonnage or time between maintenance operations after the first initial 
settlement (Esveld, 2001). However, a more recent study by the Austrian railway has 
revealed that the track deteriorates exponentially (UIC, 2008; Veit, 2003).

Some researchers have examined the effect of speed and axle loads on track 
deterioration, earlier studies concluded the speed of the train has a significant effect on 
track geometry deterioration (Kearsley and Vanas, 1993; Ferreira and Muray, 1997). 
More recently, Sadeghi and Askarinejad (2007) analyzed the influence of axle load, 
speed, rail type, subgrade condition, rail pad stiffness and sleeper spacing on the average 
growth of track irregularities. Sato (1997) proposed a degradation model from the 
super-structural aspect in which the degradation depends on tonnage, speed, types of 
rail connection (Jointed or continuously welded) and quality of the subgrade.  The 
degradation model, which was developed by Bing & Gross (1983), predict how the 
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track quality, as measured by Track Quality Indices (TQls) changes as a function of 
causal parameters, such as traffic, track type, and maintenance. 

In addition, several attempts have been made to optimize track geometry maintenance. 
Vale et al. (2010) developed a model for scheduling tamping on ballasted tracks by 
considering the track degradation, the track layout, the dependency of track quality 
improvement on the quality of track at the time of maintenance operation and the 
track quality limits that depend on train speed. Zhao et al. (2006) developed a life cycle 
model to optimize ballast tamping and renewal. Their model was developed by 
incorporating the track deterioration model proposed by Riessberger (2001), and the 
tamping model. They presented three algorithms to obtain the optimal tamping and 
renewal strategy for three policies of fixed intervention level, constant interval of 
tamping and optimal non-constant intervals of tamping. Finally, Higgins (1998), 
proposed a model to determine the best allocation of maintenance activities and crews 
to minimize maintenance costs while keeping the track condition at an acceptable level.  

In the optimization of track geometry inspection, more attention has been paid to 
optimizing the inspection procedure by correlating geometry irregularities to dynamic 
responses at wheel-rail interface. Due to the inability of current track standards to 
account for the performance of different vehicle types, or deal with combinations of 
track geometry perturbations, in the last few years, operating railroads shifted their 
focus to performance-based track geometry (PBTG) (Liu and Magel, 2009). Li et al. 
(2009) noted that current standards and assessment methods do not consider dynamic 
responses at the wheel-rail interface and may not be adequate for track maintenance 
and train speed setting. Therefore, they proposed a dynamic model to assess vertical 
track geometry quality based on simulation of dynamic track-vehicle interaction.

Limited research has considered the optimization of track geometry inspection intervals. 
Specifying a cost-effective inspection interval can help railway infrastructures perform 
maintenance before geometry irregularities reach intervention limits, thus reducing 
maintenance expenditures. Lyngby et al. (2008) studied the optimization of track 
geometry inspection intervals on the Norwegian railway network and showed that by 
optimizing inspection intervals about 20000 NOK per year could be saved on a specific 
track.

Summing up, a review of the literature indicates a need to optimize track geometry 
maintenance. Specifying a cost-effective maintenance strategy using RAMS 
(Reliability, Availability, Maintainability and Safety) and LCC (Life Cycle Cost) 
analyses can help infrastructure managers inspect assets and perform maintenance at the 
right time, thereby reducing operational expenditures and increasing the life span of the 
asset.

Problem definition 
Today, the railway industry is required to increase its capacity: more trains go at greater 
speeds, with higher axle loads. This increased usage may result in the increased 
degradation of railway assets and higher maintenance costs. To assure the safety of the 
track and maintain high quality, an optimized and cost effective track maintenance 
strategy is required based on both technical and/or safety limits and cost-effective 
maintenance thresholds.
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Aligned with European Commission, Trafikverket (Swedish Transport Administration) 
defined a vision till 2020 to increase capacity and market share of passenger and goods 
traffic and also to decrease the maintenance cost and emission of pollutants (White 
Paper, 2001). Thus, an optimal maintenance strategy will link maintenance strategy 
objectives to organisational objectives.  

One of the main parameters to assure railway safety and comfortable railway service is 
to maintain high quality of track geometry. Poor track geometry quality, directly or 
indirectly, may result in safety problems, such as derailment, speed reduction, traffic 
disruption, greater maintenance costs and higher degradation rates in the other railway 
components (e.g. rails, wheels, switch, crossings, etc.). 

Given limited maintenance budgets and short track access time for maintenance, it is 
essential to have an effective and efficient maintenance strategy that infrastructure 
managers can perform maintenance in a timely fashion.  RAMS (Reliability, 
Availability, Maintainability and Safety) as well as LCC (Life Cycle Cost) analyses, 
which are derived from reliable track condition data, will help to specify cost effective 
maintenance intervals, thereby lessening corrective maintenance actions and 
downtimes.

The main objectives of track maintenance optimization are to decrease maintenance 
costs and increase life length of the asset while assuring high safety standards. The first 
step in optimizing track geometry maintenance is to estimate the track degradation rate. 
Obtaining knowledge about the degradation helps to properly schedule maintenance 
activities such as inspection and tamping. 

Trafikverket outsources the inspection and tamping of each line to different contractors 
mostly in performance contracts. This means it is up to the contractor to select methods 
and plan for the work. The frequency of measurement varies from one to six times per 
year depending on the track inspection class. The condition data are used by the 
contractors to plan maintenance activities.

If the inspection interval is not selected properly, the track quality may deteriorate 
beyond the intervention limit; this can result in higher frequency of tamping and, 
consequently, greater maintenance costs. Furthermore, since tamping by itself can cause 
track deterioration, higher frequency of tamping leads to a higher degradation rate and 
shorter life length of the asset. In other words, the inspection interval should be 
specified based on reliability and LCC analysis.

This study develops a methodology to specify the optimal inspection interval for track 
geometry. For this purpose, track geometry data from a heavy haul line section 
between Boden and Gällivare, used by both passenger and freight trains, were collected 
to evaluate track geometry degradation and assess the effectiveness of current 
maintenance strategy.

Purpose of Research 
The purpose of the study is to optimize track geometry maintenance by evaluating 
track geometry degradation, assessing the effectiveness of current maintenance strategy 
and developing a methodology to identify the optimal maintenance interval. The 



5

methodology is based on reliability and cost analysis and is used in the maintenance 
decision-making process to identify a cost-effective track geometry inspection interval.

Research Objectives 
The objectives of this thesis are: 

1. To assess track geometry degradation and its influencing parameters; 

2. To evaluate the effectiveness of the present track geometry maintenance strategy of 
Trafikverket; 

3. To develop a cost model to specify a cost-effective inspection interval. 

Research questions 
To fulfil the objectives of the study, the subsequent research questions must be 
answered: 

1. What is the track geometry degradation rate and which factors dominate? 

2. How effective is Trafikverket’s current track geometry maintenance strategy? 

3. How can geometry condition data be used to specify a cost-effective inspection 
interval?

Scope and Delimitations 
The research seeks to optimize track geometry maintenance in terms of cost efficiency. 

It has two limitations. Firstly, the evaluation of track geometry deterioration is mainly 
based on the longitudinal level degradation because the longitudinal level is the main 
parameter driving the need for tamping. Further study is required to evaluate the total 
effects of the other geometry parameters in specifying the optimal track geometry 
inspection interval. For example, the twist (both 3m and 6m) geometry parameter is 
used to assess the probability of safety failure occurrence.  

Secondly, due to lack of data, the study assumes that the variation in longitudinal level 
value is based on dynamic loads. This means that it does not examine the effects of the 
other maintenance actions and factors in combination with the longitudinal level.

Structure of the thesis 
The thesis structure is as follows: 

Chapter 1, Introduction and Background, presents a brief introduction to the problem. It 
gives background information and explains the research problem. The objectives of the 
research, research questions and limitations are also discussed in this chapter. 

Chapter 2, Basic Concepts, describes basic concepts of track geometry maintenance and 
provides Trafikverket’s track geometry maintenance strategy. 

Chapter 3, Research Methodology, presents different phases of the research: the purpose, 
approach, data collection, data analysis and assessment of research reliability and validity. 
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Chapter 4, Results and Discussion, summarizes the papers and discusses the findings of 
this research.  

