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PREFACE 
 
 
Support Vector Machine (SVM) is a multidisciplinary technique which includes 
mathematics and computer science. The research on SVM covers statistics, functional 
analysis, matrix theory, programming, algorithm design, and pattern recognition. 
Combining such subjects is challenging. Philosophically, the aim of such research is 
simple: how to use available knowledge to predict a future event. It assumes the available 
knowledge holds information on the future and the future is predictable.  
 
The research on the SVM is progressing very quickly and the new advances of SVM 
have gone far beyond its initial. SVM is closely related to machine learning, a hot topic in 
the field of information technology. My research on SVM is not for IT purposes but for 
failure diagnostics. IT purposes focus more on fast training algorithms but failure 
diagnostics focuses more on accuracy. Using a technique without knowing the principle 
is risky, especially in the case where safety has a high priority. Therefore, in this thesis 
lots efforts have been put on SVM’s theoretical foundation.  
 
My research is ongoing on but I have to stop temporarily to write this thesis. I would like 
to express my gratitude to my supervisor Professor Uday Kumar for giving me the 
opportunity to pursue my doctorate; I greatly appreciate his guidance and help. Thanks 
also to assistant supervisor Diego Galar for his willingness to discuss a topic in which we 
are both interested. Thanks to Professor Krishna B. Misra for his suggestions, guidance 
and especially his faith in me. I am grateful to Trafikverket for supporting this research. I 
would also like to thank Aditya, Ramin, and Bezhad for their supervision in the first year 
of my Ph.D. I appreciate the help of Ali, Rajiv, Stephen, Andi and all other colleagues in 
the division of operation and maintenance. Thanks to Mr.Xiao, Mr.Dong. And finally, I 
have to thank my wife Dr. Lu Jinmei for her support and her cooking.  
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ABSTRACT 
 
Failure diagnostics is an important part of condition monitoring aiming to identify 
existing or impending failures. Accurate and efficient failure diagnostics can guarantee 
that the operator makes the correct maintenance decision, thereby reducing the 
maintenance costs and improving system availability. The Support Vector Machine 
(SVM) is discussed in this thesis with the purpose of accurate and efficient failure 
diagnostics.  
 
The SVM utilizes the kernel method to transform input data from a lower dimensional 
space to a higher dimensional space. In the higher dimensional space, the hitherto linearly 
non separable patterns can be linearly separated, without compromising the 
computational cost. This facilitates failure diagnostics as in the higher dimensional space, 
the existing failure or incipient failure is more identifiable. The SVM uses the maximal 
margin method to overcome the “overfitting” problem. This problem makes the model fit 
special data sets. The maximal margin method also makes it suitable for solving small 
sample size problems.  
 
In this thesis, the SVM is compared with another well known technique, the Artificial 
Neural Network (ANN). In the comparative study, the SVM performs better than the 
ANN. However, as the performance of the SVM critically depends on the parameters of 
the kernel function, this thesis proposes using an Ant Colony Optimization (ACO) 
method to obtain the optimal parameters. The ACO optimized SVM is applied to 
diagnose the electric motor in a railway system. The Support Vector Regression (SVR) is 
an extension of the SVM. In this thesis, SVR is combined with a time-series to forecast 
reliability. Finally, to improve the SVM performance, the thesis proposes a multiple 
kernel SVM.       
 
The SVM is an excellent pattern recognition technique. However, to obtain an accurate 
diagnostics performance, one has to extract the appropriate features. This thesis discusses 
the features extracted from the time domain and uses the SVM to diagnose failure for a 
bearing. Another case in this thesis is presented, namely failure diagnostics for an electric 
motor installed in a railway’s crossing and switching system; in this case, the features are 
extracted from the power consumption signal.  
 
In short, the thesis discusses the use of the SVM in failure diagnostics. Theoretically, the 
SVM is an excellent classifier or regressor possessing a solid theoretical foundation. 
Practically, the SVM performs well in failure diagnostics, as shown in the cases 
presented. Finally, as failure diagnostics critically relies on feature extraction, this thesis 
considers feature extraction from the time domain.       
 
 Keywords: Support Vector Machine; Failure Diagnostics; Neural Network; Kernel 
method; Multi-kernel Support vector machine; Time Domain; Feature Extraction; Kernel 
Parameter Optimization 
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1. Introduction 

1.1 Background 
 
No matter how well a system is designed, products deteriorate over time, since they are 
operating under stress or loads in the real environment, often involving randomness 
(Jardine et al., 2006). Therefore, proper maintenance is necessary to sustain the system at 
a satisfactory level. Maintenance is defined as the combination of all the technical and 
administrative actions, including supervisory actions, intended to retain an item in, or 
restore it to, a state where it can perform a required function (BSI, 1984). Maintenance 
increases the life length and reduces the number of failures and degradation rate. 
 
Maintenance can be categorized as corrective maintenance, scheduled maintenance and 
Condition Based Maintenance (CBM) (De Silva, 2005, Martin, 1994), as illustrated in 
Figure 1.1. Corrective maintenance is a strategy whereby maintenance, in the form of 
repair work or replacement, is only performed when machinery has failed. Scheduled 
maintenance is undertaken when specific maintenance tasks are performed at set time 
intervals in order to maintain a significant margin between machine capacity and actual 
duty. CBM is a maintenance program that recommends maintenance actions based on the 
information collected through Condition Monitoring. 
  

 
 

Figure 1.1 Maintenance Strategies 
  

Corrective maintenance is undertaken in situations where the failure consequence is not 
serious and a quick repair or replacement is possible. Scheduled maintenance is carried 
out with fixed time intervals regardless of the real machine condition. This maintenance 
strategy leads to unnecessary maintenance, making it an expensive maintenance strategy; 
nevertheless, the maintenance interval can be optimized by analyzing its reliability (De 
Silva, 2005, Barabady and Kumar, 2008, Kumar et al., 1989). CBM attempts to avoid 
unnecessary maintenance tasks by performing maintenance actions only when there is 
evidence of abnormal behaviour of a physical asset occurred. Properly implemented 
CBM can significantly reduce maintenance costs by reducing unnecessary scheduled 
preventive maintenance operations (Jardine et al., 2006).  
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CBM can be based on condition monitoring or on the results of regular inspections. 
Condition monitoring is defined as a technique or a process of monitoring the operating 
characteristics of a machine in such a way that changes and trends in the monitored 
characteristics can be used to predict the need for maintenance before serious 
deterioration or breakdown occurs and/or to estimate the machine’s “health” (Han and 
Song, 2003).  
 
Failure diagnostics is an important aspect of condition monitoring as it determines the 
state of the system (faulty or normal) as well as the type of faults (Akbaryan and Bishnoi, 
2001). Failure diagnostics may find incipient failures, so that action can be taken before a 
catastrophic failure occurs. Recently, researchers have focused on developing an effective 
and efficient failure diagnostics method; in this state-of-the-art research, failure 
diagnostics methods have been devised, improved upon, or adopted from other fields.    

1.2 Failure Diagnostics Techniques 
 
Failure diagnostics techniques include analytical, knowledge based and data driven 
models. As the analytical model, also called model-based, requires the full understanding 
of interactions inside machines, it is machine specific. Knowledge based models use 
expert domain knowledge in a computer program with an automated inference engine to 
perform reasoning (Jardine et al., 2006, Ebersbach and Peng, 2008). The knowledge 
based model can therefore be categorized as rule-based, case-based and model-based, as 
illustrated in Figure 1.2 (Saunders et al., 2000). Data driven models diagnose the failure 
from the available data, including condition monitoring and operating data. The 
dependency between the machine condition and the available data is quantified by using 
probability, statistical or self-learning methods. The data driven model can be further 
categorized as a probability and statistics-based model or a non-probability and statistics-
based model.  
 

3. Analytical Model

1. Knowledge  based 
model

2. Data Driven Model

Expert System Rule-based reasoning

Case-based reasoning

Model-based reasoning

Probability and 
Statistics based 
model

Non Probability and 
Statistics based 
model

Distribution analysis
PHM and PIM
Bayesian Classifier
Hidden Markov Model

ANN
SVM

KNN

...

...

 
Figure 1.2 Failure Diagnostics Techniques 

 
In failure distribution analysis, the probability and statistics-based method assumes the 
failure of a system is random and follows a special statistical distribution, e.g. Weibull 
distribution (Barlow and Proschan, 1965). The parameters in the distribution are 
evaluated from the observed data. The accuracy of the assumed distribution can be 
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checked by goodness-of-fit tests or graph methods (Klefsjo and Kumar, 1992). The 
Proportional Hazard Models (PHM) and the Proportional Intensity Model (PIM) are other 
statistical models (Cox, 1972, Lawless, 1987, Klefsjo and Kumar, 1992, Kumar, 1995). 
Both consider the condition monitoring measurement as a covariant and can evaluate the 
dependency between reliability and the covariant (Jardine, 2001, Jardine et al., 1997, 
Jardine et al., 1999).  
 
Some failure diagnostics methods use statistical pattern recognition techniques. An 
important example is the Bayesian Classifier (Theodoridis and Koutroumbas, 2006).  
This classifier models each variable using a specified distribution and estimates the 
conditioned probability by measuring the dependence between the variables and a 
specified failure type. The distribution can be univariate or multivariate depending on the 
dimension of the measurements. The Bayesian inference requires fewer data sets due to 
the incorporation of prior information.  
 
The non-probability and statistics-based model identifies failure based on the geometric 
distance between data sets. This method or learning algorithm measures the similarity or 
dependency of distances between data sets. These include the Euclidean distance, 
Riemannian distance, Mahalanobis distance, or Kullback-Leibler distance (Jardine et al., 
2006). The K-Nearest Neighbor (KNN) algorithm is a typical Euclidean distance-based 
algorithm (Theodoridis and Koutroumbas, 2006). The kernel method used by the SVM is 
a Riemannian distance method (Amari and Wu, 1999). As the SVM, along with the 
Artificial Neural Network (ANN) possess self-learning ability, they are also called 
learning algorithms.  
 
Fuzzy logic is also used in failure diagnostics. It is generally used to measure the 
uncertainty of rules and measurement inputted into knowledge based models or self 
learning models such as the ANN and the SVM (Hong and Hwang, 2003, Pfeufer and 
Ayoubi, 1997, Lin and Wang, 2002). And heuristic methods, such as the genetic or ant 
colony model, are mostly used in failure diagnostics to optimize parameters for the ANN 
or SVM models; for example, they are used to optimize the ANN structure, and used to 
find the optimal parameters for the SVM (Chen, 2007).  

1.3 Learning Algorithms for Failure Diagnostics 
 
A key issue in failure diagnostics is the ability to detect failures automatically, accurately 
and efficiently. High accuracy means fewer false alarms; this is important, as shutting 
down machines can be costly. Efficiency is especially important for online condition 
monitoring. A slow response to a newly changed situation will not allow early warning. 
Automation is required when the data are too large to be treated manually. A large data 
set results when many sensors are mounted to systems, as in complex modern systems 
like aircraft, spacecraft, and high speed trains. When Computerized Maintenance 
Management Systems (CMMS) are used, the data generated daily are huge. Fusing these 
maintenance data with condition monitoring data for failure diagnostics is a challenge. 
Inversely, there are situations when information is lacking, missing, or incomplete 
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(Fuqing et al., 2011). Having insufficient information increases the risk of poor decision 
making. Reducing such risks is another challenge. 

1.3.1 Artificial Neural Network for Failure Diagnostics 
ANN is an artificial technique with self learning ability and can adapt themselves with 
the data automatically. The ANN has been extensively investigated for applications 
(Amari et al., 1994, Cheng and Titterington, 1994), and it has numerous variants and 
extensions covering pattern recognition, forecasting, and function approximation (Kermit 
et al., 2000, Hippert et al., 2001, Kahraman and Oral, 2001, Maier and Dandy, 2000, 
Rowley et al., 1998, Sugisaka and Fan, 2005). The ANN has been widely applied to 
failure diagnostics. Chen and Lee (2002) have proposed an ANN method to identify 
failure patterns for F-16 aircraft. Thomas et al. have proposed a hybrid of fuzzy logic and 
ANN to perform failure diagnostics (Pfeufer and Ayoubi, 1997). Castro et al. (2005b, 
2005a, 2005c) have used the ANN to diagnose transformer failures. Tarng et al. (1994) 
have used it to diagnose milling failures. In spite of the ANN’s wide applications and its 
popularity in academia, it is criticized for certain weaknesses, including its “overfitting” 
and the time-consuming training process (Tu, 1996, Theodoridis and Koutroumbas, 
2006).  

1.3.2 Support Vector Machine for Failure Diagnostics 
 
The SVM is learning algorithm developed after the ANN (Shawe-Taylor and Cristianini, 
2004, Vapnik, 1995, Vapnik, 1998). It claims it can prevent the ANN’s “overfitting” 
problem. The SVM uses the kernel function to measure the similarities between data, and 
the decision function is represented by an expansion of the kernel function  (Bennett and 
Campbell, 2000, Noble, 2006). The SVM has been extensively used for data 
classification and diagnostics in the medical sciences and bio technology (Li and Gui, 
2004, Li and Luan, 2003, Noble, 2006). It is gradually finding application in condition 
monitoring for rolling element bearings, gear boxes, induction motors, machine tools, 
pumps, compressors, valves and turbines, engine knock, autonomous underwater vehicles 
and so on (Widodo and Yang, 2007). In such applications, the SVM is used as a data-
driven classifier.  
 
As a classifier, the SVM as is further divided into the following: one-class classifiers, 
binary classifiers and multi-class classifiers. The multi-class classifier is commonly used 
in state-of-the-art failure diagnostics. Sugumaran et al. (2008) use the multi-class SVM to 
diagnose failures in roller bearings; Widodo et al. (2009) use it to diagnose failures in 
low speed bearings; Yuan and Chu (2007) to diagnose failures in turbo-pump rotors; and 
Antonelli et al. (2004) to diagnose autonomous underwater vehicle failures. The one-
class classifier is called novelty detection.  
 
Onoda et al. (2008 ) use the SVM to detect unusual conditions in hydroelectric power 
plants by analyzing the temperature of the  room, oil cooler and etc. and by analyzing the 
vibration signal from the generator shaft and turbine. Hayton et al. (2001) use the SVM 
to detect abnormal aspects of the vibration signature of jet engine vibration spectra. 
Finally, Davy et al. (2006) use the SVM to detect abnormal events online for gear boxes. 
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1.4 Problem Description 
 
With the automation of the data acquisition process, a large amount of condition 
monitoring and maintenance data is collected, making it almost impossible to manually 
extract and analyze valuable maintenance knowledge. Learning algorithms like the 
Artificial Neural Networks (ANN) and Support Vector Machine (SVM) can be used to 
extract information efficiently. If they are properly implemented, accurate failure 
diagnostics can be performed based on maintenance and condition monitoring data.   
    