Chapter 5, Contributions and Further Research, as the title suggests, summarizes the 
research contributions and makes some suggestions for future research. 
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BESSY is one of Trafikverket’s asset databases; these databases will be described in 
Section 2.4. 

Tamping strategy 
Trafikverket uses several of condition indices to describe the condition of the track; the 
most important are the Q-value and K-value. These values are calculated based on the 
regular measurements of the track geometry.

The quality of the track is calculated based on two parameters: 

The standard deviation of vertical position ( H) from the geometric comfort limit 
set for a specific track class ( H lim).  

The standard deviation of the sum of cant and lateral positions ( S) from the 
geometric comfort limit set for a specific track class ( S lim).  

The formula for calculating the Q-value is (BVF 587.02, 1997): 

                                                                [2]                         

Where:

S = the standard deviation of the sum of the monitored cant error and the 
monitored side position error over 200 meters (Figure 2.9). This value can be 
computed by formula [3]: 

S = standard dev. (cant error + (left side position error + right side position error)/2)     
[3]

S lim = the limit for the standard deviation of the sum of the monitored cant error and 
the monitored side position error over 200 meters. 

H = the standard deviation of the average monitored height error for left and right 
rail over 200 meters. 

H lim = the limit for the standard deviation of the average monitored height error for 
left and right rail over 200 meters. 

Figure 2.9 Calculation of S

The other index, the K-value, is the ratio of the total length of the track with 
deviations below comfort limits ( l) and the total length of the track (L). This index is 

32100150
limlim S
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used to obtain an overall picture of the track condition over a long distance and is 
calculated by the following equation: 

               [4]

At present, the Q value of the entire track section is the governing factor since this 
value is included in the contract between the rail administrator and the contractor 
(Espling et al., 2007). 

The track geometry faults are classified as “B-faults” or “C-faults” (Espling et al., 2007). 
B-faults identify the limits for preventive maintenance while C-faults, which are 
corrective maintenance limits, identifies the maximum allowable deviation from the 
design position for 25 centimetre track sections.  

Trafikverket outsources the tamping of each line to different contractors mostly on 
performance contracts. Outsourcing by performance contracts, means that it is up to 
the contractor to select methods and plan for the work.

In these performance contracts, two limits are specified for the Q value, a goal limit and 
a contractual limit. If the actual Q value of the track is higher than the goal limit, 
contractors receive a bonus; if it is under the contractual limit, they are penalized. 

The execution of tamping is based on the calculated Q values and C-fault limits. 
Tamping due to C-fault deviations is considered corrective maintenance and is 
obligatory, while tamping due to a low Q value is considered preventive maintenance. 
If the inspection reveals C-fault(s) in the track, tamping is carried out within one or 
two weeks of the inspection. For track with a low Q value, planned tamping is 
performed within one month of the inspection.

Trafiverket asset databases 
Trafikverket employs BIS (a track information system), BESSY (an inspection system), 
Ofelia (a fault analysis system) and Optram (a graphical track geometry data system) for 
maintenance planning (Patra, 2009). For the most part, the other systems use BIS as a 
reference system (Patra 2009, Andersson, 2002). Therefore, for efficient maintenance 
planning, it is best to integrate them. 

BIS
BIS is the Transport Administration's computer system which stores and retrieves 
information about track facilities and events. BIS is a reference system, including 
descriptions of the railway system in the form of nodes and links, and also a 
classification system for areas and distances. It is searchable via a graphical user interface 
based in Sweden (Trafikverket website, Banportalen). 

BESSY
BESSY is used for the safety and maintenance inspection of Trafikverket’s fixed assets. 
Inspection Plan is a PC system for planning and monitoring inspections when using 
BESSY (Trafikverket website, Banportalen). 

%100
L

l
K
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Ofelia
Data regarding symptoms of track faults are registered in Ofelia. Track Contractors 
report information, including the reason for faults, what action is performed, times of 
occurrence and fixing (Trafikverket website, Banportalen). 

Optram 
Optram is a web-based system used for data analysis. It coordinates the data from the 
recording car Strix and the measuring wagons. Managers and entrepreneurs use this 
system to analyse information from the track and overhead line. With this, they can 
optimize their maintenance practices (Trafikverket website, Banportalen). 

Maintenance Optimization 
Optimization is a process that, as its name implies, seeks the optimal solution by setting 
priorities and making compromises to achieve what is most important (Campbell & 
Jardine, 2001). The first step in optimization is to specify which objectives are most 
desirable, such as maximizing availability, minimizing cost, etc. In maintenance 
optimization, objectives are usually defined by maintenance purposes (Cui, 2008). All 
constraints should be considered before the optimal solution is determined (Cui, 2008). 
When it is not possible to achieve all objectives simultaneously, a trade-off should be 
made between the objectives to find the best solution. 

The traditional approach in maintenance optimization is to determine an optimal 
maintenance strategy, minimizing the average cost per unit of time in the long run or 
the total expected discounted costs (Vatn and Aven, 2009). Techniques for 
maintenance optimization include the following (Cui, 2008): 

Conventional approaches such as the usual calculus method; 

Simulation approaches; 

Algorithms;

Artificial neural networks; 

Programming methods such as linear programming; 

Fuzzy theory approaches. 

Maintenance optimization models are mathematical models which aim to find the 
optimum balance between the costs and benefits of maintenance (Dekker, 1996). 
These models may have different functions (Dekker, 1996): 

Evaluate maintenance policies with respect to cost-effectiveness and reliability; 

Specify the structure of optimal policies; 

Specify the optimal inspection or maintenance interval. 

In this case, optimizing maintenance requires an estimation of the track degradation and 
the consequence of this degradation, often in form of cost (Lyngby et al., 2008). 
Obtaining knowledge of degradation helps to estimate the right time for inspection, 
maintenance and renewal, considering the total cost of maintenance and risk (Lyngby et 
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al., 2008). 

Degradation models can be classified as the following (Dekker, 1996; Sherif and Smith, 
1981):

1. Deterministic Models 
2. Stochastic Models: 

a. Under Risk 
b. Under Uncertainty 

The difference between risk and uncertainty is that for risk, it is assumed that a 
probability distribution of the time to failure is known while in the case of uncertainty, 
it is unknown (Dekker, 1996). 

RAMS in Railway 
In railways, RAMS (Reliability, Availability, Maintainability and Safety) is a 
characteristic of a system’s long-term operation and is obtained by the application of 
established engineering concepts, methods and techniques throughout the lifecycle of 
the system (EN 50126, 1999). By meeting the needs of RAMS, a railway can guarantee 
the achievement of its goals, namely, to reach a specific level of rail traffic in a given 
time, safely.

The system lifecycle is a sequence of phases, each with specified objectives, inputs and 
requirements, covering the total life of a system from initial concept through to 
decommissioning and disposal. It provides a structure for planning, managing, 
controlling and monitoring aspects of a system in order to deliver the right product at 
the right price within the agreed time (EN 50126, 1999). A system lifecycle that can be 
used in the context of railway is illustrated in Figure 2.10. 

Figure 2.10 The “V” Representation of Railway Lifecycle (EN 50126, 1999) 

The left side of this “V” representation of railway lifecycle is generally called 
development and is a refining process ending with the manufacturing of system 
components; the right side is related to the assembly, installation, receipt and operation 
of the whole system. 

The RAMS of railway can be influenced by the following conditions (EN 50126, 
1999):
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System condition: sources of failure introduced internally within the system at any 
phase of the lifecycle; 

Operating condition: sources of failure imposed on the system during operation; 

Maintenance condition: sources of failure imposed on the system during 
maintenance activities. 

To optimise system performance, all factors which could affect railway RAMS need to 
be identified, their effect assessed and the cause of these effects managed throughout the 
lifecycle of the railway (see Figure 2.11). 
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Figure 2.11 Factors Influencing Railway RAMS (EN 50126, 1999) 
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LCC in Railway 
Since an investment in railway infrastructure is costly, and the infrastructure has a long 
lifespan, an optimal maintenance strategy should be developed through Life Cycle Cost 
(LCC) analysis. LCC analysis is a technique of decision-making using economic 
assessment and comparisons of alternative strategies and designs. It is a structured 
method of assessing all costs incurred within a given system using that system’s technical 
life cycle (Nawabi, 2006). 

The main steps of LCC analysis are the following (Andrade, 2008; IEC 60300-3-3, 
2004):

1. Collect data for all cost elements which defined in the breakdown structure; 

2. Perform LCC analysis for different product scenarios; 

3. Identify the optimum scenario; 

4. Identify cost drivers; 

5. Specify any distinction in product performance, availability or any limitation that 
may affect the applicability of the scenarios considered; 

6. Summarize LCC model outputs, 

7. Perform sensitivity analysis to evaluate the robustness of the model; 

8. Compare LCC model outputs to the objectives defined in the analysis plan. 

There are two ways to distinguish the life cycle cost of railway track (Esveld, 2001): 

1. Tangible versus intangible costs: In tangible costs, the exact costs are known, such 
as the costs of construction and maintenance (labour, materials and machines). For 
intangible costs, the precise costs are unknown. Intangible costs include loss of 
quality, reduction in transport services and reduced safety and comfort. 

2. Initial (capital) costs versus running costs: Initial costs are the costs of acquisition 
and installation or construction; running costs are incurred during the operational 
period of a railway. 

Some research has been done on the application of LCC to the railway industry. A 
guideline for LCC and RAMS analysis proposed by the INNOTRACK project applies 
to some European countries.  The guideline explains principles, applications and 
advantages of LCC analysis. It was created using a survey on the rules and standards 
currently being used by infrastructure managers, as well as the tools and models 
implemented for RAMS and LCC analysis in Europe.

IMPROVERAIL (2003) is a European project, which discussed obstacles to the 
application of LCC in the railway industry. The project noted that although the need 
for LCC application has increased sharply due to the competitive business environment, 
knowledge at the technical-economical interface remains insufficient (Andrade, 2008)  

Zoeteman (2001) developed a decision support system (DSS) for railway design and 
maintenance based on Life Cycle Costing. DSS considers four variables, which 
influence the performance of rail infrastructure and are considered cost drivers: steering, 
external, internal and effect variables. Steering variables are those factors which the 
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infrastructure manager (IM) can directly influence; external variables all those not under 
IM’s control. Internal variables are part of the maintenance and renewal process, 
specifying the volume of planned maintenance and failure performance. 

Due to lack of data and indisputable renewal thresholds, uncertainties should be 
considered in any life cycle cost analysis. One of the main uncertainties in LCC analysis 
is the assessment of track quality decline (Esveld, 2001). The track quality degradation 
depends on many factors such as the initial quality of the construction, the quality of 
the substructure and the loads on the track. 

Sensitivity analysis and Monte Carlo simulation are two methods of dealing with 
uncertainties in LCC analysis (Esveld, 2001; Norman et al, 1983). In sensitivity analysis, 
the input values are varied to test the robustness of the outcomes. The disadvantage of 
this method is that usually only one parameter at a time can be varied. Conversely, in a 
Monte Carlo simulation, all factors can be varied simultaneously. 
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RESEARCH METHODOLOGY 
The term “research” has been defined in different ways. Kumar (2008) calls it an 
intensive and scientific activity undertaken to establish a fact, a theory, a principle or an 
application. In other words, research is a stepwise process of finding answers to 
questions (Neuman, 2003). Different research approaches require different steps; the 
most common research steps are shown in Figure 3.1. 

Figure 3.1 Steps in research process (Neuman, 2003)  

Selecting an appropriate and clear methodology is a necessary requirement of 
conducting research. Research methodology, as defined by Kazdin (1992, 2003), refers 
to the principles, procedures and practices that govern research (Marczyk et al, 2005). 
Five major research methods are experiment, survey, archival analysis, history and case 
study (Yin, 2009). The selection of research methodology depends on three conditions 
(Yin, 2009): 

The type of research questions posed; 

The extent of control an investigator has over actual behavioural events; 

The degree of focus on contemporary as opposed to historical events. 

The purpose of research can be organized into three groups: exploratory (explore a 
new topic), descriptive (describe a phenomenon) and explanatory (explain why 
something occurs) (Neuman, 2003). These are described in detail in Table 3.1. 

1  Select Topic

2  Focus Question

3  Design Study

4  Collect Data5  Analyse Data

6  Interpret Data

7  Inform Others

Theory

7

1

2

3

45
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Table 3.1 Different types of research goals (Neuman, 2003) 

Exploratory Descriptive Explanatory 

Become familiar with the 
basic facts, setting, and 
concerns. 
Create a general mental 
picture of conditions. 
Formulate and focus 
questions for future research. 
Generate new ideas, 
conjectures, or hypotheses. 
Determine the feasibility of 
conducting research. 
Develop techniques for 
measuring and locating 
future data. 

Provide a detailed, 
highly accurate 
picture. 
Locate new data that 
contradict past data. 
Create a set of 
categories or classify 
types. 
Clarify a sequence of 
steps or stages. 
Document a casual 
process or mechanism. 
Report on the 
background or 
context of a situation 

Test a theory’s 
predictions or principles. 
Elaborate and enrich a 
theory’s explanations. 
Extend a theory to new 
issues or topics. 
Support or refuse an 
explanation or 
prediction.
Link issues or topics 
with a general principle. 
Determine which of 
several explanations is 
best

The methodology used in this research is the case study. The goals of the present 
research can be classified as both descriptive and exploratory. The research purpose is to 
describe the track geometry degradation phenomenon and explore a methodology to 
identify a cost-effective track geometry inspection interval based on historical condition 
data and various cost drivers.   

Research Approach 
Research can have different dimensions. The research style can be categorized as 
quantitative or qualitative. The main features of these styles are shown in Table 3.2. 

Table 3.2 Quantitative style versus Qualitative style (Neuman, 2003) 

Quantitative Style Qualitative Style 

Measure objective facts 
Focus on variables 
Reliability is key
Value free 
Independent of context 
Many cases, subjects  
Statistical analysis 
Researcher is detached 

Construct social reality, cultural 
meaning
Focus on interactive processes, events 
Authenticity is key 
Values are present and explicit 
Situationally constrained  
Few cases, subjects 
Thematic analysis 
Researcher is involved 

Research can be applied or basic (fundamental) based on its application. Basic research 
is conducted to determine or establish fundamental facts and relationships within a field 
of study with relatively little emphasis on its applications to “real-world” policy and 
management issues, while applied research is undertaken to solve a particular problem 
(Ethridge, 2004). 
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The research approach can be either inductive or deductive (Rubin and Babbie, 2009): 

In the inductive approach, the researcher begins with observations, seeks patterns in 
those observations, and creates tentative Conclusions; 

In the deductive approach, the researcher starts with hypotheses, which might come 
from a theory or from tentative conclusions, and then tests them. 

In the present study, both quantitative and qualitative styles are used to optimize track 
geometry maintenance. The research problem has a direct application in the railway 
industry. The research also uses both inductive and deductive approaches. A deductive 
method is applied to develop a maintenance optimization process in railway 
infrastructure; an inductive approach is used to develop a model to specify the optimal 
inspection interval. 

Data Collection 
Data can be defined as the empirical evidence or information that scientists carefully 
collect according to rule or procedures to support or reject theories (Neuman, 2003). 
The data can be categorized as quantitative (i.e., expressed as numbers) or qualitative 
(i.e., expressed as words, objects or pictures) (Neuman, 2003). 

In this research, qualitative data were collected from peer reviewed journal papers, 
conference proceedings articles, research and technical reports, Licentiate and PhD 
theses from a number of universities and railway magazines. Specific keywords were 
used to search both qualitative and quantitative data on well-known online databases, 
including IEEE Xplore, Elsevier Science Direct, Rail Rapid Transit and Emerald, etc. 
The reference lists of all relevant articles were searched to find other appropriate 
documents. Quantitative data (e.g. track geometry degradation, date and length of 
tamping) were collected from Trafikverket’s Optram, BIS, BESSY and Ofelia databases. 
These quantitative data were related to a section of the iron ore railway line 
(Malmbanan). The databases are described in the following paragraphs. Cost-related 
data were collected by consulting Trafikverket’s experts and examining a few scientific 
papers.   

Some additional information regarding track geometry maintenance strategy (inspection 
and intervention) was obtained from InfraNord, the Trafikverket contractor for 
maintenance execution in the studied line.   