This SVM implementation can overcome the “overfitting” problem, compared with the 
ANN and other failure diagnostics methods. However, it has two major problems: 
internal parameter selection and the time-consuming training involved with large scale 
data sets. The latter problem has been solved by using sequential minimal optimization 
(SMO) (Schölkopf et al., 1999), but the former remains unsolved. This thesis investigates 
this problem and attempts to find solution to overcome problems associated with internal 
parameter selection.    

1.5 Purpose of the Research 
  
The main aim of the present research is to explore the suitability of the Support Vector 
Machine (SVM) for failure diagnostics using condition monitoring data in maintenance 
contexts and suggests improvement of internal parameter selection approach so as to 
improve failure diagnostics. The research also aims to evaluate the performance of the 
SVM in failure diagnostics and suggests improvement in standard SVM model.  

1.6 Research Objectives 
 
To fulfil the research purpose, the following objectives have been formulated:  
 

a. Study the principle of SVM for its application in failure diagnostics context and 
suggest methods for improving the SVM so that it can be used in accurate and 
efficient failure diagnostics.  

b. Develop a methodology to determine the optimal SVM parameter to achieve 
maximum accuracy and improved diagnostics.  

c. Evaluate the performance of the SVM in failure diagnostics in terms of 
computational cost, complexity, accuracy and stability.  

1.7 Scope and Limitations of the Study 
 
This study covers the investigation of the theoretical foundation of support vector 
machine, applying the SVM to failure diagnostics. The study is performed on some 
railway assets. The limitations of the thesis relate to classical SVM. Other techniques for 
example combining the SVM with statistics is beyond the scope of the study.  
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1.8 Structure of the Thesis 
 
This thesis consists of ten chapters and five appended papers. Its structure is illustrated in 
Figure 1.3. 
 
Chapter 1 introduces the research, giving the background of the use of the support vector 
machine in reliability data analysis, especially failure diagnostics. It presents a brief 
survey of the literature on failure diagnostics. The chapter also discusses the problem 
existing, research purpose, the research objectives, and the scope and limitations. 
  
Chapter 2 discusses the procedure used to implement failure diagnostics. It examines 
condition monitoring data acquisition and collection, as well as data processing 
techniques, such as feature extraction and selection. Failure diagnostics in railway system 
is discussed in the last section.     
 
Chapter 3 looks at the method to induce the support vector machine using the maximal 
margin and the kernel method. It introduces the support vector classifier and support 
vector regression.  
 
Chapter 4 discusses some basic concepts of the learning theory, looking closely at the 
generalization error. The chapter considers both distribution based bounds and 
distribution free based bounds. It looks at the capacity of admissible functions and 
suggests how to obtain a good generalization error bound.  
 
Chapter 5 discusses the kernel method and shows how it can improve the performance 
of classification. It briefly describes a kernel function and provides a geometrical 
explanation. Some widely used kernel functions are described and the advantage of 
kernel method is summarized.      
 
Chapter 6 discusses the application of the SVM to reliability data analysis and failure 
diagnostics. For each application, it presents a brief example of how the SVM can be 
used.  
 
Chapter 7 summarizes the appended papers and highlights the important findings for 
appended papers.  
 
Chapter 8 discusses the important issues on failure diagnostics using SVM and presents 
the suggested solution for each of these issues.   
 
Chapter 9 presents summary of the findings from this research and give suggestions for 
implementing the SVM further.    
 
Chapter 10 summarizes the research contributions of the thesis and presents the scope of 
future research within this filed.  
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2. Failure Diagnostics 
 

An efficient and effective failure diagnostics can give an accurate early warning to the 
incipient failure, thus the maintenance strategy, spare parts, maintenance tools, personnel, 
and etc can be scheduled in advance, and the unplanned stoppage can be prevented due to 
maintenance action taken earlier.   

2.1 Failure Diagnostics Process 
 
Failure diagnostics methods vary dramatically according to the monitored system and the 
type of failure. Methods include vibration analysis, oil analysis, infrared analysis, current 
analysis, power analysis and so on. For rotary machinery, such as bearings and gears, 
failure diagnostics can be performed by analyzing the machine’s vibration signal. For 
reciprocating machines, such as diesel engines and reciprocating compressors, the 
machine’s cylinder pressure signal can be analyzed throughout a cycle. Electrical 
machines can be analyzed through their power consumption, while the analysis of 
electronic devices can draw on the machine’s heat distribution. Despite the differences, 
all failure diagnostics consist of three main steps, as illustrated in Figure 2.1: data and 
signal acquisition and collection; data processing; and failure pattern recognition.  

Figure 2.1 Failure Diagnostics Process 

2.2 Data Acquisition and Collection  
 
In data acquisition, data are collected from sensors mounted on the system. These include 
displacement sensors, velocity sensors, and accelerometer sensors. Each sensor measures 
a specified signal; sometimes several identical sensors are installed in various locations to 
measure the same signal to obtain the system’s health information from several 
perspectives. The data collected from sensors are called condition monitoring data in this 
thesis.  
 
Other data are probably available, such as historical failure data and manufacturer 
information, and these can help to diagnose failure. These data are commonly called 
event data. For example, the Swedish railway asset information system BIS and failure 
reporting system 0felia, as shown in Figure 2.2, are databases containing a huge amount 
of event data.  BIS collects Switches and Crossings (S&C) data, including track section, 
S&C type, year put in place and so on. 0felia collects data on date and time of reported 
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failures, time of maintenance, failure symptoms and so on. Collecting as many data as 
possible can provide more system information for failure diagnostics. 
 

 
Figure 2.2 Event Data of S&C 

2.3 Data Processing  

2.3.1 Data Pre-Processing 
 
The raw signal may contain noise or irrelevant signals. Eliminating noises or irrelevant 
signals is necessary for reliable failure diagnostics. Take the bearing for example. In the 
early failure stage, the noise signal is dominant, and performing failure analysis without 
de-noising will lead to a false alarm. Pre-processing a signal covers outlier removal, data 
normalization, noise removal and irrelevant signal removal.   

2.3.2 Feature Extraction 
 
Features are the individual measurable heuristic properties of the phenomena being 
observed. They are usually numeric, as for example, the mean, variance and peak of the 
series of a signal (Theodoridis and Koutroumbas, 2006). Feature extraction is the process 
of extracting features with understandable information about the health of the component 
(Theodoridis and Koutroumbas, 2006). Features can be extracted from the time-domain, 
the frequency domain, or other domains.  
 
Time-domain features are used for non periodical signals or when the periodicity of a 
signal is not significant, for example, early stage bearing fault signals. Time domain 
features cover, for example, mean, variance, minimum, maximum, or polynomial 
coefficients of the signal (Mathew and Alfredson, 1984, Y.Kim et al., 2007, B.Sreejith et 
al., 2008, Zhang and Randall, 2009).  
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For the periodical signal, as in the defect signal of a bearing or gear, the feature can be 
extracted from the frequency domain, for example, by the Fast Fourier Transform (FFT) 
(Mathew and Alfredson, 1984). The amplitude of a frequency can be a feature 
(Theodoridis and Koutroumbas, 2006). However, the Fourier Transform is only suitable 
for transforming a stationary signal. For non-stationary signal the Short-time Fourier 
Transform (Zhu et al., 2007, Griffin and Lim, 1984), or the Wavelet transform 
(Daubechies, 1990) can be used.  
 
Feature extraction is domain specific and signal specific. To ensure the right features 
obtained, there are a variety of methods available to evaluate feature performance. The 
classical test statistics such as t-test, F-test, Chi-squared test and etc can be applied to test 
the performance of each individual feature (Theodoridis and Koutroumbas, 2006), and 
the relief algorithm is another classical method (Kira and Rendell, 1992). The 
disadvantage of these methods ignores correlation between features. Fortunately, there 
are some methods available to measure the cross-correlation between features which can 
be used to remove highly correlated features.  
 
Another category for feature performance measure is correlation coefficients assessing 
the degree of dependence of individual variables with the target pattern. The Pearson 
correlation coefficient is a classical method of them which uses relevance index for 
individual feature (Guyon and Elisseeff, 2006). The feature separability can be also used 
to measure feature performance. Qiue and Joe (2006) defines a separability based on 
distance between features from diffident patterns. Other separability measures such as: 
Bayesian inference based divergence, Chernoff bound distance, Bhattacharyya distance, 
Fisher’s Discriminant Ratio (FDR), can be used to measure feature performance as well 
(Theodoridis and Koutroumbas, 2006). These measures convey information on the 
discriminatory capability related to the features.  

2.3.3 Feature Selection 
 
Intuitively, extracting as many features as possible is always better, as more features can 
provide more information. However, the presence of irrelevant and redundant features 
complicates the diagnostics model, and increases the computational cost. Most 
importantly, having a large number of features could degrade the ability of the 
diagnostics model to generalize. For a finite number of data sets, a good model with good 
performance usually has a higher ratio between the data sets and number of features.  
 
Figure 2.3 shows that performance does not always improve with an increased number of 
features (G.V.Trunk, 1979). In this scenario, increasing the number of features can only 
improve the performance initially, but after a critical number of features, the performance 
decreases. This is called the “peaking phenomenon” (Theodoridis and Koutroumbas, 
2006). The figure also shows that only for infinite data sets or sufficiently large data sets, 
increasing the number of features can improve the performance of the diagnostics model. 
But creating infinite data sets or even sufficiently large data sets is not possible in most 
situations.  
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Figure 2.3 Peaking Phenomenon 

 
Feature selection to reduce the number of features to a sufficient level is necessary to 
improve the model performance. There are two general methods of feature selection, 
although removing the irrelevant and redundant features depends on the specified 
problem. These methods can be categorized as individual feature selection and subset 
feature selection. In individual feature selection, each feature can be ranked according to 
its importance, and the less important features can be removed (Yu and Liu, 2004). For 
the SVM, each feature can be weighted in the input space, and these weights can be 
evaluated during the training process (Nguyen and de la Torre, 2010). The less important 
weights will have smaller or zero weight so their influence can be weakened or removed.  
 
Methods of subset features selection search for a minimum subset of features that 
satisfies a goodness measure by removing irrelevant and redundant features. This method 
is effective, but the computational cost is very high, as one must exhaustively search all 
the feature subsets (Devroye et al., 1996). For a problem with feature number  , the size 
of the subsets is . For each subset, one must run one computation; for instance, for the 
ANN or the SVM, the computational cost training process must be run. The high 
computational cost leads to the use of heuristic methods, such as branch and bound 
(NARENDRA and FUKUNAGA, 1977), genetic algorithm (Siedlecki and Sklansky, 
1989), Tabu search (Zhang and Sun, 2002) and etc, to reduce the computational cost.          

d
d2

 
Principle Component Analysis (PCA) is an effective way to reduce the corrected and 
redundant features, as it can reduce the number of features without losing information. 
Eker and Camci have compared the feature selection method using PCA with the 
statistical t-test, where the non-significant feature is removed after the t-test. In their case 
study, the accuracy of the support vector machine using PCA is much higher than the 
feature selection using the t-test (O.F.Eker and F.Camci, 2010). The disadvantage of this 
PCA method is it requires an extra computation to perform data transformation. Kernel 
component analysis is the corresponding PCA for the kernel method to perform PCA 
nonlinearly (Schölkopf and Smola, 2002). PCA can be also considered a feature 
extraction method, as it can extract new features from existing features. But the new 
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features are generally not interpretable as they are extracted from a mathematical 
perspective.          
 
Feature selection selects a sufficient minimum number of features containing sufficient 
information to ensure the best performance of the diagnostics model. This performance 
can be measured by the following: classifier error rate measures; distance measures; 
information measures; dependence measures; and consistency measures (Dash and Liu, 
2003). For the most part, this thesis uses classifier error rate measures for the SVM 
model.  

2.4 Failure Pattern Recognition 
 
The features extracted from the data represent the characteristic status of the machine. A 
feature’s value above a predefined threshold may imply a possible failure; the degree of 
the deviation may imply the severity of the failure. One challenge is how to determine 
this predefined threshold.   
 
For some machinery, the threshold or boundary which can differentiate a normal state 
from failure or different types of failure can be defined by experience. For example, by 
experience, the Kurtosis feature value of a rotary bearing’s vibration signal is 3 in its 
normal state. Therefore, the value 3 can be defined as a threshold to discriminate a 
normal bearing from a faulty bearing. However, in practice, for most situations, this 
cannot be done due to a lack of historical information or the existence of varying 
thresholds among specified machines or operating environments.     
 
The threshold or boundary can be obtained automatically from available data using 
classical pattern recognition techniques, such as Bayesian classifier and k-nearest 
neighbour (Theodoridis and Koutroumbas, 2006), or by using a learning algorithm. For 
learning algorithm, when the feature values and the corresponding machine state are 
known, the learning algorithm is called supervising learning; if the machine state is not 
known, the algorithm is called unsupervised learning. The learning algorithm uses a 
decision function to discriminate different patterns; learning algorithm finds the optimal 
decision function automatically from the available data. 
 
The simplest learning algorithm is the linear classifier; the nonlinear classifier includes 
the ANN and the SVM. This thesis proposes using the latter for failure diagnostics.  
Figure 2.4 uses synthesis data to show the SVM decision function; different colours 
denote the different patterns. The decision function is evidently nonlinear and flexible. 
This flexibility facilitates the ability to discriminate patterns. 
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Figure 2.4 Nonlinear Patterns Recognition 

The SVM can be used in both supervised and unsupervised learning. Supervised learning 
pairs the input and output data. The input can be the feature vector extracted from the 
signal, or the original raw signal when the size of the data points in the signal is small. 
Using raw data without feature representation as the input, the feature extraction step is 
skipped, but the SVM will be sensitive to the noise in the signal. The output of SVM can 
be the corresponding machine states as shown in Figure 2.5. Supervising learning selects 
internal coefficients by minimizing the predicted output and real output during its 
training. The optimal decision is the training result. The performance of the trained SVM 
can be further evaluated by using a set of test data as shown in Figure 2.5.  

 
Figure 2.5 Schematic Diagram of Implementing SVM 

 
The unsupervised learning such as novelty detection can be used to detect the abnormal 
events. A schema to implement the novelty detection shows in Figure 2.6. The optimal 
feature subset is used as input of the SVM. The data used to train the SVM is feature 
vectors and the training result is a boundary defined by these data. When a new data 
comes, using the decision function calculates if the new data is in the boundary. If it is 
not in the boundary, the abnormality may occur; otherwise, no abnormality detected.   
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Figure 2.6 Schema of Implementing Novelty Detection 

2.5 Failure Diagnostics for Railway Assets 

2.5.1 Condition Monitoring on Railway 
 
The railway is an important means of transportation for both freight and passengers. 
Improving its reliability, availability and safety will benefit society and reduce costs. The 
concept of condition monitoring has been implemented in the railway system in both 
rolling stock and infrastructure. A European company reports that its broken springs have 
decreased 90% since the implementation of condition monitoring, and the Canadian 
National Railway (CNR) reports a dramatic reduction in bearing failure after the 
installation of a condition monitoring system (Lagnebäck, 2007). The effectiveness of 
condition monitoring is evident. 
 
In condition monitoring, sensors are mounted on selected asset to detect the asset’s 
condition. Condition monitoring can enable the maintainer, in this case the railway, to 
move away from “find and fix” to “predict and prevent” (Bint, 2008). The railway system 
is complex, with a large geographical distribution and many personnel. Therefore, its 
condition monitoring system is also complex. Figure 2.7 illustrates a typical wayside 
condition monitoring system. In this figure, the sensors are mounted under the track to 
measure the temperature of the rail and the force of a train’s passage. Sensors are also 
mounted in the bogies to measure the acoustic emission of the wheelset.  

   
Figure 2.7 A typical Railway Condition Monitoring System 

 

15



The measurements from the sensors are transmitted to a nearby collector, or to a data 
centre on the vehicle, or directly to a nearby data station. The data can be transmitted by 
means of optical fibre or by wireless. If the latter is chosen, one must consider reducing 
the disturbances on the existing railway signalling system. A set of automatic failure 
diagnostics algorithms or the engineers will analyze these data to find current or incipient 
failures. 
 
The condition monitoring systems are essentially information technology infrastructures 
which enable collection, storage, and analysis of the health of the asset. Table 2.1 lists 
some measurements collected by railway condition monitoring.   
 

Table 2.1 Diagnostics System 
Category Type of measurement Category Type of measurement 
Track 
measurement 

Track Geometry 
Rail Profile 
Rail Corrugation 
Ballast Profile 

Vision 
Systems 

Automatic rail surface defects detection 
Automatic overhead line defects 
detection   

Overhead 
Line 
Measurement 

Overhead line geometry 
Contact wire wear 
Pantograph interaction 
Arc Detection 
Overhead line electric parameters 

Video 
inspection 

Railway section and surroundings 
Track surfaces 
Overhead Line 
Platforms 
Way side 

Vehicle 
dynamics 
measurement 

Ride quality 
Body,bogie,axle boxes accelerations 
Wheel-rail interaction forces 
Wheel-rail contact 

Others Signalling 
Telecommunication quality 
Environmental Temperature 
Tunnel detection system 
Power consumption  

 
Recently, some CM systems have been proposed which integrates the sensor information 
with internal train control information, train monitoring information, and passenger 
information (K.Liu et al., 2008). This integrated information could increase the accuracy 
of failure diagnostics but at the same time, it could interfere with the operation of the 
train. Therefore, few CM systems are implementing this schema.  

2.5.2  Switches and Crossings 
 
Switches and crossings (S&C) are mechanical installations enabling trains to be guided 
from one track to another at a junction (Nissen, 2009)  and allowing slower trains to be 
overtaken. They are an important part of the railway system. According to Swedish 
railway statistics, the railway infrastructure in Sweden has 17,000 km of railway and 
about 12,000 switches and crossings. The S&C are reported as frequently failing 
components by railway operators. S&C failures occur more frequently in Sweden due to 
severe winter weather. According to the event records of a Swedish railway database, the 
failures of Swedish S&C that were directly attributable to snow and ice was 17.4% for 
2009-2010. Figure 2.8 illustrates the number of S&C failures during this period.  
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Figure 2.8 Number of S&C failures in Sweden  

The total number of failures ranged from a high of 181 to a low of 5. S&C failures caused 
numerous delays, in fact, S&C related failures constituted 14% of all causes of train 
delays and S&C failure costs equalled at least 13% of the total maintenance cost. Clearly, 
this is an important functional and financial problem (Nissen, 2009).  
 
There are two types of S&C: manual and automatic. Figure 2.9 illustrates a simplified 
automatic switch (F.Zhou et al., 2001). As the figure shows, the switch is a complex 
system with many mechanical and electromechanical components. It has two movement 
directions, either pushing out (“reverse” movement) or pulling in (“normal” movement). 
The lock blade is used to fix the position of the rail. The movement of the switch takes 
the following steps: the motor torque is transferred to the clutch, then to the belt and the 
ballscrew, changing the rotating torque to an axial direction force. Using the crank, the 
force direction is changed by 90º to drive the switch rails.  
 

 
 

Figure 2.9 Switches in Railway Systems (F.Zhou et al., 2001) 
 
Figure 2.10 illustrates a layout of sensors to detect different failure modes for this switch 
described in Figure 2.9. These sensors measure the rail temperature, voltage, current in 
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the motor, and displacement. Their signals are transmitted to a local logger or to a local 
computer for analysis.       

 
 

Figure 2.10 A Simplified Switch and the Installed Sensors  
 
There are several in state-of-art methods available to analyze these signal data. Eker and 
Camci use the Support vector machine to determine whether the drive rod is out of 
adjustment (O.F.Eker and F.Camci, 2010). Chamroukhi et al. (2008) propose a method 
using mixture discriminant analysis to diagnose the failure in S&C electric motors by 
analyzing the consumed power (obtained by reading voltage and current sensors). 
Roberts uses neuro-fuzzy networks to discriminate various failures (Roberts et al., 2002). 
Paper II appended to this thesis proposes the use of SVM to diagnose the lubrication level 
by analyzing the consumed power collected from the electric motor.  
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3. Support Vector Machine (SVM) 

3.1 Background of Support Vector Machine 
 
Support Vector Machine (SVM) is a learning algorithm which can automatically estimate 
dependency between data. The SVM is a classification problem when the dependency 
assigns labels to objects, and it is a regression problem when the dependency estimates 
the relationship between explanatory variables and predictive variables. In state-of-the-art 
research, the SVM is mostly used as a nonlinear classifier technique, while as a classifier, 
it can be explained from a geometrical point of view (Noble, 2006).  The SVM has  been  
successfully  applied  to  a  number  of  applications ranging  from  particle  
identification,  face  identification,  and  text categorization,  to  engine  knock  detection,  
bioinformatics,  and database  marketing (Bennett and Campbell, 2000).  
 
V. Vapnik considers the SVM to be representative of the statistical learning theory 
(Vapnik, 1995). He claims the SVM is a further development of the original ANN type of 
learning algorithm, as it focuses on mathematical fundamentals (Vapnik, 1998). Recently, 
state-of-the-art research has featured numerous variants of the SVM (Li and Luan, 2003, 
Zhu and Hastie, 2005, Trafalis and Gilbert, 2006). However, there are two characteristics 
at the core of the SVM: the maximal margin and the kernel method. The next section of 
this chapter and Chapters 4 and 5 will discuss these in more detail.  

3.2  The Framework of Support Vector Machine 
 
The SVM incorporates the maximal margin strategy and the kernel method. Figure 3.1 
illustrates the architecture of a classical SVM.  

 
Figure 3.1 Architecture of SVM 

 
The decision function of the SVM is an expansion of the kernel function. The Lagrangian 
optimization method is used to obtain this optimal decision function from the training 
data (Luenberger and Ye, 2008). The decision function is used to predict the output for a 
given input; this is the “prediction” shown in Figure 3.1. The maximal margin method is 
applied to improve the accuracy of the prediction.   
 
Essentially, the SVM provides a general framework to learn from data. The dependence 
between data can be estimated using this framework. One can define a specific SVM 
based on this framework (Camci et al., 2008, Camci and Chinnam, 2008). The support 
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vector classifier and support vector regressor discussed in the next section are 
applications of this framework. 
 
In general, the SVM framework consists of the following components: 
 
a. Use of the maximal margin to reduce the VC dimension, thus reducing the upper bound 

of the SVM and improving the generalization ability.  
b. Kernel trick. The kernel function defines the similarity between two sample data. It can 

transform the problem from a lower dimension to a higher dimension, while the 
computation complexity remains the same. Transforming the problem from a lower to a 
higher dimension makes the approximation function more flexible with its data, 
reducing the risk of empirical error.  

c. Sparseness. With fewer SVs (support vectors, data taking effect) the generalization 
ability is improved. Furthermore, as the decision function is comprised of SVs, having 
fewer SVs can reduce the computation complexity.  

d. Convex optimization. The optimal solution of the SVM is achieved by the use of a 
quadratic optimization problem. The convex property of the formulation makes the 
solution unique. The SVM utilizes the Lagrangian optimization method to solve this 
problem. 

3.3  Support Vector Classifier 
 
The larger margin tends to a smaller generation error, as discussed in Section 4.7. Thus, 
maximizing the margin becomes the optimization objective. To demonstrate this, this 
section uses a simple binary classification problem as an example.  As shown in Figure 
3.2, the aim of the classifier is to classify the two classes of dots. Evidently, any straight 
lines located between these two classes of dots are able to separate them. The task is to 
decide which is optimal. The SVM uses the straight line which has the maximal margin 
as the optimal one; as discussed in Section 4.7, the maximal margin is prone to have a 
better performance. This optimal line is labelled  in Figure 3.2.    *L

 
Figure 3.2 Binary Support Vector Classifier 

 
Geometrically, the maximum margin can be obtained from the following constrained 
optimization formula:   
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where w denotes the normal lines perpendicular to the decision function line (e.g.,  in 
Figure 3.2), b denotes the bias, xi denotes a input data set and yi denotes the output, which 
is labelled by, e.g. 1 for the dark dot and -1 for the white dots. All data in Figures 3.2 
correspond to a constraint in Formula (3.1).  
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Formula (3.1) is called the primal problem. Usually the SVM does not use the primal 
problem to obtain the optimal line; instead, it uses the simpler dual problem. By 
introducing the Lagrangian multiplier i , the dual problem of Formula (3.1) is written as 

m

i
ii

i

m

k
k

m

i

m

j
jijiji

y

mits

xxyy

0

11 1

0

...,3,2,1,0..

,
2
1max

                                        (3.2) 

where i represents the Lagrangian multiplier which corresponds to the data set xi. The 
 can be further rewritten as , the kernel function discussed in Chapter 

5.  
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The above Figure 3.2 shows a problem named the separable problem as all data sets can 
be linearly separated. For a problem which cannot be linearly separated, the SVM 
introduces slack variables i  for Formula (3.1) to tolerate misclassification. The margin 
for the non separable problem is named the soft margin.  The primal problem with the 
soft margin is formulated as:   
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The corresponding dual problem is:  
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where C is the penalty parameter used to penalize the misclassification.  
 
The decision function for the classification is an expansion of the kernel function as 
shown in the following Formula (3.5). The coefficients of the expansion are obtained 
from Formula (3.4).  
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The data set with i  0 is the Support Vector (SV).   

3.4  Support Vector Regression 
 
Support Vector Regression (SVR) is an extension of the support vector classifier which 
estimates the continuous function of certain training data sets. As shown in Figure 3.3, 
the data above the regression function are considered class 1 data, and the data 
below  are considered class 2. In this sense, SVR transforms the regression problem 
into a special classification problem. Moreover, like the support vector classifier, the 
SVR uses soft margins to tolerate misclassification. Finally, SVR uses a tactic named 

)(xf
)(xf

-
insensitive loss function (Schölkopf and Smola, 2002) to balance the approximate 
accuracy and computation complexity.  

)(xf

 
Figure 3.3 Support Vector Regression 

 
As shown in Figure 3.3, the -insensitive function defines a tube with size of . Inside 
of the tube, there is no penalty on the deviation. However, outside of the tube, the penalty 
is imposed. Introducing the slack variable i  and  and considering the regression 
problem as a binary classification problem, the primal problem of the SVR is written as 
follows:  
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By introducing Lagrangian multipliers i  and  for each inequation in Formula (3.6), a 
dual problem of Formula (3.6) is written as: 

*
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The <xi,xj> can be substituted by a kernel function K<xi,xj>. The desired function , 
which is also the decision function, is approximated as follows:  
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In SVC and SVR, the inner product <xi,xj>  is replaced directly by a kernel function 
without changing other parts of Formula (3.4) or (3.7). When a nonlinear kernel function 
is used, the optimal decision function can be obtained in the same way it is obtained in 
the simple inner product <xi,xj>, which is essentially a linear kernel function. From this 
point of view, the SVM solves a nonlinear problem in a linear way.    
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4. Generalization Error Bound 
 
The SVM is a learning algorithm which can be considered as an implementation of 
statistical learning theory (Vapnik, 1995, Cherkassky and Mulier, 2007). A learning 
algorithm is illustrated in Figure 4.1., where  denote the observed input and output 
data respectively. For a failure diagnostics problem, xi can be a feature vector;  can be 
the label, e.g. 1 and -1, of the pattern (e.g. failure or normal). The learning algorithm tries 
to minimize the margin between the actual output  and the predicted . 

ii yx ,

y

iy

i iy

 
Figure 4.1 Leaning Algorithm 

 
One major performance measure of a learning system is how closely its real output 
approximates its desired output (Sarkar, 1996). The generalization error which measures 
the margin of the real output and predicted output is often used to measure the 
generalization performance (Wang and Shen, 2006). Reducing the generalization error 
bound can improve the performance of the learning algorithm. Therefore, estimating the 
generalization error bound lays a solid theoretical foundation for developing an efficient 
learning algorithm.     

4.1 Generalization Error for Data Known Distribution 
 
Take the simplest binary classifier as example. Suppose the observations are picked up 
randomly from }1,1{},...,{ 21 nxxxyx . The hypothesis  from the hypothesis 
space 

yxh :
H  assigns a label from y  for each element in x . These independent and identically 

distributed (i.i.d) observations are essentially drawn according to the 
distribution )|()(), xyPxPy(xP  as:  
 

),(),...,,(),...,,( 11 llii yxyxyx                          (4.1) 
 

In this case, the generalization error can be implied by the probability of 
misclassification.  Provided the data sets are , the probability of misclassification 
is . If the distributions  and  are known, 

can be derived easily. For example, assume 

),( ii yx
)|()(),( iiiii xyyPxPyyxP

),( ii yyx
)(xP )|( xyP

P
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baUxP ,~)( , , and . If the unknown 
label for

) ),(~)|1( 2
22uNxyP,(~)|1( 2

11uNxyP
x  is the  with y )|1(), xyP|1 x(max yP , as the Bayesian classifier 

assumes (Theodoridis, 2010), the probability of misclassification, which is the 
generalization error, is          
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       (4.2) 

 
The misclassification  is illustrated as the shadow area in Figure 4.2. In the 
smaller , the classification is more accurate and reliable.  