To assess track geometry degradation, a section of the iron ore line in northern Sweden 
was selected. Since the parameter that usually drives the need for track geometry 
maintenance is the short wavelength longitudinal level (UIC, 2008) and given the 
reduction of the number of variables in the analysis, only the longitudinal level was 
considered in the evaluation of track geometry degradation. Furthermore, due to lack 
of data and to reduce the effect of track location, only tangent segments (each segment 
is 200 m) were used in the analysis with the aim of having similar segments.   

Data Analysis 
A railway track is a repairable system; hence, reliability analysis techniques for repairable 
systems should be applied for failure data analysis. The first step of analysis is to check 
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load of different inspection strategies has been evaluated. The proposed model considers 
inspection time, the maintenance-planning horizon time after inspection and takes into 
account the costs associated with inspection, tamping and risk of accident costs due to 
poor track quality.

Reliability and Validity
Reliability and validity are two central research issues. Neuman (2003) has defined 
reliability as dependability or consistency. This means that if the research methodology 
is applied under identical or very similar conditions by another researcher, the same 
results should be obtained. Validity suggests truthfulness; it refers to the way a 
researcher conceptualizes an idea in a conceptualized definition. It is also a measure, as 
it denotes how well an idea about reality “fits” with actual reality (Neuman, 2003). 

The information and data in this study have been extracted from peer reviewed 
journals, refereed conference proceedings in the field of railway operation and 
maintenance and Trafikvert’s databases. These reliable sources, in addition to the 
application of well-established RAMS analysis techniques, consultations with railway 
experts about applied methodology and obtained results contribute to the study’s 
validity.
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The contractor performance is evaluated in Paper I. Figure 4.9 (a and b) evaluates the 
contractor performance from 2004 to 2010 on the case study line (a) and a reference 
line in central Sweden (b). It is important to note that the contractor is the same for 
both lines, but the contracts are different. 

a) The contractor’s performance on the case 
study line. 

b) The contractor’s performance on a reference 
line in central Sweden. 

Figure 4.9  Evaluation of the contractor’s performance 

The comparison of contractor’s performance shows different maintenance policies. 
With the defined contractual and goal limits, the size of the associated penalties and 
bonuses will encourage the contractor either to be as close as possible to the lower 
contractual limit or to maintain a level above the goal limit. To interpret this, different 
factors such as maintenance budget, functional requirements stated in the contract, 
amount of bonus and penalties also mentioned in the contract, technical issues and 
maintenance decision criteria should be considered. 

The study shows that although several condition indices have been defined to describe 
the condition of the track, at present, the decision to execute tamping is not based on 
all defined limits. The main triggering criteria in decision making for tamping 
execution are Q-value and C-fault. This study also reveals that there is no well-
structured track degradation and LCC analysis that helps plan maintenance in the long 
term.

These findings answer research question two regarding the evaluation of the 
effectiveness of current track geometry maintenance strategy of Trafikverket. 

Paper III discusses optimization of the track geometry inspection interval and aims to 
minimize the total ballast maintenance costs per unit traffic load. The proposed model 
considers inspection time and maintenance-planning horizon time after inspection and 
takes into account the costs associated with inspection and tamping, as well as possible 
accident costs due to poor track quality. The model is based on the assumptions that 
the track segments are identical and the maintenance effectiveness is perfect which 
means the track will be restored to as good as new state after maintenance execution.
The model also assumes that based on the inspection data, corrective tamping is 
performed on a fixed ratio of the total track length while preventive tamping is 
executed at a fixed time interval (time-based maintenance). The time interval for 
preventive tamping execution is defined based on the infrastructure maintenance 
strategy.
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characteristics, location (curve or tangent), substructure characteristics and construction 
time and maintenance history.  However, as shown in Figure 4.1, even the degradation 
rates of the tangent segments vary significantly.  To reduce the risk and assure the safety 
level, the sections with high degradation rates should be monitored and restored 
precisely. This means that more frequent inspections and preventive maintenance 
should be performed to control risk in segments with higher degradation rates. 

In addition, the maintenance effectiveness was assumed to be perfect which is not true 
in reality. Nor has the so-called ballast memory, which results in sudden settling of 
ballast in a short interval after tamping, been considered in this model. As explained 
earlier, the probability distributions of failures used in the analysis were obtained based 
on the current maintenance strategy. Any change in maintenance strategy may result in 
different probability distributions of failures. Further study is required to analyze the 
effect of variation in probability distribution on the optimal inspection interval.  

It should be considered that the outcome of this study is based on a model that consists 
of direct and quantitative cost parameters. Other indirect or qualitative cost parameters 
have not been included in the model, including cost due to loss of comfort or the cost 
effect for lower track quality due to the degradation rate of other components. 
Expanding the inspection interval will reduce the maintenance frequency, possibly 
resulting in lower comfort for passing trains. To ensure better comfort, inspection and 
maintenance actions should be more frequent. Low quality track may also affect the 
degradation rates of other parts such as wheelsets. By including the indirect and 
qualitative cost factors, more reliable results for specifying the most cost-effective 
inspection interval can be obtained. 

These results answer research question three on specifying a cost-effective maintenance 
interval by using geometry condition data. 
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CONTRIBUTIONS AND FURTHER 
RESEARCH

Research Contributions 
The research in this Licentiate thesis has focused on proposing an approach to convert 
condition-monitoring data into useful information for maintenance decision making for 
a railway infrastructure. The literature study shows that due to several factors such as 
different maintenance policy and strategy, regulations, and environmental and climate 
condition, dissimilar criteria for maintenance decision making are used by different 
infrastructure managers. It also finds that railway maintenance optimisation is still in its 
initial phase. 

The research contributions can be summarized as follows: 

Evaluation the effect of track geometry degradation (Paper II) 

Evaluation the effect of climate on the failure occurrence (Paper II)

Assessment of the efficiency of the current track geometry maintenance strategy 
(Paper I) 

Analysis of probability distribution of failure occurrence over time (MGT) (Paper 
III)

Development of cost model to identify cost-effective inspection interval (Paper III) 

Scope of Future Research 
Based on the conducted research, the following areas are recommended for further 
research:

The development of a Markov model for track geometry degradation which can be 
helpful in optimal maintenance planning; 

Comprehensive correlation analysis on the effect of substructure material type, 
geometry location, temperature, traffic, etc. on the degradation rate and probability 
of failure occurrence; 

The development of an approach to specify cost-effective maintenance thresholds 
for the maintenance strategy. Cost-effective maintenance thresholds obtained by 
applying RAMS and LCC methodologies can help infrastructure managers prolong 
the life length of the asset and reduce maintenance costs. 
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Abstract

Track quality measurements and improvements is one of the prime issues in railroads in terms 
of planning time and related cost. Making decision concerning measurements interval and 
how to allocate limited resources for maintenance execution has an enormous influence on 
maintenance efficiency. Applying the efficient and optimal tamping strategy helps reduce 
maintenance costs, making operations more cost effective and leading to increased safety and 
passenger comfort. In this paper, track geometry data from the iron ore line (Malmbanan) in 
northern Sweden, which handles both passenger and freight trains, are used to calculate track 
quality degradation trend in a cold climate. The paper describes Trafikverket’s (Swedish 
Transport Administration) tamping strategy and evaluates its effectiveness in measuring, 
reporting, and improving track quality. Finally, it discusses the lack of data accuracy and 
notes the various factors involved in maintenance decisions. 

Index Terms: track geometry, maintenance, tamping 

1. Introduction: 

Today’s railway industry handles more and faster trains and deals with higher axle loads, but 
this increased usage can result in faster degradation of railway assets and higher maintenance 
costs. To assure track safety and maintain high quality standards, we need to devise an 
optimized and cost-effective track maintenance strategy based on technical and/or safety 
limits that meet cost-effective maintenance thresholds. 

Track geometry maintenance (tamping) is a maintenance action used to compact ballast and 
correct track geometry faults such as incorrect alignment (lateral deviation) or incorrect 
longitudinal level (vertical deviation). In Sweden, the annual tamping cost is about 100-120 
MSEK, and the total amount of tamped track is approximately 1700 km, about 14% of the 
total track length [1].  