),( ii yyx
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)|1( xyP

)|1( xyP

0x
1u 2u  

Figure 4.2 Generalization Error for Known Distribution 

4.2 A Distribution Free Bound for Large Sample Size 
 
When the distribution of  and  is known, the generalization bound can be 
easily derived, as the example in the previous section shows. However, the distribution 
based method requires a large sample size. For a small sample size, the Bayesian method 
can be used; this requires a predefined distribution, but the distribution is sometimes 
unknown. In this case, one can use another method to obtain the upper bound of the 
generalization error.  

)(xP )|( xyP

 
A loose generalization bound can be derived using large number theory when the 
observations assume i.i.d. Using the same data sets as in Section 4.1, the probability of 
misclassification is , which we denote as),( ii yyxP  for simplicity. We define a loss 
function as:  
 

iii yxfxL )(
2
1)(                                        (4.3) 
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where  are observation data, are functions defined on ),( ii yx )(xf x  and }1,1{)( ixf
0)i

. 
Obviously,  is a random variable; for correct classification, ; for the 
contrary . can be considered a Bernoulli trial as it contains binary events.  

)ix
1

(L
)( ixL

(xL
)( ixL

 
Coincidently, for Bernoulli trials, the number of misclassifications for l  observations is 

. Therefore, one can establish an empirical misclassification rate, which is also 

called empirical risk, as 

)( ixL

l
xL i )(

. 
l

xL i )(
can be used as an estimate of ),( ii yyxP . 

Thereafter, a distribution free bound of generalization error can be derived by the 
Chernoff inequality (Chernoff, 1952) as,  
 

)2exp(2))(()( 2l
l

xLE
l

xL
P      (4.4) 

 
),(/))(( ii yyxPlxLE

),( ii yyxP

 for Bernoulli trials; hence, one can write Formula (4.4) in PAC 
(Probably Approximately Correct) style (Cristianini and Shawe-Taylor, 2000). An upper 
bound of  is as follows: with the probability    

ll
xL

yyxP ii 2
2

ln)(
),(                      (4.5) 

This bound suggests that when l , the second part of the right hand of Eq (4.5) will 
be zero, i.e. the empirical risk is close to the real risk ),( ii yyxP . Figure 4.3 shows the 
bound of error probability decreasing with sample size and tending to a constant when the 
sample size increases. This constant is the real risk ), ii yyx(P . 

 
Figure 4.3 Error Probability Bound vs Sample Size 
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On the other hand, Inequality (4.5) suggests that reducing the number of 
misclassification  can reduce the overall misclassification rate when many 
observations are available. Selecting a function that minimizes the empirical 
misclassification rate can achieve a low misclassification rate. The criterion defining an 
optimal function as the lowest empirical misclassification rate is called the Empirical 
Risk Minimization (ERM). The ANN employs this criterion to optimize its internal 
parameters and obtain an optimal decision function. However, this criterion is only 
suitable for larger sample size problems. 

)( ixL

4.3 Bias-Variance Dilemma 
 
Using a more complex function, say a function with more parameters, can lead to fewer 
errors. As suggested in Inequality (4.5), having fewer errors will lead to the lower bound. 
However, this argument is only valid if there is a sufficiently large number of data sets. 
Finite data sets can lead to the “Bias-Variance Dilemma” phenomenon (Geman et al., 
1992) whereby more complex model does not always lead to better performance. The 
expected Mean-Squared Error can be expressed as:  
 

222 )|();()|();())|();(( xyfEDxfExyEDxfExyEDxfE DDDD   (4.6) 
 

The first part on the right hand of Eq (4.6) is “Bias”, the second part is “Variance”. Let 
the  be the estimating function on the target function  given data set . This 
equation suggests that the overall mean square error tradeoffs bias and variance. A more 
complex  with more free parameters can fit a data set D perfectly, i.e. the bias 
can be zero. But its variance may increase. A less complex model has less variance but 
has larger bias.   

);( Dxf

(f

)(xf D

); Dx

 
The Figure 4.4 shows a figure demonstrating the “Bias Variance Dilemma”. The dashed 
curve  is the objective function. The data sets are drawn from)(xf )(xfy  where the 

 denotes random noise. Firstly, arbitrarily selecting the estimating function )  as 
a straight line independent of the noise 

 f ,( Dx
, so the variance of this function is zero. 

However, its bias is large, as the straight line deviates from the objective )(xf  greatly; 
On the other ide, t )(x  and )(2 xf  are flexible functions which can well fit th data 

s 1D  and 2D  respectively. But the variance is large, as the estimating function differs 
from each other if using different data sets, in spite the target function )(xf  is the 

 s he

.       

 1f e 

same
set
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Figure 4.4 Linear Functions and Flexible Nonlinear Function 

 
For a learning algorithm, a complex model will fit the available training data sets 
perfectly but possibly have large deviation for other unseen data sets. This scenario is 
also called “overfitting” problem. A simpler model, for example linear model, will have 
less variance but it has larger bias. This scenario is also called “underfitting”. To build a 
model with a good performance one has to trade-off the bias and variance.  

4.4 Selection of Optimal Function 
 
By using a larger sample size, one can avoid the “Bias-Variance Dilemma”. However, in 
some situations, obtaining a larger sample size is impossible or costly. If obtaining a 
larger sample size is impossible, a small sample size problem may result. In this case, 
Inequality (4.5) is still applicable. But when l  is small, the right side of Inequality (4.5) 
increases, i.e. the deviation between the real risk and the empirical risk becomes larger, 
and the ERM criterion will not be suitable. Essentially, for a small sample size problem, 
even using the simpler low order polynomial or linear model, a numerous, even infinite, 
number of functions could result in the lowest empirical error. But the function with the 
lowest empirical error cannot guarantee the lowest generalization error.   
 
Equation (4.6) explains this dilemma but cannot be used to build a good model, as the 
variance depends on the distribution of data . The distribution of D  is not available in 
most situations.  

D

 
The Structural Risk Minimization (SRM) inductive principle is a practical method which 
can be used to balance bias and variance (Vapnik, 1998). The SRM principle tries to 
minimize a confidence interval of the real risk to select the optimal function. This 
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confidence interval is derived from a set of admissible functions. The optimal function is 
obtained from tradeoffs between empirical risk and the size of the admissible functions. 
As the complex model usually has a larger number of admissible functions, controlling 
the size of the admissible functions in some way is essential to control the model’s 
complexity.  

 
Figure 4.5 Risk Bound of Learning Algorithm 

 
Figure 4.5 illustrates the relationship among real risk bound (e.g. real misclassification 
error), empirical risk (or empirical error) and model complexity. The complex model 
usually has more admissible functions and hence more easily finds the lower empirical 
risk. However, the ultimate real risk bound can increase with model complexity as well. 
For example, using the ANN for classification, the training error becomes lower if the 
number of neurons is increased, i.e. creating a more complex model with more admissible 
functions, but the test error may increase accordingly. The optimal function with the 
optimal risk bound is a trade off between empirical risk and model complexity (Vapnik, 
1998). The remaining sections of this chapter introduce a bound which explains this trade 
off theoretically.  

4.5 A General Distribution-Free Risk Bound 
 
The above mentioned bounds do not consider the complexity of the function. This section 
derives a bound which incorporates the ERM and the complexity of the function. This 
bound is the foundation of the learning algorithm such as that found in the SVM. In a 
consistent function, the empirical error and real risk will approach zero as sample 
size approaches infinity. For a set of functions F , Vapnik and Chervonenkis define 
consistence as (Vapnik, 1995)  

l

 

0)()((suplim fRfRP l

Ffl emp
                                    (4.7) 
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The superscript l  in Equation (4.7) denotes the sample size. Equation (4.7) can be 
bounded by the following inequality using the union theorem:  

Ff

ll

Ff
fRfRPfRfRP

empemp
)()(()()((sup      (4.8) 

 
The right hand of Inequality (4.8) depends on the number of function . For an infinite 
set of functions such as those with a continuous function, the size of F  is infinite, and 
the bound derived from Inequality (4.8) is impossible. A tactic introduced by Vapnik 
(Vapnik, 1998) can be used to bound (4.8) for a infinite number of functions. Each 
function  can be bounded by the probability that it differs by more than 

f

Ff 2/  from 
the empirical risk on a second and equal size l . This tactic, called Symmetrization 
(Schölkopf and Smola, 2002), is the following for :  22l
 

2/)()((2)()(( ´
2 fRfRPfRfRP ll

l
l
emp empemp

     (4.9) 
  
In Inequality (4.9),  and are equal. The bound on the right hand side of Inequality (4.9) 
can be obtained by considering each sample as a Bernoulli trial. The bound on the right 
hand side of Inequality (4.9) can be obtained by using the modified Chernoff inequality 
(Chernoff, 1952) as:   

l 'l
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             (4.10) 

 
When  Inequality (4.8), (4.9) and (4.10) are joined, Inequality (4.8) can be rewritten as: 
 

8
exp)2,(4)()((sup

2llFNfRfRP emp
Ff

     (4.11) 

 
where  denotes the number of admissible functions for the samples.  
is finite, as the maximum number of  for samples is  

)2,( lFN l2 )2,( lFN
)2,( lFN l2 l22 .

 
From Inequality (4.11), we can derive a bound for the  in a PAC style. The 
following inequality satisfies the probability at least

)( fR
1 : 

 

)]4ln()2,([ln8)()( lFN
l

fRfR emp                                (4.12) 

 
This is called the confidence interval for . This inequality is important. It implies 
that the bound of  not only depends on empirical error, but also on the size of 
functions . The objective of one learning algorithm can be the minima of 
Inequality (4.12), as is done by the Support Vector Machine. 

)( fR
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Remarkably, the bound for  is not unique, and the bound in Inequality (4.12) is not 
the lowest bound. Other bounds for have been obtained. For example, Cristianini 
and Shawe-Taylor have derived (Cristianini and Shawe-Taylor, 2000): 

)( fR
)( fR

 

)],(ln2[ln2),()( lFN
l

yyxPfR ii          (4.13) 

 
This bound also suggests the misclassification error depends on the size of the admissible 
functions.  

4.6 Capacity of Admissible Functions 
 

)2,( lFN  in Inequality (4.13) and (4.14) is the size of the admissible functions. For 
sample size l , the capacity of this function can be measured by a quantity known as the 
growth function. The growth function either satisfies the equality (Vapnik, 1998) 

llFN 2),(                                                    (4.14) 
or is bounded by  

d

d
ellFN )(),(                                                (4.15) 

The  is the Vapnik-Chervonenkis (VC) dimension, which measures the complexity of 
the admissible functions. Notably, when 

d
ld , the growth function monotonically 

increases with .  d
 
For function , the VC dimension is the maximum number of l  which can be 
separated into two classes in all  possible ways using the set of function F (Vapnik, 
1998). For example, for a 2-dimensional dot as shown in Figure 4.6, three dots can be 
separated no matter what the label (1 or -1) of the dot may be. However, for four dots, the 
dots cannot be separated, as shown on the right hand side of Figure 4.6. So for the linear 
function of the 2-dimension, the VC dimension is 3.    

1,1)(xf
l2

     

 
Figure 4.6 VC Dimension of Linear Functions 

 
The above example shows that the VC dimension of the 2-dimensional linear function is 
3. Essentially, for n -dimensional linear functions, the VC dimension is (Burges, 
1998). This result is important for the SVM.  

1n

32



4.7 Maximal Margin Strategy 
 
Numerous or even infinite admissible functions can lead to zero empirical 
misclassification rates. A straightforward problem is how to select the optimal function 
from these zero error functions. The error bound depends on the capacity of admissible 
functions. As discussed, a smaller set of functions will have a smaller bound. Using a 
maximal margin strategy can effectively reduce the size of admissible functions. Figure 
4.7 illustrates a binary classifier; any line between these two classes of dots can separate 
them linearly, i.e. any straight line between them is a candidate line with a corresponding 
linear function.   

 
Figure 4.7 Maximum Margin Strategy 

 
Intuitively, the most reasonable line is the bold solid line shown in Figure 4.7, as the 
separator will more robustly separate the dots with larger margin. We will explain this 
theoretically in what follows. 
 
The margin of a set of samples 1,1),( n

ii Ryx , where n  is the dimension of , for 
a function  is defined as the quantity 

ix
Ff

 
)( iii xfy                                                   (4.16) 

 
Note that 0i means a correct classification of the point ; ),( ii yx 0i  means 
misclassification; is the separator as the straight line shown in Figure 4.7. For a 
separable case, the margin of a set of samples is defined as the minimal

0)(xf

i . Written in a 
mathematical form, it appears as:  
 

},...,1:)(min{ lixfy iii               (4.17) 
 

The  is as shown in Figure 4.7. Employing margin strategy, the VC dimension can be 
obtained from an important finding by Vapnik (Schölkopf and Smola, 2002) as:  
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For the linear function, consider linear hyperplanes 0, xw  with  and the 
sample  defined within a sphere of radius 

Bw ||

ix R , i.e. Rix || ; then the VC dimension is 
satisfying. 

2)()( BRVCl                                            (4.18) 

This finding implies that with larger , the VC dimension is smaller. Using Inequality 
(4.18), Inequality (4.12) can be rewritten as:  
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Inequality (4.19) shows that once the VC dimension is decreased, the error bound 
decreases accordingly. The SVM utilizes this strategy to select the optimal decision 
function.  
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5. Kernel Method 
 
Kernel method is a class of algorithms developed for multivariate data analysis and 
pattern recognition measures the similarity between pairwise data sets. The notion of 
“similarity” can be geometrically interpreted as the distance between data sets. The 
distance between two samples can be Euclidean or Riemannian. Examples of the kernel 
method include the Support Vector Machine (SVM), Gaussian Process, kernel principle 
analysis etc. The kernel method obtains its name because it uses the kernel function.  

5.1 Kernel function 
 
A linear classifier can be used to introduce the concept of kernel function. This linear 
classifier is called the linear perceptron in the ANN. Suppose , i.e. in an n-
dimensional space. The decision function for a classifier is defined as (Cristianini and 
Shawe-Taylor, 2000): 

nRx
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1

bxwxf
n

i

i
i                       (5.1) 

where sgn(.)  denotes 1 or -1. The coefficients w  can be calculated from a combination 
of training data sets as:  

l

i
iii xyw
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                                        (5.2) 

Hence, Equation (5.1) can be rewritten as:  
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1
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l

i
ii              (5.3) 

Now transform the n-dimension x  into another dimension using the following 
transformation function:  

))(),...,(),...,(()(),...,( 121 xxxxxxxx min     (5.4) 

 
Figure 5.1 From 2-dimension to 3-dimension 

 
The new number of dimensions is represented by m  and is called the feature space. As in 
Equation (5.1), the corresponding decision function in the new space is 
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. As , the decision function in the new space 

can be written as  

l

j
jiiii xyw )(

)().( xxy
l

j
jii

)()( ijii xx

)sgn( b     (5.5) 

The decision function is represented by an expansion of the inner product. Since in the 
decision function the only thing of interest is the value of the inner product, one obvious 
solution is to replace this inner product with function . This function is called the 
kernel function. Suppose the dimension of the new space is infinite. The kernel function 
in Eq (5.5) can be rewritten as: 

),( xxk i

1i

                                     (5.6) 

where  is the weight for each dimension in the new space. By using Eq (5.6), we have 
converted a computation using the inner product to a computation using a function. In the 
kernel method, the decision function is represented by a combination of kernel functions. 
Equation (5.5) is thus rewritten as:  
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denotes the coefficient of data sets , and b denotes bias.  jx
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5.2 Condition of Kernel function 
 
The kernel definition given in Eq (5.6) shows how a feature space defines a kernel 
function. But what makes a function a legitimate kernel function? First, the function must 
be symmetric; second, it must satisfy the Cauchy-Schwarz inequality. Any function 

which satisfies the Mercer Theorem is legitimate as a kernel function.   ),( zxk
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Mercer Theorem: Suppose  is a continuous symmetric function such that the 
integral operator  with  is positive; that is  

X
dxxfxk )()(.,)(.)

0,(x                      (5.8) 

for all . Then one can expand  in a uniformly convergent series in terms 
of ’s eigen-functions , normalized with j 1j and its corresponding 

eigenvalues 0i . The kernel: 
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The mercer theorem suggests that once the function can be represented as Eq(5.9), the 
function has a positive definition and can be used as kernel function.  
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5.3 Some Kernel Functions 
 
There are many available kernel functions. Common ones are the Gaussian function, 
Polynomial function, Fourier Series kernel and so on (Gunn, 1998). 
 
The form of the Gaussian function is:  

)
2

exp(),( 2

zx
zxk                                              (5.10) 

 
The form of the polynomial function is: 

dzxzxk )1,(),(   or        (5.11) dzxzxk ),(),(
 
The form of the Fourier Series is:  

))(5.0sin(
))(5.0sin(),(

zx
zxNzxk                                   (5.12) 

The kernel function can be a continuous function like Equation (5.10)(5.11)(5.12).  The 
kernel can be in other forms such as string kernel, tree kernel, graph kernel (Gartner, 
2008). A kernel function can be designed for a specific application.  

5.4 Kernel Function in Riemannian Geometry 
 
The kernel function transforms input space to feature space. The feature space )(xi  
explains the kernel function theoretically, but it is difficult to obtain explicitly. In 
practice, for example, to improve the performance of the kernel function, one can explain 
the kernel function using Riemannian geometry. 
 
As noted above, the distance between two points in the kernel function is mostly not 
Euclidean distance but Riemannian distance. Figure 5.2 visualizes a surface with a 2-d 
input space for a  polynomial function. The curvature of this figure suggests that 
the distance in the feature space is not Euclidean distance.  

2d
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Figure 5.2 Curvature using Polynomial Function 

 
Figure 5.3 illustrates the difference between Euclidean distance and Riemannian distance. 
On surface S, the distance between AB is II not I. The I is Euclidean distance, and the II 
is Riemannian distance.  

S

 
Figure 5.3 Riemannian Distance 

 
For a kernel function, this line element of the Riemannian distance is (Amari and Wu, 
1999):  

ji
jiij dxdxxgds

,

2 )(                (5.13) 

The  in Eq (5.13) is the Riemannian tensor metric induced in the feature space as ijg

yx
ji

ij yxk
yx

xg ),()(         (5.14) 

For a Euclidean distance, ijijg , where ij  is a function defined as the following: for 
ji , 1ij , otherwise 0ij . 
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For the Gaussian kernel function, ijijg 2

1 . For the polynomial function (Wu and 

Amari, 2002), 
)1(ddxxdg jiijij             (5.15) 

The use of Riemannian geometry to explain the kernel function facilitates the kernel 
function’s improvement. The Gaussian and polynomial kernel functions have been 
improved by modifying the tensor metric  for a particular application (Schölkopf et 
al., 1999).       

ijg

5.5 Advantage of Kernel Function 
 
One advantage of the kernel function is that it renders the computational cost independent 
of the input data dimension. For the classical linear regression, the complexity of the 
regression increases as the dimension of the input data increases. When the dimension is 
high, the regression will be complex, and the computational cost will increase. However, 
in kernel method, the computation of the inner product will be transferred into the kernel 
function. This means the computation cost depends only on the kernel function. 
Therefore, even with a high dimension of input data, the computation cost remains the 
computation of kernel function.   
 
The kernel method is also an efficient way to perform data fusion. Data fusion is 
necessary when the data come from various data sources. For example, a condition 
monitoring system has mounted several sensors which measure humidity, temperature, 
pressure and so on. One can also extract features from the time-domain, frequency-
domain or the time frequency domain.  Thus, the number of features is large. If one is 
using the classical regression techniques or its variant, the regression model will be 
complex. For this situation, one can use the kernel method, merging all the features into a 
kernel function. To illustrate, we take the schematic example shown in Figure 5.4. We 
suppose the data are from n sensors. In sensor 1, features are extracted from both time 
and frequency domains. In sensor n, the features are only from the time domain. We 
incorporate these features into a kernel function, as shown in Figure 5.4.  The data from 
various sensors are thus fused into the kernel function.    

x1 x2 x3 x4 x5

Sensor 1 Sensor n

x6 x7 x8 x9 x10

Time domain 
feature

Frequency domain 
feature Time domain feature

)....,,,( 104321 xxxxx

Figure 5.4 Sensor Data Fusion 
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Another advantage of the kernel method is that it can transform input data x  from a 
lower dimension to a higher dimension implicitly. In the higher dimensional space, the 
pattern will be more distinct. Moreover, using the kernel function in the higher 
dimension, the computational cost will not improve significantly. In this sense, the kernel 
function is a shortcut, as in the classical way, one would find a transformation function 
first and then compute the inner product as shown in Equation (5.5). But the kernel 
function skips this step.  
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6. Application of SVM in Reliability 
 
The application of Support Vector Machine has been mostly in the field of medicine, 
bioinformatics, meteorology, and etc (Noble, 2006), either using classical SVM or its 
variants. Recently, some literature has applied the Support Vector Machine in reliability. 
In general, these applications can be classified into two categories: failure diagnostics 
such as novelty detection and multi-failure discrimination; and secondly reliability data 
analysis, such as reliability prediction and system reliability assessment. 

6.1 Novelty Detection 
 
An important application of the SVM to reliability is novelty or anomaly detection, also 
called the one class classification problem (Davy et al., 2006). This SVM is named the 
support vector data description (SVDD) (Tax and Duin, 2004). The aim of the one class 
classification is to define a boundary separating one kind of data from another, e.g. 
separating normal data from abnormal data, failure data from functional data, and normal 
data from incipient failure data. The SVM as a means of novelty detection is illustrated in 
Figure 6.1. In this figure, the normal data are inside the boundary. Once data are found 
locating outside, i.e. outlier data (Red dot in 6.1), the suspected abnormality has occurred.   

 
Figure 6.1. SVM for Novelty Detection 

 
The SVM has a theoretical advantage over other novelty detection techniques based on 
statistics.  
 

 As earlier discussed, the SVM is a distribution free technique. The boundary for 
novelty is defined with no assumptions on specified distribution.  

 The novelty boundary can be linear or nonlinear depending on the kernel function. 
For nonlinear problems, the Gaussian or high order Polynomial function can be 
the kernel function. For linear problems, the first order Polynomial function can 
be the kernel function.   

 The novelty using the SVM is adaptive to new data. For an online condition 
monitoring system, the boundary of the novelty can be adjusted automatically by 
the newly added data, i.e. it is a continuous learning process.  
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The disadvantage of the SVM as a novelty technique is the high computational cost. 
Some state-of-the-art applications use the SVM or its variants for the novelty technique. 
For example, Sortiris et al. (2010) have developed a Bayesian SVM as a novelty 
technique, and Camci uses the SVM as a quality control technique (Camci and Chinnam, 
2008, Camci et al., 2008).  

6.2 Failure Diagnostics 
 
The SVM has been used to diagnose failure in rolling element bearings, induction motors, 
machine tools, pumps, compressors, valves, turbines, HVAC and various other machines 
(Widodo and Yang, 2007). In these applications, the SVM is used as classifier, called the 
Support Vector Classifier (SVC). Initially, the SVC is a binary classifier but can be 
extended to become a multi-class classifier. The multi-class classifier is composed of a 
group of binary classifiers. According to the organization of the binary classifiers, the 
multi-class classifier belongs to one of the following categories (Hsu and Lin, 2002): 
 

 One-against-all 
 One-against-one 
 Direct Acyclic Graph (DAG).  

 
Hsu and Lin discuss the performance of the three multi-class SVMs (Hsu and Lin, 2002). 
They observe no significant differences among these multi-class classifiers in terms of 
accuracy. However, in terms of training time, the DAG method is best.   
 
Figure 6.2 shows an example using the Multi-Class SVC to diagnose failure for a 
bearing. The kernel function used in the figure is the first order linear polynomial kernel 
function, so the Multi-Class SVC is a linear classifier. The upper figure in Figure 6.2 uses 
the feature Normalized Normal Negative Likelihood and the Shannon entropy. It shows 
that the two features can separate the normal pattern, namely, the inner race and outer 
race defect, linearly. The lower figure in Figure 6.2 tries to separate more patterns, 
including normal patterns and patterns with different defect sizes; the features used are 
the Crest and Weibull negative likelihood. These patterns can also be linearly separated 
by the SVC. The definition of these features can be found in Paper V appended to this 
thesis.      
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Figure 6.2 SVM used to Diagnose Failures 

 

6.3 Predicting  
 
Support Vector Regression (SVR) has been widely used for predicting (Sapankevych and 
Sankar, 2009). The prediction error of SVR is very small if a proper kernel function and 
proper parameters are selected (Sapankevych and Sankar, 2009, Thiessen et al., 2003). 
For example, Chen (2007) has proposed a methodology to incorporate SVR with time 
series and genetic algorithms to predict reliability. Chen uses genetic algorithms to 
estimate SVM parameters. SVR is then used to establish the relationship between failure 
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data and system reliability performance (Chen, 2007). This paper shows that the SVM is 
more accurate than the ANN. Fuqing (2010) proposes SVR with a time series to predict 
reliability for a repairable system. This paper compares the accuracy of the classical 
NHPP model and SVR.  
 
The following example demonstrates the use of the SVM as forecasting technique. In this 
example, the SVR is combined with the time series. Suppose the time sequential event 
are , , … . A m-lag time series is composed from these event data as the input of 
the SVR and the next event time  as output. The input output pair for the SVM is shown 
in Table 6.1.  

1x 2x 3x nx

ix

 
   Table 6.1 n-step lagged input vector and its corresponding output  

Time Series x(input) y(output) 
s1 x1 x2 …. xm-1 xm xm+1 
s2 x2 x3 …. xm xm+1 xm+2 
… … … …. … … … 

sn-m xn-m xn-m+1 …. xn-2 xn-1 xn 
 
The scheme combining the SVM with the time series for forecasting is illustrated in 
Figure 6.3. 

1

mn

2

3 1nx

 
Figure 6.3 SVM Combined with Time Series 

 
The prediction accuracy of SVM is higher than that of the ANN (Fuqing et al., 2011a, 
Chen, 2007).  

6.4 System Reliability Assessment 
 
The SVM has also been used to evaluate system reliability. Claudio has proposed a series 
of models using the SVM to evaluate system reliability based on the Monte Carlo 
simulation (Rocco and Moreno, 2002). In these models, the SVM plays a role as a 
learning system. The SVM is trained by the state of the system and the state vector of its 
constituent components to perform as learning. After training, the logic configuration of 
the system is built into the SVM and the Monte Carlo simulation is used to access system 
reliability (Rocco and Moreno, 2002, Rocco and Muselli, 2005). Fuqing et al. also use the 
SVM to access system reliability. One of their papers accesses system reliability from the 
derived path sets and cuts sets using SVM, thereafter evaluating system reliability using 
these path sets and cut sets  (Fuqing et al., 2009). Another paper on system reliability 
considers using the SVM to make up missing or incomplete data (Fuqing; et al., 2011).  
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The following example demonstrates the use of the SVM to access system reliability. The 
configuration of the network is shown in Figure 6.4. When 1 denotes the functional state 
of the element or system, 0 denotes the failed state. The vector of the element states, e.g. 
<1,0,1,1,1>, is proposed as the input of the SVM; the corresponding output is the state of 
the whole system, i.e. 0 or 1. After training the SVM, the logic configuration of the 
system is built into the decision function (Fuqing et al., 2011) in the SVM.  
 

 
Figure 6.4 A Simple Bridge System 

 
Thereafter, the element state is simulated by Monte Carlo simulation. The corresponding 
system state of the simulated element vector is predicted by the SVM decision function. 
After repeating this procedure one thousand or ten thousand times, the reliability is 
estimated by the ratio of number of functional system states out of the total number of 
iterations. The error of this method is very low when the number of iterations is 
sufficiently large.  
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7. Summary of Appended Papers 

7.1 Paper I  
 
Reliability predicting using Support Vector Regression 
 
This paper uses Support Vector Regression (SVR) and a time series to predict time to 
next failure (TTF). A n-step lagged time series is constructed to accommodate the 
historical data and is used as the SVR input. As the kernel parameter is crucial to the 
SVR performance, this paper proposes to simplify the widely used but computationally 
costly Leave-One-Out (LOO) method to find the optimal kernel parameter. It proposes a 
Non-Homogeneous Poisson Process (NHPP) based confidence interval in order to bound 
the predicted TTF from SVR.  The confidence interval is used because there is no 
guarantee that the best parameters of SVR have been obtained. This interval prevents 
unreasonable predictions.  
 