Some researchers have developed empirical models of track geometry degradation with a 
view to better understanding the degradation [2, 3, 4, etc.]. Others have examined how 
different variables such as speed and axle load affect track deterioration [5, 6, 7, etc.]. 
However, a number of researchers claim that current standards and assessment methods may 
not be adequate for track maintenance, as these do not consider dynamic responses at the 
wheel-rail interface [8, 9, etc.].  

In this paper, we describe the Swedish Transport Administration (Trafikverket) strategy for 
tamping, evaluate its efficiency and discuss about the quality and accuracy of data. To this 
end, we use track geometry data from a section of the iron ore line (Malmbanan) between 
Boden and Gällivare in northern Sweden. We find that time utilization in tamping is not very 
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effective [1], with only about 25% of the available time being used for maintenance 
execution. The main reason for this low efficiency is limited access time to the track. This 
review reveals a need to optimize the track geometry maintenance strategy. Briefly stated, an 
estimation of track degradation and its consequences is required to optimize track 
maintenance [10]. With this knowledge, we can estimate the right time for inspection, 
maintenance and renewal.  

2. Case study background: 

On the “iron ore line”, the Swedish mining company LKAB transports iron ore pellets from 
its mine in Kiruna to Narvik and from its mine in Vitåfors, near Malmberget, to Luleå. In 
2000, LKAB increased the axle load on Malmbanan from 25 to 30 tonnes and the maximum 
speed of the loaded train from 50 to 60 km/h. This change is likely to result in higher track 
geometry degradation. In addition to iron ore transportation, the line is used by passenger 
trains and other freight trains. The train speeds vary from 50-60 km/h for loaded iron ore 
trains, to 60-70 km/h for unloaded ones and 80-135 km/h for passenger trains.  

The annual passing tonnage on the track is about 13.8 MGT. The track consists of UIC 60 
rails and concrete sleepers. The ballast type is M1 (Crushed Granite), and the track gauge is 
1435 mm. The region is subject to harsh climate conditions: snow and extreme temperatures, 
ranging from -40˚C in winter to +25˚C in summer [11].  

3. Track quality monitoring and maintenance: 

To monitor track quality, Trafikverket regularly (every 1-2 months from April to October) 
uses an inspection car to measure the deviation of the track with an inertia measurement 
system and an optical system. An accelerometer measures the acceleration of the vehicle; 
based on the recorded accelerations, the vertical and lateral deviation of the track is calculated 
for consecutive 25-centimeter intervals.  

Based on these 25-centimeter interval measurements, the standard deviation, S, of the 
monitored cant error (C) and the average monitored lateral position error of the high rail 
(SHigh) (see figure 1 and Eq. [1]) are calculated for 200-meter sections. The standard deviation 
of the average monitored vertical error for the left and right rail, H, is also calculated for 200-
meter sections. 

                                                    [Eq.1]

The standard deviations for lateral and vertical errors ( S and H) are calculated from short 
wavelength signals. Since the recorded signals from the measuring car are the combination of 
long and short wavelengths, filtering is required. This can be done by selecting only signals in 
the range of 1 to 25 meters. 

Trafikverket uses several condition indices to describe the condition of the track, the most 
important of which are the Q-value and K-value. These are calculated based on the standard 
deviation of the vertical and lateral displacements, H and S, and the comfort limits that 
define the acceptable standard deviation of the longitudinal level for 200-meter track sections 
(see table 1).  

The formula for calculating the Q-value is: 

HighS SC
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                                                      [Eq.2]                              

Where:
S lim= The comfort limit for the S value, defined for different track classes (see table 1). 
H lim= The comfort limit for the H value, defined for different track classes (see table 1).  

Figure 1:  Calculation of S Figure 2: Illustration of C-fault limits 

The other index, the K-value, is the ratio between ( l), the total length of the track with 
standard deviations below the comfort limits, and the total length of track (L). This index is 
used to obtain an overall picture of the track condition over a long distance and is calculated 
by the equation: 

                                             [Eq.3] 

In addition to the Q-value and the K-value, two fault limits are defined for 25-cm track 
sections, “B-faults” and “C-faults”. C-faults, which are safety-related limits, identify the 
maximum allowable deviation from the design position (see figure 2), while B-faults identify 
the limits for the execution of preventive maintenance [12]. Although these limits are defined 
for “point failure” (25 cm), the fault normally occurs over a length of at least 1 to 5 meters 
due to rail stiffness.

The track of the iron ore line consists of two quality classes, K2 and K3, each with a different 
allowable speed, dissimilar fault thresholds and comfort limits for local trains (see table 1).

Table 1: comparison of the allowable limits between K2 and K3 [13] 
Quality 
class 

Maximum 
allowable
speed for local 
trains

Comfort limits B-fault limits C-fault limits 
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deviation of 
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Maximum 
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Km/h mm mm mm mm 
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Trafikverket outsources the tamping of each line to different contractors, mostly using 
performance contracts. In this type of outsourcing, it is up to contractors to select appropriate 
methods and plan for the work. They are responsible for both regular measurements of track 
geometry and tamping, and they base their execution of tamping on the calculated Q-values 
and C-fault limits.  

Tamping is executed as either preventive maintenance or corrective maintenance. Execution 
of tamping due to the C-fault is considered corrective maintenance; tamping due to the Q 
value is considered preventive maintenance. This means that if the Q value of the track 
section falls below the contractual limit and/or there is deviation in the track greater than the 
C-fault limits (safety limits), tamping should be performed. Tamping is obligatory (i.e., 
required by regulation) if the C-fault value exceeds the C-fault limit. 

In the performance contracts, two limits are specified for the Q value, a goal limit and a 
contractual limit. If the actual Q value of the track is higher than the goal limit, contractors 
will receive a bonus, while if it is below the contractual limit, they must pay a penalty. 

4. Methodology: 

4.1. Data collection and data treatment 

Track section 118, between Boden and Gällivare, was selected for the case study. To ensure 
comparable data, we considered tangent segments of 200 m from quality class K2 and left out 
other parts of the track, such as curves and stations.  

The tamping information for the selected track section was extracted from two Trafikverket 
databases, BIS (track information system) and OPTRAM. BIS contains information on 
Trafikverket’s infrastructure and facilities, agreements, the history of tamping (such as 
location of tamped section, length of tamping, date, etc.) and grinding and curves [14]. 
OPTRAM is a system implemented since 2007 by Trafikverket to show graphically the results 
of track position measurements. The system provides functionality for analysis and displays 
data trends [15]. To gain access to all information on tamping, however, it is essential to 
consider both systems [1]. 

In BIS, tamping information can be inaccurate, as corrective tamping is not always reported to 
the system by the contractors because it is not a contract requirement [1]. OPTRAM, which is 
based on inspection data, is more reliable; however, the data in this system have only been 
available since 2007. Therefore, a full overview of the long-term degradation of the track 
could not be obtained for this study.

The standard deviations for the longitudinal level before and after execution of tamping were 
selected from OPTRAM database, for the period 2007-2009. To evaluate the performed 
tamping efficiency, we used the tamping intervention graph developed by the Austrian 
railway (see reference [16]). Here, the tamping efficiency is classified as bad, good or 
excellent. In the original graph, the maximum value before tamping is 3 mm, and since some 
data in this case study are greater than 3 mm, the graph has been extended using trend 
regression analysis (see figure 5).

When the longitudinal level value goes beyond the Intervention Limit, corrective maintenance 
should be performed. This Intervention Limit (IL) can be defined either for isolated defects or 
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The comparison of contractor’s performance on two different lines (see figure 6) shows 
different maintenance policies. With the defined contractual and goal limits, the size of the 
associated penalties and bonuses will encourage the contractor either to be as close as possible 
to the lower contractual limit or to maintain a level above the goal limit. To interpret this, 
different factors such as maintenance budget, functional requirements stated in the contract, 
amount of bonus and penalties mentioned in the contract, technical issues, and maintenance 
decision criteria should be considered.

7. Conclusion: 

The study concludes the following: 

Available and accurate data on geometry conditions and performed maintenance 
actions are the main requirements of track degradation analysis. However, the data 
available for this study are inadequate for precise degradation analysis;
The decision-making process for the execution of tamping does not use all defined 
limits for geometry parameters; 
Evaluation of the standard deviation for the longitudinal level at which tamping is 
executed indicates that the execution of tamping is not optimally planned;  
Execution of tamping is highly dependent on the condition data and there is no well-
structured track degradation analysis that helps to plan for maintenance in the long 
term; 
The structure of the contract, such as the maintenance budget, the defined goals and 
contractual limits, the size of the associated penalties and bonuses, can have a major 
effect on the efficiency of maintenance strategy. 
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1   INTRODUCTION 

Today’s railway industry handles more and 
faster trains and deals with higher and higher 
axle loads. With increased usage comes the 
risk of faster degradation of railway assets, 
resulting in higher maintenance costs. 
However, the use of an optimized and cost-
effective track maintenance strategy based on 
technical and/or safety limits that meet cost-
effective maintenance thresholds will assure 
track safety and maintain high quality 
standards. 

Track geometry maintenance (tamping) is a 
maintenance action used to compact ballast 
and correct track geometry faults, including 
incorrect alignment (lateral deviation) and 
incorrect longitudinal level (vertical 
deviation). In Sweden, annual tamping costs 
run in the neighbourhood of 11 to 13 M€, and 
the total amount of tamped track is 
approximately 1700 km, about 14% of the 
total track length [1].  

To better understand track geometry 
degradation, some researchers have developed 
empirical models [2, 3, and 4]. The 
degradation model, which was developed by 
Bing & Gross (1983), predicts how the track 
quality, as measured by Track Quality Indices 
(TQls) changes as a function of causal 
parameters, such as traffic, track type and 
maintenance [2]. Sato (1997) proposed a 
degradation model that considers the super-
structural aspect in which the degradation 
depends on tonnage, speed, types of rail 
connection (Jointed or continuously welded) 
and quality of the subgrade [3]. 
Others have examined how different variables 
such as speed and axle load affect track 
deterioration [5, 6, 7, etc.]. Still others claim 
that current standards and assessment 
methods may not be adequate for track 
maintenance, as they do not consider dynamic 
responses at the wheel-rail interface [8, 9, 
etc.].

Briefly stated, an estimation of track 
degradation and its consequences is required 
to optimize track maintenance [10]. With this 

knowledge, we can estimate the right time for 
inspection, maintenance and renewal.  

This paper describes the Swedish Transport 
Administration (Trafikverket) strategy for 
tamping. It analyses track geometry 
degradation and discusses possible reasons for 
the distribution of failures along the track as 
well as distribution of failures over different 
months. For its case study, it draws on track 
geometry data from section 118 of the iron 
ore line (Malmbanan) between Boden and 
Gällivare in northern Sweden.  

2   CASE STUDY BACKGROUND 

On the selected track, the Swedish mining 
company LKAB transports iron ore pellets 
from its mine in Kiruna to Narvik and from its 
mine in Vitåfors, near Malmberget, to Luleå 
(see Figure 1). In 2000, LKAB increased the 
axle load on Malmbanan from 25 to 30 tonnes 
and the maximum speed of the loaded train 
from 50 to 60 km/h. These changes are likely 
to result in higher track geometry degradation. 
In addition to LKAB’s transportation of iron 
ore, the line is used by passenger trains and 
other freight trains. Train speeds vary from 
50-60 km/h for loaded iron ore trains, to 60-
70 km/h for unloaded ones and 80-135 km/h 
for passenger trains.

The annual passing tonnage on the track 
between Boden and Gällivare is about 13.8 
Million Gross Ton (MGT). The track consists 
of UIC 60 (UIC: International Union of 
Railways) rails and concrete sleepers. The 
ballast type is M1 (crushed granite), and the 
track gauge is 1435 mm. The region is subject 
to harsh climate conditions: winter snowfall 
and extreme temperatures, ranging from -
40˚C in winter to +25˚C in summer [11].  
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Table 1: Comparison of the allowable limits between K2 and K3 [13] 
Quality 
class 

Maximum 
allowable
speed for 
local
trains 

Comfort limits B-fault limits C-fault limits 
H limit 

Standard
deviation of 
vertical
position 

S limit

Standard
deviation of the 
sum of vertical 
and lateral 
position 

Maintenance
limit for vertical 
deviation for 25 
cm interval  
(1-25m 
wavelength)

Maximum 
allowable
vertical
deviation for 25 
cm interval 
(1-25m 
wavelength)

km/h mm mm mm mm 
K2 105 - 120 1.5 1.9 7 12 
K3 75 - 100 1.9 2.4 10 16 

The other index, the K-value, is the ratio of 
the total length of the track with deviations 
below comfort limits ( l) and the total length 
of the track (L). This index is used to obtain 
an overall picture of the track condition over a 
long distance and is calculated by the 
equation

                                    [Eq.3] 

In addition to the Q-value and the K-value, 
two fault limits are defined for 25-cm track 
sections, “B-faults” and “C-faults”. C-faults, 
which are safety-related limits, identify the 
maximum allowable deviation from the 
design position (see Figure 3), while B-faults 
identify the limits for the execution of 
preventive maintenance [12]. Although these 
limits are defined for “point failures” (25 cm), 
since a failure is often caused by a movement 
in the substructure, it affects at least 1 metre 
of the track. 

The iron or line’s track consists of two quality 
classes, K2 and K3, each with different 
allowable speeds; dissimilar fault thresholds 
and different comfort limits for local trains 
(see Table 1).  

The infrastructure owner outsources the 
tamping of each line to different contractors, 
mostly using performance contracts with 
fixed budget. In this type of outsourcing, it is 
up to the contractors to select the most 
appropriate method. They are responsible for 
interpreting geometry measurements data, and 
tamping; they base their execution of tamping 

on their calculation of Q-values and detection 
of C-fault limits.  

Since the end of 1990 the maintenance 
strategy changed from predetermined 
maintenance (time or tonnage based) to 
condition based maintenance. This means that 
tamping is performed due to the actual 
condition of track. 

Tamping is done as either preventive or 
corrective maintenance. Execution of tamping 
due to the C-fault is considered corrective 
maintenance; tamping performed because of 
the Q value is preventive. This means that if 
the Q value of the track section falls below 
the contractual limit and/or there is a 
deviation in the track greater than the C-fault 
limits (safety limits), tamping is called for. 
Tamping is obligatory (i.e., regulation 
regulatory requirement) if the C-fault value 
exceeds the C-fault limit. 

In the performance contracts, two limits are 
specified for the Q value, a goal limit and a 
contractual limit. If the actual Q value of the 
track is higher than the goal limit, contractors 
will receive a bonus; if it is below the 
contractual limit, they must pay a penalty. 

4   Data collection and data treatment 

To ensure comparable data for the selected 
track, we considered segments of 1000 m 
from both quality classes K2 and K3 and left 

%100
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out stations as well as other parts of the track 
after or before stations with lengths shorter 
than 1000 m.

The failure data for the selected track section 
were extracted from the inspection reporting 
system, STRIX. Inspection data reports have 
two levels. The first level indicates the Q 
value, the K value, the standard deviation of 
geometry parameters for each kilometre and 
different types of B and C failures detected in 
that segment. The second level contains more 
detailed information about C-failures such as 
type, location, size and length of failure. 
These critical failures which can cause 
derailment should be reported immediately to 
the operation control centre in order to restore 
them. 

To collect data, two of Trafikverket’s 
databases, BIS (Trafikverket asset register) 
and Optram were used. From BIS we 
obtained information about substructure 
characteristics; data on the geometry 
condition of segments were extracted from 
OPTRAM. BIS contains information on  
infrastructure and facilities, agreements, the 
history of tamping (such as location of 
tamped section, length of tamping, date, etc.) 
and grinding and curves [14]. OPTRAM is a 
system implemented since 2010 by the 
infrastructure owner to show graphically the 
results of track position measurements. While 
only the measurement data after 2007 are 
available in this database, the system provides 
functionality for analysis and displays data 
trends [15]. To gain access to all available 
information on tamping, it is essential to 
consider both systems [1]. 

5   Results and Discussion 

To optimize maintenance planning, we should 
assess the distribution of the occurrence of C-
failures over a year. Therefore, we created a 
histogram of the total number of C-failures 
occurring by month from 2004 to 2010 for the 
selected track section. To exemplify, Figure 4 

illustrates the distribution of identified C-
failures during the measurement season 
(summer) for two geometry parameters: 
longitudinal level and twist 3m. For the other 
geometry parameters, including cant, 
alignment and twist 6m, the trend is similar to 
the trend shown by twist 3m. 