A numerical case study is presented to demonstrate the approach. In this case study, the 
step size of 1 to 4 of the time series is used to predict the TTF. In terms of the prediction 
error, the best is the 3-step lagged time series. For comparison, this paper also predicts 
the TTF using the NHPP based method. It finds that the 3-step lagged SVR has lower 
prediction error than the NHPP based method. Thus, the simplified LOO can effectively 
find the optimal parameters, but the computational cost is high.   

7.2 Paper II 
 
Fault Diagnosis of Railway Assets using Support Vector Machine and Ant Colony 
Optimization Method 
 
The Support Vector Machine (SVM) is an excellent classifier to discriminate patterns. 
This paper uses the extension of the SVM, multi-class SVM, to identify the failure 
patterns of electric motor in a railway system. The signal analyzed in this paper is the 
power consumption by the electric motor installed in the Switch and Crossing system. 
The paper identifies three motor states: normal state; minor lack of lubrication; and 
critical lack of lubrication. As this is a 3-class classification problem, the multi-class 
SVM is used to discriminate patterns.  
 
When there is a lack of lubrication in a switch operation, the action taking place in the 
“translation” stage of the electric motor consumes more power. Therefore, the power 
consumption in the “translation” stage can be used as a condition indicator of the switch 
and diagnose the “lack of lubrication” phenomenon in its early stages. In this paper, the 
features extracted from the signal are the following: maximum value, minimum value, 
mean, and deviation of the power consumption, as well as the coefficients of polynomial 
fit on the shape of the signal. These features are used as input of the 3-class SVM. 
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As the parameters in the kernel function significantly influence the performance of the 
SVM classifier, this paper proposes the heuristic Ant Colony Optimization (ACO) 
algorithm to find the optimal parameters. The ACO mimics the method by which ants 
find the optimal route to a food source. They release pheromones in the travelled route; 
the route with the shortest path will end up with the most pheromones. This shortest path 
corresponds to the best solution. In this paper, the optimal route is the optimal parameter 
in the kernel function.  
 
A case study using the simulation data illustrates the proposed method. Using the optimal 
parameters obtained from the ACO, we find that the accuracy of the performed fault 
diagnosis on the electric motor is higher than when we use other parameter. In the 
simulation case study, the diagnosis accuracy reached over 98%.  

7.3 Paper III 
 
An Adaptive Multiple-kernel Method based Support Vector Machine for Classification 
 
This paper has developed a multiple kernel function method SVM. This multiple kernel 
function need not predefine the parameter in the kernel function so it is named the 
adaptive multiple kernel function SVM (AMK-SVM). The multiple kernel method is 
suitable for a situation with a mixture of continuing, categorical, or logical features. A 
single kernel function to fit such features mixture is infeasible, but the AMK-SVM can 
accommodate such heterogeneous features naturally.  
 
The SVM is a representative of the kernel method. This paper begins by discussing the 
principle of the kernel method. The kernel method is a tactic used to transform the 
original input data from a lower dimensional space into a higher dimensional space. The 
paper discusses how the data sets in the higher dimensional space are represented. 
Linearly non separable data sets in the original space may become linearly separable in 
the higher dimensional space, without compromising the computational cost.   
 
The kernel function of a kernel method with a better separability is prone to induce a 
better classier. Kernel Alignment (KA) is a method which can be used to measure the 
separability of a kernel function. It measures the similarity between the matrix produced 
by the kernel function and the perfect target matrix. Because the multiple kernel method 
combines several kernel functions, it can achieve a higher KA and hence be used to 
improve the performance of the support vector classifier. Theoretically, multiple kernel 
functions can outperform the single kernel function as the latter is a special case of the 
multiple kernel function.  
 
However, in practise, the MK method performs well only when the MK is combined 
appropriately. Optimizing the coefficients for each kernel is necessary. Furthermore, the 
kernel parameters significantly affect the performance of SVM. This paper shows how to 
automatically select the optimal kernel parameters using the KA method. The selection of 
these parameters and coefficients is a challenge. Fortunately, kernel alignment does not 
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require a time-consuming training process. Based on the kernel alignment, the paper 
proposes an optimization program to obtain the optimal parameters and coefficients.     
  
In this paper, a numerical example using benchmarking data demonstrates the feasibility 
of the developed approach and tests its performance. Two single kernel SVMs are applied 
to the same data sets to compare their performance with the AMK-SVM. In terms of 
accuracy, the developed AMK-SVM performs better than the single kernel SVM. 
However, in terms of computational cost, the single kernel SVM is superior. Therefore, in 
applications where accuracy is prioritized over computational cost, the AMK-SVM is 
best. Inversely, for applications when computational cost is prioritized, the single kernel 
SVM is better.  

7.4 Paper IV 
 
A Comparative Study of Artificial Neural Networks and Support Vector Machine for 
Fault Diagonis 
 
This paper compares the performance of Artificial Neural Networks (ANN) and Support 
Vector Machine (SVM) in failure diagnostics. This paper only compares the standard 
SVM with the two-layer ANN, as they have similar complexity. Theoretically, both 
techniques can establish a decision function automatically from data, and moreover, the 
SVM has similar form of decision function with regularized ANN. But they differ in the 
following ways:  

 The ANN is a black box method, while the SVM is transparent. The decision 
function of the ANN is more complex than that of the SVM.     

 The ANN minimizes empirical error, but SVM minimizes the structural risk as 
shown in Chapter 3 in this thesis. 

 The optimal ANN is a local minimum, and the optimal SVM is global minimum. 
The local minimum suggests the performance of ANN is not stable.   

 
The measurements selected to measure the performance are the following:  accuracy of 
fault diagnosis, computational cost, and performance stability. The case study shows that 
the accuracy the SVM allows it to outperform the two-layer ANN. In terms of 
computational cost, in this case, the SVM is also better than the ANN. In terms of 
stability, the ANN exhibits a random performance for each run with same training data. 
The SVM exhibits a stable performance as long as the data have not changed. Thus, the 
SVM has more stable performance.    

7.5 Paper V 
 
Fault Diagnosis on time domain for Rolling Element Bearings using Support Vector 
Machine 
 
The rolling element bearing is important in industry. This paper analyzes the bearing’s 
vibration signal from the time domain. Several existing time-domain statistical feature 
such as Kurtosis, Crest Factor, Normal Negative Likelihood (NNL), etc are discussed. 
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The time-domain feature has been argued to be computationally more efficient, more 
understandable, more easily implemented, and less sensitive to bearing load and speed 
variance.  
 
In this paper, the existing NNL feature has been extended to a new non-dimensional 
feature: the Normalized NNL (NNNL). This feature is independent of the power of the 
signal. The paper also proposes two additional features: the Mean by Variance Ratio 
(MVR) and the Symbolized Sequence Shannon Entropy (SSSE). The MVR is also a non-
dimensional feature. The SSSE is adopted from physics and can detect weak signals. It 
also considers the spatial distribution of the samples in the signal.   
 
An Extended Separation Index (ESI), as the name suggests, is extended from an existing 
SI and is used here to remove the noise features. Thereafter, an exhaustive feature subset 
selection is used to select optimal subsets. The selected significant feature vector is used 
as the input of the Multi-Class Support Vector Machine (MSVM) for failure diagnostics.  
 
A numerical case is presented to demonstrate the proposed features and approach. In this 
case, three different types of bearing defects are discriminated: defects in the inner race, 
the outer race and the bearing ball. The results show that by using the time domain 
features, these various types of failure can be discriminated with high accuracy. The 
proposed features MVR, SSSE, NNNL are in the subsets with high accuracy. The results 
also show that the new ESI is effective as an indicator of separability; the higher SI is 
prone to be highly accurate when single feature are used for diagnosis. In this case study, 
the linear polynomial kernel function is selected for diagnostics, as the linear kernel 
function shows the best performance. This result verifies that the more complex higher 
order model sometimes cannot outperform the simpler lower order model.   
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8. Discussion 

8.1 Support Vector Machine as a classifier 
 
As a failure diagnostics technique, the SVM is mostly used as a classifier in state-of-the-
art research. As a classifier, the SVM requires fewer assumptions, thereby facilitating its 
ability to perform classification automatically. However, it implicitly assumes 
observations to be statistical independent. In failure diagnostics problems, this 
assumption has to be justified before using the SVM for classification. In the case study 
presented in Papers II and V, the signals can be considered approximately independent if 
they are measured at different times. 
  
A classical classifier has to assume the decision function follows a specific form; for 
instance, it could be a linear or nonlinear form of the second or third order. Using a 
specific form with strict assumptions is possible only when one has sufficient knowledge 
of the problem. For instance, for a wheel motor, in order to determine failure when data 
on the shaft speed, oil sediment, viscosity and etc are available (Jardine, 2001), one can 
use the proportional hazard model which assumes that the covariant is linear with the 
logarithm of hazard rate (E.Love and R.Guo, 1991, Kumar, 1995, Love and Guo, 1991, 
Lugtigheid et al., 2004).This linear assumption is strong and not realistic in some 
situations. The advantage of using the SVM to automatically diagnose failure is that it 
skips linear and nonlinear assumptions.  

8.2 Small Sample Size Problem 
 
In Vapnik’s view, a small sample size is a problem (Vapnik, 1995) when the ratio of 
sample size by the dimension of the data 20/ nl . A small sample size is prone to 
“overfitting”. A general framework to solve the small size problem is as follows (Bickel 
and Li, 2006): 

l
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Classical regression, ridge regression, and Lasso regression are implementations of this 
framework. In this framework, the loss function  can be any user-defined function, 
such as likelihood function, squared loss function, and Huber function.  is the 
penalty function. The SVM is one implementation of this framework. In the SVM, 
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1)( wfJ . This is essentially the Maximal margin method.  

 
The SVM is suitable for small problems, especially for 1/ nl due to its use of the kernel 
method. In the kernel method, the computational cost depends on the sample size l  
instead of the data dimension n . Therefore, for the problem where , the 
computational cost can be reduced using the kernel method. The problem 

1/ nl
/ 1nl  is 

common in medicine (Li and Gui, 2004, Noble, 2006), but could also occur in condition 
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monitoring. For instance, when several sensors are mounted in a machine measuring its 
vibration, one can extract dozens of features from each signal if the amplitudes of some 
harmonies are used as features. In this sense, the SVM can not only avoid the 
“overfitting” problem but can be computationally efficient.   
 
The SVM also works well in larger sample size problems. This has been verified by using 
benchmarking data  (Li and Gui, 2004, Sigillito, 1989). The case presented in Paper III is 
a large size problem as ; here, the SVM performs well.  26/ nl

8.3 Kernel Parameter Selection 
 
The parameters of the kernel function play an important role in the SVM. As mentioned 
in Section 4, the kernel function transforms data from a lower dimension to an implicit 
higher dimension. This implicit higher dimension space is determined by the parameters 
of the kernel function. As the SVM classifies the pattern in the implicit higher space, 
changing the kernel parameters will change the SVM performance. Selecting the 
appropriate parameters in the kernel function is an important step in the kernel method as 
this leads to good generalization ability, i.e. a low misclassification rate.  
 
In addition to the parameters in the kernel function, as discussed in Section 5, the penalty 
C is critical to the SVM. In practice, the parameter C should be optimized along with the 
parameters in the kernel function. Figure 8.1 shows two figures from Paper II illustrating 
the influence of the kernel parameter and C to the misclassification rate. This figure 
empirically shows that the misclassification rate is sensitive to the kernel parameters and 
the penalty C. Remarkably, there are several minima in this figure so obtaining optimal 
parameters is a challenge. 

52



 
 

Figure 8.1 Misclassification error vs kernel parameter and C  
 
The procedure to find the optimal parameters consists of two steps: finding an efficient 
method to evaluate the misclassification rate and finding the optimal parameters to 
minimize the misclassification rate. The important methods for selecting the evaluation 
misclassification rate are: the cross validation method; the support vector count; Xi-Alpha 
bound; the approximate span bound; the VC bound; the radius-margin method (Duan et 
al., 2003); and the kernel alignment method (Lanckriet et al., 2004). Cross validation 
divides the training data sets into two parts: one for training, the other for validating. The 
CV method is effective but computationally expensive. For large data sets, it is infeasible. 
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It is the basic method for parameter selection. The frequently used Leave-one-out (LOO) 
method is a special case of the CV but has a high computational cost. Paper I proposes a 
method to simplify the LOO method for regression. The case study shows the LOO is 
effective, but the computational cost is high. 
 
The support vector count method is proved ineffective by our experiment and by 
experiments carried out by others. The VC bound method minimizes the bound discussed 
in Section 2.5. This theoretical bound is quite loose and therefore not an effective 
method. The approximate span bound has been proved ineffective by Duan et al. (2003). 
The Xi-alpha method is suitable only when the penalty value C is low. The Radius-
margin is widely used; however, this method obtains a local minimum instead of a global 
minimum, i.e. the Radius-margin method cannot guarantee that a global minimal 
misclassification is obtained. The kernel alignment (KA) which is discussed in Paper III, 
assumes the higher KA value leads to higher generation ability. This method has 
computational efficiency, but the higher KA is not sufficient to guarantee a lower 
misclassification rate, as it could lead to an “overfitting” problem. In short, the most 
effective method for evaluating the misclassification rate is the CV method.  
 
To select optimal parameters, the grid search is widely used. However, this method is 
exhaustive with an extremely high computational cost. There are some heuristic methods 
which improve the computational cost, such as genetic algorithm, simulated annealing 
and so on (Zhao et al., 2011, Lin et al., 2008). A heuristic method selects an initial 
solution heuristically and refines the solution iteratively until a local optimal solution is 
obtained. It then selects a new initial point, repeating the process until the predefined 
criterion is satisfied. This method cannot guarantee a global optimal solution but the 
computational efficiency is improved.  
 
Paper II uses the heuristic Ant colony optimization (ACO) method to find the minimal 
misclassification rate, and the CV method is used to measure the misclassification rate. 
The ACO is inspired by how ants find the shortest path to a food source (Dorigo and 
Blum, 2005). As the case study in Paper II shows, the ACO is suitable for mid-scale data 
sets. However, for a large scale data set problem, this method is inefficient.  
 
For large scale data sets, the KA method or the Radius-margin method should be used to 
find the optimal parameters as they can avoid the time-consuming training process. The 
selection of the SVM parameter is a trade-off between accuracy and computational 
efficiency.     