To interpret the variance of failure occurrence 
in different months, some factors such as 
climate and temperature, drainage and 
maintenance strategy should be considered. 
By the middle of May, the substructure 
temperature is usually above the freezing 
point; this causes the frost over the 
substructure to melt, resulting in reduced 
substructure stability. During June and July, 
the rate of geometry faults increases, as is 
clear from the quantity of detected twist 3m 
failures. One possible reason is the rising 
temperature. The soil is still frozen during the 
first measurement in April, but the rise in 
temperature starting in mid-May affects track 
geometry up to 30 cm below the sleepers. 
Frost heaves and drainage are two other 
possible reasons for the high rate of failure 
between April and July. Frost heave is a track 
displacement cause by the formation of 
pockets of ice within the upper surface of 
subgrade or within the ballast section [16]. 
Frozen water expansion by 9-10% in volume 
result in track surface distortion [16]. Since 
drainage reduce track stability and by 
considering that twist usually occurs in track 
segments with soft subsoil [17], the growth of 
detected twist faults during June and July can 
be explained. 

The effect of frost heaves on failure 
occurrence rate is visible in April/May, while 
the effect of drainage is noticeable in 
June/July. Executing maintenance between 
April and October reduces the risk of such 
failures. Figure 5 shows the minimum, 
maximum and average temperature which has 
been observed in Gällivare on each month 
between 2004 and 2010. 
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Abstract:

The measurement and improvement of track quality are key issues in determining the time 
and cost of railway maintenance. Efficient track maintenance ensures optimum allocation of 
limited maintenance resources and has an enormous effect on maintenance efficiency. 
Applying an appropriate tamping strategy helps reduce maintenance costs, making operations 
more cost effective and leading to increased safety and passenger comfort. This paper 
discusses optimization of the track geometry inspection interval with a view to minimizing the 
total ballast maintenance costs per unit traffic load. The proposed model considers inspection 
time, the maintenance-planning horizon time after inspection and takes into account the costs 
associated with inspection, tamping and risk of accident costs due to poor track quality. It 
draws on track geometry data from the iron ore line (Malmbanan) in northern Sweden, used 
by both passenger and freight trains, to find the probability distribution of failures.  

Keywords: Track geometry degradation, Maintenance, Inspection interval, Optimization, 
Tamping.  

1. Introduction 

Today’s railway industry handles more and faster trains and deals with higher and higher axle 
loads. With increased usage comes the risk of faster degradation of railway assets, resulting in 
higher maintenance costs. However, by shifting the criteria of maintenance strategy from 
meeting safety limits to discerning cost-effective maintenance thresholds through reliability 
and life cycle cost analyses, high quality track standards can be maintained. 

The quality of the track geometry is highly dependent on ballast conditions. Today, railways 
frequently use ballasted track, incurring high annual expenses for ballast maintenance and 
renewal. Track geometry maintenance (tamping) is used to compact ballast and correct track 
geometry faults, including incorrect alignment (lateral deviation) and incorrect longitudinal 
level (vertical deviation). Planning of this maintenance is usually based on performance, and 
no economic analysis is involved [1]. In Sweden, annual tamping costs are in the 
neighbourhood of 11 to 13 M€, and the total tamped track is approximately 1700 km, about 
14% of the total track length [2].  
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A number of railway research institutes and researchers have attempted to develop a track 
geometry deterioration model; these include the European Rail Research Institute (ERRI) in 
the Netherlands, Transportation Technology Center Inc. (TTCI) in the USA and Graz 
University of Technology (TU Graz) in Austria. Sato (1997) proposed a degradation model 
that considers the super-structural aspect in which the degradation depends on tonnage, speed, 
types of rail connection (jointed or continuously welded) and quality of the subgrade [3].  The 
model, developed by Bing & Gross (1983), predicts how the track quality, as measured by 
Track Quality Indices (TQls) changes as a function of causal parameters, such as traffic, track 
type and maintenance [4]. 

Vale et al. (2010) developed a model for scheduling tamping on ballasted tracks by 
considering the track degradation, the track layout, the dependency of track quality 
improvement on the quality of track at the time of maintenance operation and the track quality 
limits that depend on train speed [5]. Zhao et al. (2006) developed a life cycle model to 
optimize ballast tamping and renewal by incorporating a track deterioration model proposed 
by [6] and a tamping model [1]. They used three algorithms to obtain the optimal tamping and 
renewal strategy for fixed intervention levels, constant intervals of tamping and optimal non-
constant intervals of tamping. Higgins (1998) proposed a model to determine the best 
allocation of maintenance activities and crews to minimize maintenance costs while keeping 
the track condition at an acceptable level [7].  

In the optimization of track geometry inspection, more attention has been paid to optimizing 
the inspection procedure by correlating geometry irregularities to dynamic responses at the 
wheel-rail interface [8, 9]. However, little research has considered the optimization of track 
geometry inspection intervals. Using a genetic algorithm, Podofillini et al. (2005) developed a 
model to calculate the risks and costs associated with an inspection strategy to determine an 
optimal inspection strategy [10]. Specifying a cost-effective inspection interval can help 
railway infrastructures perform maintenance before geometry irregularities reach intervention 
limits, thus reducing maintenance expenditures. 

This paper aims to minimize the total ballast maintenance costs per unit traffic load by 
identifying the optimal inspection interval for particular track geometry.  

2. Studied Line Background 

On the railway line from Narvik to Luleå, “the iron ore line,” the Swedish mining company 
LKAB transports iron ore pellets from its mine in Kiruna to Narvik and from its mine in 
Vitåfors, near Malmberget, to Luleå (see Figure 1). In 2000, LKAB increased the axle load on 
Malmbanan from 25 to 30 tonnes and the maximum speed of the loaded train from 50 to 60 
km/h. These changes are likely to result in higher track geometry degradation. In addition to 
LKAB’s transportation of iron ore, the line is used by passenger trains and other freight trains. 
Train speeds vary from 50-60 km/h for loaded iron ore trains to 60-70 km/h for unloaded ones 
and 80-135 km/h for passenger trains.  

On the selected track section, section 118 between Boden and Gällivare, the annual passing 
tonnage is about 13.8 MGT. The track consists of UIC 60 rails (UIC stands for International 
Union of Railways) and concrete sleepers. The ballast type is M1 (crushed granite), and the 
track gauge is 1435 mm. The region is subject to harsh climate conditions: winter snowfall 
and extreme temperatures, ranging from -40˚C in winter to +25˚C in summer [11].  
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Figure 2:  Calculation of S Figure 3: Illustration of C-fault limits 

Table 1: Comparison of the allowable limits between K2 and K3 [12] 
Quality
class 

Maximum 
allowable
speed for 
local
trains

Comfort limits B-fault limits C-fault limits 
H limit 

Standard
deviation of 
vertical
position

S limit
Standard
deviation of the 
sum of vertical 
and lateral 
position

Maintenance
limit for vertical 
deviation for 25 
cm interval  
(1-25m 
wavelength)

Maximum 
allowable
vertical
deviation for 25 
cm interval 
(1-25m 
wavelength)

km/h mm mm mm mm 
K2 105 - 120 1.5 1.9 7 12 
K3 75 - 100 1.9 2.4 10 16 

The other index, the K-value, is the ratio of the total length of the track with deviations below 
comfort limits ( l) and the total length of the track (L). This index is used to obtain an overall 
picture of the track condition over a long distance and is calculated by the equation

                                                                                                      [Eq.3] 

In addition to the Q-value and the K-value, two fault limits are defined for 25-cm track 
sections (isolated defects), “B-faults” and “C-faults”. C-faults, which are safety-related limits, 
identify the maximum allowable deviation from the design position (see Figure 3), while B-
faults identify the limits for the execution of preventive maintenance [13]. Although these 
limits are defined for “point failures” (25 cm), since a failure is often caused by a movement 
in the substructure, it affects at least 1 metre of the track. 

The selected track consists of two quality classes, K2 and K3, each with different allowable 
speeds, dissimilar fault thresholds and varying comfort limits for local trains (see Table 1).  