8.4 Improvement on kernel function 
 
The kernel function significantly influences the performance of the SVM, as it implicitly 
transforms the original input space to a higher dimensional space. Therefore, modifying 
the kernel function is one way to improve the performance of the SVM. The literature 
notes that the performance of the SVM can be improved by modifying the kernel function 
using the multiple kernel method  (Gönen and Alpayd n, 2011, Kandola et al., 2002, 
Subrahmanya and Shin, 2010, Rakotomamonjy et al., 2008), the spectral method 
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(Argyriou et al., 2010) and methods increasing the  Riemannian geometrical distance 
(Amari and Wu, 1999).  
 
The multiple kernel method combines several kernel functions linearly to improve the 
classification ability (Lanckriet et al., 2004). As discussed in Paper III, the multiple 
kernel function can outperform the single kernel function. For failure diagnostics, the 
multiple kernel function can also fuse data from different data sources naturally, as 
demonstrated in Figure 8.2 (Gönen and Alpayd n, 2011). 
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Figure 8.2 Using multiple kernel to combine various data sources  

 
Moreover, the classification ability of the multiple kernel functions can be improved 
compared with single kernel function. The kernel alignment value which suggests the 
separability of kernel function for multiple kernel can be much higher than single kernel 
function. However, this improvement conditioned  on the appropriate parameter 
estimation. For instance, the parameter i for each kernel function in Figure 8.2. The 
estimation of these parameters introduces extra computational costs. In a situation where 
a fast response is required, for example, in an online learning system, the multiple kernel 
method may not be appropriate.       

8.5 Support Vector Machine compared with Artificial Neural Networks 
 
The SVM and the Artificial Neural Network (ANN) are similar techniques and are 
generally applicable to the same problems. There are numerous variants of the ANN and 
the SVM. In this section, the ANN refers to the classical Feed Forward Neural Networks 
and the SVM refers to the SVM defined in Chapter 3. Paper IV compares the similarities 
and differences in their principles and some of their characteristics, as shown in Tables 
8.1 and 8.2.  
 

Table 8.1 Similarities of ANN and SVM in principle 
Similarities Description 
Adaptability Automatically learning from data 
Error Minimization Leading Need to minimize empirical error 
Implementation Computed by computer 
Flexibility Can be used nonlinearly 
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Table 8.2 Differences of ANN and SVM in principle 
Differences ANN SVM 
Transparency Black box Transparency 
Optimization objective Minimize empirical error Structural risk minimization 
Optimum Solution Local minimum Global minimum 
Robustness Low High 

 
Their performance is diagrammatically shown in Figure 8.3. In general, the accuracy and 
stability of the SVM is better. In term of computational cost, as shown in Paper IV, the 
SVM is lower. The computational cost depends on the size of the problem. For a small 
scale data set problem, the SVM can be faster than the ANN. Similar results have been 
shown by Samanta et al. (2003) and Samanta (2004).  
 

                         
Figure 8.3  Performance of SVM vs Neural Networks 

8.6 Failure Diagnostics using Support Vector Machine 
 
One reason to use the SVM for failure diagnostics is that it can automatically obtain a 
decision function from the data, and this decision function can adapt to new data. This is 
called the self-learning ability in artificial intelligence. In an “automatic” method, fewer 
assumptions are required and there are fewer man interruptions. In this sense, the SVM is 
suitable in a scenario where one has little knowledge of the data. Another reason to use 
the SVM for failure diagnostics is the flexibility of its decision function. The decision 
function, which can be linear or nonlinear, is flexible when it is used to separate patterns, 
and it can automatically adjust to data. This is useful, as non-linear separable patterns 
frequently occur in failure diagnostics. 
 
The SVM only deals with the problem of separating data; in failure diagnostics, selecting 
the input data is also very important. Support vector machine used for failure diagnostics 
can either use the original raw data or the feature vector as input. The raw data are 
normally huge; for example, the bearing signal in the case studied in Paper V has 12,000 
points for a single second. These data are large, so the computational cost is extremely 
high if one uses the raw data as SVM input. The SVM is sensitive to noise data. 
Therefore, using the feature vector instead of the raw signal is a better option.  
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Feature extraction and selection is a crucial step in failure diagnostics. The feature can be 
extracted from the time domain, frequency domain or others. The frequency domain is 
effective for analyzing periodic signals, such as the bearing defect signal. When a signal 
does not exhibit frequency characteristics, one must extract features from the time 
domain as in Paper II. For feature selection, the SVM is special as it does not 
discriminate the patterns in the original feature space but in a transformed implicit space 
induced by the kernel function. This characteristic suggests that some feature selection 
methods performed in the original feature space are not feasible. Paper V uses the 
exhaustive feature subsets selection method; it selects the subset with the highest 
classification rate as optimal. This method is crude but efficient. The only disadvantage is 
its high computational cost.         
 
Finally, the results of case study presented in Papers II, IV and V suggest using the 
simpler SVM model to perform failure diagnostics, as it has lower computational costs 
and could be more accurate. A more complex model, for example, the higher order 
polynomial SVM, has more a flexible decision function. However, as shown in Paper V, 
the more flexible SVM does not perform well.  

8.7 Summary 
 
Feature extraction and selection is crucial for failure diagnostics. This thesis discusses the 
feature extraction from time domain in both paper II and V. Using feature vector as input, 
the SVM is used as classifier for failure diagnostics as shown in paper II, IV, V and used 
for regression in the prediction in Paper I. The theoretical foundation of SVM is solid and 
thus the accuracy is high and the performance is stable. The sensitivity of kernel 
parameter entail for using heuristics method such as ant colony optimization to select 
optimal parameters. Utilizing multiple kernel function is necessary when the accuracy is 
prioritized over the computational efficiency, and when the different kernel is used to 
accommodate different data source. Moreover, in some cases both the accuracy and 
computational cost of SVM can outperform neural networks. Therefore, using the SVM 
for failure diagnostics is effective and efficient. This is the reason why the SVM is used 
for data mining in IT industry where huge data sets available. In engineering application, 
SVM has its distinct advantage for small sample size problem, as the regularization of 
SVM can control the “overfitting” problem when small sample size presented. 
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9. Conclusion 
 
The accurate diagnostics of failure depends on both the feature extraction and use of the 
SVM as a pattern recognition technique. Feature extraction determines how precisely the 
raw signal is represented by the features. The SVM determines how accurately the 
decision function can separate the patterns. This thesis investigates the time domain 
feature extraction for vibration signals in rolling bearings and the power consumption 
signal in an electrical motor. It develops a new feature which extends the existing Normal 
Negative likelihood feature for bearing defects. As Paper V shows, this new feature can 
be used to diagnose bearing defects. Other features such as mean to variance, polynomial 
coefficients, Mean, Max and so on are also used to discriminate the patterns. The case 
study in Paper II shows that these features are effective in failure diagnostics for the 
presented case. 
 
In the SVM, pattern recognition is performed in the feature space induced by the kernel 
function. The parameters of the kernel function determine the induced space; thus, these 
parameters significantly influence the performance of the SVM. As state-of-the-art 
research and the results show, the best parameter selection method is still the crude cross-
validation method. This method is computationally costly, but this problem can be solved 
by using heuristic methods. This thesis uses the heuristic Ant Colony Optimization 
(ACO) to find the optimal parameters. As the case study in Paper II shows, the accuracy 
of failure diagnostics improves by using ACO. 
 
This thesis proposes improving failure diagnostics by using multi-kernel method. In the 
multi-kernel SVM, the kernel parameters and the coefficient of each kernel are 
automatically adapted to the training data using the kernel alignment. This multi-kernel 
method can be used to naturally fuse data from various data sources. More importantly, 
as the case study in Paper III shows, the multi-kernel method can outperform the single 
kernel method in term of accuracy.  
 
The more complex SVM model, for example the higher order polynomial kernel function 
or the multi-kernel method with more kernel functions, has a more flexible decision 
function, but the desired generalization ability does not always increase with the 
complexity of the SVM. In the case presented in Paper V, the less complex model has 
greater accuracy. Therefore, due to its computational efficiency and accuracy, a simpler 
SVM model is preferred.  
 
This thesis presents the theoretical basis for the support vector machine, which shows the 
SVM has a solid theoretical foundation. The thesis compares the classical ANN with the 
SVM. Although performance depends on a specific problem, in several comparisons, the 
ANN shows a more random performance than the SVM. The randomness of the ANN is 
partially due to the local minima solution; however, the SVM has a global unique 
solution. The SVM also shows higher accuracy when the complexity of the ANN and the 
SVM are similar. In terms of the computational cost, the results show the SVM’s cost can 
be lower than the ANN’s for small and median scale data sets.              
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The SVM is a flexible framework in which the model complexity can be controlled by 
the parameters in the kernel function. In this framework, one can design a specific kernel 
function; one can even design one’s own SVM by using the regularization strategy on the 
kernel function. In this sense, the SVM provides a generic theoretical framework for one 
to adapt a specific SVM to a specific application.     
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10. Research Contribution and Future Research 

10.1 Research contribution 
 
The research contributions of this thesis, in short, can be described as: 
 

 A simplified Leave One Out (LOO) method has been proposed for parameter 
selection in support vector regression. A confidence interval is derived by using 
the classical non-homogenous Poisson Process (NHPP); this interval can 
complement the SVM forecasting (Paper I).     

 
 Development of a parameter selection method using the Ant Colony Optimization 

(ACO). The ACO together with the SVM is applied to identify the failure patterns 
of an electric motor in a railway system (Paper II).  

 
 Development of a multiple kernel support vector machine (MK-SVM). This new 

MK-SVM can be adapted to the data automatically and all the parameters in the 
MK-SVM need not be predefined (Paper III).  

 
 A comparative study evaluating the effectiveness of SVM over ANN, 

demonstrates that SVM is more effective for failure diagnostics. These two well-
known techniques are compared both in efficiency and effectiveness (Paper IV).  

 
 Development of a new statistical feature from the time domain for bearing. A new 

separation index is developed to test the significance of difference between two 
signals. The support vector machine is used to identify fault (Paper V).     

10.2 Scope for future research 
 
Theoretically, the support vector machine is a kernel method technique. In this thesis, we 
do not develop a new kernel function; instead, we use the common Gaussian kernel 
function and the polynomial function. In future research, new kernel function will be 
developed for special applications. Additionally, the SVM is a method that can overcome 
the “overfitting” problem to some extent. As “overfitting” still exists in some situations, 
future research will introduce a new regularization method to overcome “overfitting”.       
 
Feature extraction is an important step of failure diagnostics. This study discusses only 
the features from the time domain. Future research will look for new features in the 
frequency domain or the time-frequency domain. These features will be used as the input 
for the SVM to improve the accuracy of failure diagnostics. 
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Abstract Reliability prediction of machinery is crucial to

schedule overhauls, spare parts replacement and mainte-

nance interventions. Many AI tools have been used in order

to provide these predictions for the industry. Support vector

regression (SVR) is a nonlinear regression technique extended

from support vector machine. SVR can fit data flexibly and it

has a wide variety of applications. This paper utilizes SVR

combining time series to predict the next failure time based

on historical failure data. To solve the parameter selection

problem a method has been proposed. This method approx-

imates the widely used leave-one-out method. To bound the

prediction error, a confidence interval is proposed based on

the non-homogeneous poisson process. A numerical case

from the mining industry is presented to demonstrate the

developed approach.

Keywords Support vector regression � Reliability
prediction � Parameter selection � Time series �
Non-homogeneous poisson process

1 Introduction

Support vector machine (SVM) is an artificial intelligence

technique which can be used for prediction. The SVM has

been verified as a good prediction method (Radhika and

Shashi 2009). In general, SVM possesses characteristics as:

a. Uses maximum margin method: The basic of SVM is a

binary classifier. Maximum margin aims to find a

decision function to separate two classes of data as far

as possible that is why SVM can predict the class of a

new data more accurately.

b. Uses kernel method: Using a kernel function to

transform the problem from a lower dimension to a

higher dimension makes the decision function of SVM

more flexible.

c. Possesses Sparseness property: Support Vectors (SVs)

are a group of special datasets exerting an effect on the

decision function. A smaller number of SVs tends to

enable SVM to achieve better prediction ability.

d. Constructs convex optimization to obtain unique

solution: The convex property makes the SVM to

obtain its optimal solution easily.

The detailed principle and development of SVM is

described in (Vapnik 1995, 1998).

SVR is the extension of SVM for regression analysis.

The regression function of a SVR is an expansion of kernel

functions. When a nonlinear kernel function is used, the

regression function of SVR is accordingly nonlinear. This

characteristic enables the SVR able to fit the data flexibly.

Gonzalez et al. (2010) uses SVR to process image data.

Paul et al. (2010) uses SVR to perform face detection.

Yang and Shieh (2010) propose a method to predict con-

sumers affective responses.

Reliability prediction is important in reliability engi-

neering. The objective of reliability prediction varies with

the stage of products life cycle in order to predict the

remaining useful life. According to Foucher et al. (2002),
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reliability prediction is to help achieving a reliable manu-

facturing process, establishing baseline for logistic support

requirement. Accurate reliability prediction is crucial for

maintenance policy optimization and system availability

improvement. On the application of SVR to reliability data

analysis, there are also some applications. Chen (2007)

incorporated the SVM and genetic algorithms to predict

reliability. Xing and Guo (2005) proposed a method to

predict software reliability.

In this paper, amethodusingSVRincorporatedwitha time-

series technique to perform reliability prediction for complex

repairable system is proposed. Section 2 describes the prin-

ciple of SVR. Section 3 discusses the development of SVR

model, the procedure to perform reliability prediction using

SVR, and the confidence interval for the SVR. Section 4

presents a numerical case study to illustrate the proposed

method. Section 5 presents discussion and future work.

2 Support vector regression

As mentioned before, SVR is an extension of the SVM. SVR

uses a loss function to define the degree of penalty when the

estimated value deviates from the real value. The loss function

of the SVR is usually called e-insensitive function (Schölkopf
and Smola 2002). This e-insensitive function defines a tube:

inside the tube, there is no penalty for deviation; while outside

of the tube, apenaltyoccurs for anydeviation. edefines the size
of this tube which is used to balance the accuracy of approx-

imation and the computational complexity.