The infrastructure owner outsources the tamping of each line to different contractors, mostly 
using performance contracts with a fixed budget. In this type of outsourcing, it is up to the 
contractors to select the most appropriate method. They are responsible for interpreting 
geometry measurements data and executing tamping based on calculation of Q-values and 
detection of C-fault limits.  
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In 1990, the maintenance strategy changed from predetermined maintenance (time or tonnage 
based) to condition-based maintenance. This means that tamping is performed based on the 
actual condition of the track. 

Tamping is done as either preventive or corrective maintenance. Execution of tamping due to 
the C-fault is considered corrective maintenance; tamping performed because of the Q value 
is preventive. This means that if the Q value of the track section falls below the contractual 
limit and/or there is a deviation in the track greater than the C-fault limits (safety limits), 
tamping is called for. Tamping is obligatory (i.e., regulation regulatory requirement) if the C-
fault value exceeds the C-fault limit. 

In the performance contracts, two limits are specified for the Q value, a goal limit and a 
contractual limit. If the actual Q value of the track is higher than the goal limit, contractors 
will receive a bonus; if it is below the contractual limit, they must pay a penalty. 

4. Data Collection and Data Treatment 

To ensure comparable data from the selected track section, segments of 1000 m from both 
quality classes K2 and K3 were selected. Stations and other parts of the track before or after 
stations with lengths shorter than 1000 m where left out.  

The failure data for the selected track section were extracted from the inspection reporting 
system, STRIX. Inspection data reports have two levels. The first level indicates the Q value, 
the K value, the standard deviation of geometry parameters for each kilometre and different 
types of B and C failures detected in that segment. The second level contains more detailed 
information about C-failures such as type, location, size and length of failure. These critical 
failures, which can cause derailment, are reported immediately to the operation control centre 
so that the track can be restored. 

The study uses two of Trafikverket’s databases: Ban InformationsSystem (BIS) (Trafikverket 
asset register) and Optram. Information about substructure characteristics was obtained from 
BIS, and data for the geometry condition of segments were extracted from OPTRAM. BIS 
contains information on infrastructure and facilities, agreements, the history of tamping (such 
as location of tamped section, length of tamping, date, etc.) and grinding and curves [14]. 
OPTRAM is a system implemented in 2010 to graphically show the results of track position 
measurements. Only measurement data after 2007 are available in this database. The system 
also provides functionality for analysis and displays data trends [15]. To gain access to all 
available information on tamping, it is essential to consider both systems [2]. 

The collected data from these databases were used to find the probability distributions of 
failures. To find the best fitted probability distribution function, the study used the software 
Weibull++7. To obtain applicable results from the analysis, only main distributions such as 
Weibull, normal/lognormal, exponential, etc. were considered; other theoretical distributions 
were omitted.  

Since the exact times of failure occurrence have not been determined, the failure time data 
were considered as interval censored data, which come from situations where the object of 
interest is not constantly monitored. 
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In the model, it is assumed that based on the inspection data, corrective tamping is performed 
on a fixed ratio of the total track length, while preventive tamping is executed at fixed time 
intervals (time based maintenance). The time interval for preventive tamping execution is 
defined based on the infrastructure maintenance strategy. Therefore, the frequency of 
corrective tamping depends on the frequency of inspections. The aim is to identify the optimal 
maintenance inspection interval (T) and frequency (K) that will minimize the total cost per 
unit of traffic load (MGT). In other words, an inspection should be performed only when its 
cost is offset by a resulting reduction in expected future cost. 

The other assumptions of the proposed model are:   
The execution of inspection and maintenance has no effect on the availability and 
capacity of the line. Therefore, the cost of unavailability of the line due to inspection 
or maintenance execution is not considered.
The whole track is considered as system consisting of identical segments. 
The maintenance effectiveness is perfect, which means that the condition of the track 
after maintenance will be restored to as good as new. 
The probability of failure occurrence at the planning horizon interval is considered 
zero. 
The ratio of total length of the track that should be tamped correctively after each 
inspection is constant and is independent of the frequency of tamping. 
Any change in maintenance strategy has no effect on the probability of failure 
occurrence, and the probability of failure occurrence is the same for all inspection 
strategies. 

The following cost parameters are considered for cost modelling: 
1. Inspection cost: The inspection cost (Ci) is a deterministic value and is constant in 

consecutive inspection cycles. 
2. Corrective tamping cost: This can be calculated by multiplying the cost of corrective 

tamping (CC.T), the probability of C-failure occurrence at the specified time interval 
(PC(TI)) and the ratio of total length of track section (A) that needs corrective tamping. 
However, since corrective tamping is performed on only part of the track, just that 
portion will be restored to as good as new; the rest will be as bad as old. Therefore, the 
probability of failure detection during each inspection should be subtracted from 
probability of failure in the previous inspection when a part of the track was restored 
to as good as new by corrective tamping. Hence, A CC.T [PC(TI i) – PC(TI i-1)].

3. Preventive tamping cost: This is the cost of preventive tamping (CP.T) which is 
executed at a fixed time interval. 

4. Risk of accident cost: This cost can be estimated by multiplying the cost of derailment 
(CAcc.) by the probability of safety failure occurrence that can cause derailment in the 
interval between maintenance execution and the next inspection (PS.F(TR)). Hence, 
CAcc. PS.F(TR).

Since it is assumed that the entire track will be restored to as good as new after preventive 
maintenance, the cost model should be defined for the interval between two consecutive 
executions of preventive tamping. Consequently, the cost model for the “K” series of 
inspection cycles can be expressed as: 
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                                                      [Eq.5] 

7. Application of the model on the studied line

As mentioned, the studied line is usually inspected every two months. However, according to 
regulations, this inspection interval can be expanded to every four months. By applying the 
proposed model, three scenarios of inspections – every two months, every three months and 
every four months – are compared to find the optimal alternative with the lowest total 
maintenance cost.  

The costs of inspection, preventive tamping and corrective tamping per kilometer were 
collected from Trafikverket experts. The cost of accidents was adopted from Podofillini’s 
study on the optimization of railway track inspection and maintenance procedures [10]. The 
costs used in the model are shown in Table 3.  

Table 3: The considered costs in the model 
Type Cost (SEK) 
Inspection per kilometer 1200 
Preventive tamping per kilometer 20000  
Corrective tamping per kilometer 50000  
Accident 15000000  
1  9 SEK 

The study assumes that preventive tamping is performed every two years on the entire line 
and based on this assumption has analyzed total maintenance costs for the three scenarios 
mentioned above. It should be noted that the contractor of the line performs corrective 
tamping within one to two weeks after each inspection. During winter (November to March) 
no inspection or maintenance actions take place. In April, the temperature rises; the melting 
snow results in a change in track stability. Therefore, the first inspection every year is 
performed in April.  

To illustrate the method of calculation, the schematic model of the third scenario (inspection 
every four months) is shown in Figure 7. 

Figure 7: Schematic illustration of third scenario (inspection every four months) 
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strategy. Any change in maintenance strategy may result in different probability distributions 
of failures. Further study is required to analyze the effect of variation in probability 
distribution on the optimal inspection interval.  

Figure 9: Efficiency of tamping on 200m tangent segments 

The outcome of this study is based on a model that consists of direct and quantitative cost 
parameters. Indirect or qualitative cost parameters have not been included in the model; these 
include costs incurred by loss of comfort or the cost effect of lower track quality on the 
degradation rate of the other components. This means that Expansion of the inspection 
interval and reducing the maintenance frequency might result in less comfort; to provide more 
comfort, inspection and maintenance should be performed more frequently. Likewise, low 
quality track may affect the degradation rates of other parts such as wheelsets. By including 
the indirect and qualitative cost factors, a more reliable specification of the most cost-
effective inspection interval can be obtained. 

9. Conclusion

The study concludes the following: 

In the current maintenance strategy, the probability of failure occurrence in short time 
intervals is quite low since the majority segments of the track have slow degradation 
rates. 
Degradation rates and the efficiency of tamping on different tangent segments of the 
track vary considerably. 
To reduce risk and assure the safety level, track sections with high degradation rates 
should be monitored and restored more frequently; this requires shorter inspection 
intervals.  
To obtain more comprehensive results, indirect and qualitative cost parameters such as 
loss of comfort and the effect of lower track quality on the degradation of other 
components should be included in the model.  
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