The primal problem of e-insensitive SVR is defined as

follows (Schölkopf and Smola 2002):

min
1

2
jjwjj2 þ C

Xm
i¼1

ðni þ n�i Þ

s:t: f ðxiÞ � yi � eþ ni
yi � f ðxiÞ� eþ n�i
ni � 0; n�i � 0: i ¼ 1; 2; 3; . . .m: ð1Þ

We transform the primal problem into a Lagrangian dual

problem, which is:

max Wða; a�Þ ¼ �e
Xm
i¼1

ðai þ a�i Þ þ
Xm
i¼1

ða�i � aiÞyi

� 1

2

Xm
i;j¼1

ða�i � aiÞða�j � ajÞhxi; xji

s:t:
Xm
i¼1

ðai � a�i Þ ¼ 0

a�i ; ai 2 ½0;C�; i ¼ 1; 2; 3; . . .m ð2Þ
In dual problem, kernel functions K hxi,xji is used to

substitute hxi,xji. The desired regression function is then:

f ðxÞ ¼
Xm
i¼1

ða�i � aiÞKðx; xiÞ þ b ð3Þ

The performance of SVR heavily relies on the kernel

function. Some authors have proposed many different

kernel functions (Schölkopf and Smola 2002; Vapnik

1995). The most common kernel functions are the Gaussian

and the polynomial function. Equation of the Gaussian

kernel function is (Burges 1998):

Kðx; x0Þ ¼ exp �jjx� x0jj
2r2

� �
ð4Þ

where the parameter r defines the sensitivity of the

Gaussian function. The equation of the polynomial

function is:

Kðx; x0Þ ¼ ðhx; x0i þ 1Þd ð5Þ
where the parameter d is a discrete integer.

3 SVR model development

In this section, firstly input of SVR is discussed, and later

the parameter selection and the development of confidence

interval for the SVR will be discussed.

3.1 Input of SVR

The input of this SVR is a time series. Time series is able to

accommodate historical data. Suppose that the datasets are

x1, x2, x3…xn. From these datasets, for a m-step lagged time

series, number of n - m time series can then be formu-

lated, as shown in Table 1.

3.2 Parameter selection process

Parameter selection is critical in SVR. An inappropriate

SVR model will lead to an unreasonable regression func-

tion. Most used method for parameter selection found in

literature survey is the leave-one-out (LOO) method

(Cawley and Talbot 2003). This method takes out one

portion of data to train the SVM, while using the remaining

datasets to validate the model. The LOO method has been

proven effective, however it is not considered efficient. In

Table 1 n-step lagged input array and its corresponding output

Time series x(input) y(output)

s1 x1 x2 … xm-1 xm xm?1

s2 x2 x3 … xm xm?1 xm?2

… … … … … … …
sn-m xn-m xn-m?1 … xn-2 xn-1 xn
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this section a more efficient parameter selection method is

proposed.

Suppose that Gaussian function is used as the kernel

function and one e-insensitive function is used as the loss

function. The parameters considered in SVR are:

• C (penalty parameter in SVR)

• e (tube size of the loss function)

• r (width of the Gaussian function).

The three parameters are crucial in prediction perfor-

mance. Specially if you try to predict such a sensitive

parameter as reliability then a minimal prediction error has

to be achieved.

The analytical relationship between the parameters and

the minimal prediction error cannot be explicitly expressed.

Through some experimental results, we found that their

relationship is nonlinear with numerous local optimums

(Fuqing et al. 2009). Search the global optimal solution for

such a problem is NP-hard (Hochbaum 1997). One simple

solution is to generate parameter values heuristically and

iteratively and then select the one with minimal prediction

error from them.

Proposed method is as follows:

• A set of parameters (C, e, r) using heuristic algorithm

such as ant colony or genetic algorithm is generated.

• Within the time series (s1s2…sn-m), we take the first

h datasets to train the SVR and use the next h ? 1th

datasets to validate the trained SVR.

• Prediction error between real output and predicted

output is calculated.

• Again, we use the first h ? 1 of datasets to train the

SVM and the h ? 2th datasets as validation datasets,

and so on.

The prediction error of a set of parameters is the sum of

each step’s (from h to n – m - 1) prediction error. Iterat-

ing this procedure at a predefined times, the optimal set of

parameters is the set with the minimal prediction error.

The detailed parameter selection process is as follows:

1. Initialization: Define the number of iterations.

2. Generate a set of heuristic values for parameter C, e
and r.

3. Take out the first sh, e.g. (s1, s2, s3) in (s1s2 s3;s4), as

shown in Fig. 1, to train the SVR, and use the data

sh?1, e.g. s4 in (s1s2 s3;s4), for validation.

4. Train the SVR and predict the h ? 1th failure time

x
_

hþ1 using sh?1. Compute the discrepancy between the

predicted x
_

hþ1 and the real xh?1.

5. Set h = h ? 1 and go to Step 3. Repeat this until

h\ n - m - 1.

6. Summarize all the discrepancies of steps from h to

n - m - 1.

7. Repeat step 2 to step 6 until the predefined number of

iterations is reached.

8. Take the C, e and r with the minimal sum of

discrepancies as the optimal parameters.

The LOO method is to take each time series out once.

The taken out time series are used for validation. The

remaining time series are used to train the SVR. As the

number of time series is n-m, using the LOO method, one

need to run the SVM for all the combinations of these time

series. Therefore, the number of runs comes to (n - m).

Shown method has simplified the above-mentioned LOO.

In this method, the number of runs needed is only n -

m - h so the computational complexity has been reduced.

3.3 Predicting reliability using SVR

A set of optimal parameter (C, e, r) can be obtained from

the parameter selection process described in the previous

section. These parameters are used to train the SVR. After

training, one optimal decision function, which is defined in

Formula (3), is obtained. The x and xi in Formula (3) is

time series si described in Table 1. One can use the deci-

sion function to predict the next failure time. The process

to predict the reliability is illustrated in Fig. 2.

s1 s2 s3 s4 s5

(s1s2 ; s3 )

(s1s2 s3; s4 ) 

(s1s2 s3s4 ;s5) 

(s1s2 s3s4 ...sn-m-1;sn-m) 

sn-m

sn-m+1

Fig. 1 Computing prediction error

Select parameters for SVR

Train the SVR

C, σ,

Predict next failure time

∑
=

+−=
m

i
iii bssKsf

1

* ),()()( αα
Decision Function

End

Start

ε

Fig. 2 Flowchart of reliability prediction
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3.4 Confidence interval for SVR

Essentially, neither the LOO method nor the methodology

proposed in this paper can guarantee that the optimal param-

eter can be obtained. The prediction error of the SVR is not

controllable. To bound the prediction error, a non-homo-

geneous poisson process (NHPP) based method is intro-

duced, when the considered datasets are failure time data as

you can see in Table 1.

The NHPP is a popular approach to depicting the

failure process of repairable systems (Barlow and Pros-

chan 1965; Yanez et al. 2002). One of the NHPP models

is the Power Law Process model, whose intensity rate is

described as (Rausand and Høyland 2004; Klefsjo and

Kumar 1992):

kðtÞ ¼ b
h

t

h

� �b�1

ð6Þ

Let ti denote the previous failure time, and ti?1 denote

the next failure time. The expected number of failures

occurring between ti and ti?1 is then:

Kðti; tiþ1Þ ¼ tiþ1

h

� �b
� ti

h

� �b
ð7Þ

We use Formula (7) to predict the next failure time. The

time to the next failure is when the expected number of

failures between [ti, ti?1] is one. The desired next failure

time ti?1 is therefore:

tiþ1 ¼ h 1þ ti
h

� �b
� �1=b

ð8Þ

The h and b can be estimated from a maximum

likelihood estimator: (Yanez et al. 2002):

h
_ ¼ tn

n1=b
ð9Þ

b
_ ¼ nPn

i¼1 ln
tn
ti

� � ð10Þ

From ti to t C ti, the probability of failure occurrence is:

P tiþ1 � ti½ � ¼ 1� e
�
R tiþ1

ti
kðtÞdt ð11Þ

Appendix A presents the proof of the Formula (11).

Given the probability P, inversing Formula (11) one can

estimate the next failure time. The upper bound of the next

failure time at the significance level a is then:

tU ¼ h
ti
h

� �b
� ln

a
2

� �1
b

ð12Þ

The corresponding lower bound is:

tL ¼ h
ti
h

� �b
� ln 1� a

2

� �� �1
b

ð13Þ

With a probability of 1 - a, the next failure time is

bounded between [tL,tU]. When using SVR to predict the

next failure time, the predicted value should be located in

[tL,tU].

4 Numerical case study

A Load-Haul-Dump (LHD) machine is for loading and

transportation of ore/minerals in underground mines. This

machine is important in underground mines and contributes

a high maintenance cost. Figure 3 shows the role of LHD

in mining process.

As described by Gustafson et al. (2008), in the under-

ground mining process, the ore is initially excavated and

loaded onto LHD. Then the ore is transported to the ver-

tical shafts that are placed along the ore body and then

dumped into the shaft by LHD.

The LHD is crucial but also experiences frequent fail-

ures. Figure 4 shows the sub systems that compose a typ-

ical LHD. The size of each block denotes the number of

failures. It shows the hydraulic system contributes the

largest number of failures.

In this numerical example, the whole LHD is consid-

ered, and developed methodology to predict the next

Failure Time (FT) for the LHD is used. Forty five failure

data were collected from all subsystems involved in the

LHD. As you can see in Fig. 4, all these sub-systems are

serial configured so each occurring failure stops the

machine that is why all breakdowns contribute with the

same severity to the whole reliability of the equipment.

These data are tabulated in Table 2 (Kumar 1990).

These data have been divided into two groups. First, one

set of 25 samples is used to train the SVM and the

remaining 20 to test the model. The procedure for testing

the proposed method was as follows:

1. First 25 datasets were taken out to obtain the optimal

parameters using method described in Sect. 3.2,

2. These 25 datasets were also used to train the SVR.

3. Thereafter the trained SVR was used to predict the

26th failure.

4. We repeat this procedure again using the first 27th,

28th, etc. to train SVR and predict the next failure.

Hoister Processing
plantCrusher Conveyor

belt

Discharge
station

Mine
Truck

ShaftLoading

Process where LHD machines are involved

Fig. 3 Flowchart from loading to processing plant, Adapted from

(Gustafson et al. 2008)
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Time series with several lag sizes (1, 2, 3, and 4) have

been used to predict failure. The results using the different

time series are shown in Table 3 in terms of the total error

and the Normalized Mean Square Error (NMSE).

As shown in Table 3, the best performance is that of the

time series with Lag = 3. As shown in Fig. 5, the time

series with Lag = 3 is closer to the real data than that with

Lag = 2.

In Sect. 3.4, NHPP-based method to bound the predic-

tion error was proposed. Using the method developed in

that section, an upper bound and a lower bound at a 95%

confidence interval were derived for this case study. The

results are shown in Fig. 6. The figure shows that the

predicted values of Lag = 3 are all within the bounds of a

95% confidence interval.

Figure 6 also shows comparison between the predicted

values from the NHPP-based method and those from the

SVR. It is shown that the prediction performance of the

SVR with the Lag = 3 time series is better than performed

by NHPP-based method, so the prediction results from the

SVR are closer to the real data than those of the NHPP-

based method. The SVR combining with time series

achieves a good prediction performance.

Courtesy from Sandvik 

Hydraulic System

Cabin

Chasis

Transmission Engine Bucket

Tires

Brake

Electrical 
System

Automation 
System

Other

Load Haul Dump (LHD)

Fig. 4 Subsystems of a LHD

Table 2 Failure time (FT, in h) of a LHD

No. FT No. FT No. FT No. FT No. FT No. FT No. FT

1 3 8 46 15 99.2 22 133.7 29 168.2 36 183.7 43 211

2 7.8 9 46.6 16 100.5 23 137.7 30 172.2 37 184.7 44 212

3 8.1 10 67.3 17 114.2 24 141.5 31 173.1 38 191.7 45 212.7

4 22.7 11 70.6 18 120.2 25 148.1 32 176.1 39 195.7

5 32.7 12 77.6 19 123.2 26 151.3 33 177 40 196.7

6 40.7 13 83.5 20 127.8 27 164.4 34 180.9 41 207.9

7 45.2 14 95.1 21 129.7 28 166.8 35 182.2 42 208.9

Table 3 Performance of different time series

Lag = 1 Lag = 2 Lag = 3 Lag = 4

Total error (h) 63.50 61.38 47.19 72.20

NMSE 0.0229 0.0215 0.0191 0.0289
Fig. 5 Performance comparison with different time series
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5 Conclusions

In this paper a method to predict the next failure time using

SVR and time series has been proposed. A parameter

selection method is used to approximate the LOO method.

Based on the results of the case study, it is shown that the

predicted values from the SVR are within the NHPP-based

bounds and close to the real data.

Moreover, no guarantee of the best parameters of SVR

has been obtained however a NHPP-based method is pro-

posed to bound the predicted value within a confidence

interval. This interval prevent an unreasonable prediction

occurred. Weakness of this method is that this confidence

interval is still too large so future work on investigating a

narrower confidence interval is recommended.

Appendix

Assuming that one failure occurs at time ti, the probability

of at least one failure occurring during time t to time ti?1 is:

P½NðtÞ� 1� ¼ 1� P½NðtÞ ¼ 0� ðA:1Þ
where N(t) denotes the number of failures between t and ti.

As the number of failures in the interval [t, ti?1] is Poisson-

distributed, by using the Poisson theorem:

P½NðtÞ ¼ 0� ¼ e
�
R tiþ1

ti
kðtÞdt ðA:2Þ

Therefore, the probability of failure during [t, ti?1] is:

P½t� ti� ¼ 1� e
�
R tiþ1

ti
kðtÞdt ðA:3Þ
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Paul PP, Monwar MM, Gavrilova ML, Wang PSP (2010) Rotation

invariant multiview face detection using skin color regressive

model and support vector regression. Int J Pattern Recogn

24(8):1261–1280. doi:10.1142/S0218001410008391

Radhika Y, Shashi M (2009) Atmospheric temperature prediction

using support vector machines. Int J Comput Theory Eng

1(1):1793–8201

Rausand M, Høyland A (2004) System reliability theory: models,

statistical methods, and applications. Wiley series in probability

and statistics. Applied probability and statistics, 2nd edn. Wiley-

Interscience, Hoboken, NJ

Schölkopf B, Smola AJ (2002) Learning with kernels: support vector

machines, regularization, optimization and beyond. Adaptive

computation and machine learning. MIT Press, Cambridge

Vapnik VN (1995) The nature of statistical learning theory. Springer,

New York

Vapnik VN (1998) Statistical learning theory. Adaptive and learning

systems for signal processing, communications, and control.

Wiley, New York

Xing F, Guo P (2005) Support vector regression for software

reliability growth modeling and prediction. Advances in Neural

Networks. Isnn 2005, Pt 1, Proceedings 3496:925–930

Yanez M, Joglar F, Modarres M (2002) Generalized renewal process

for analysis of repairable systems with limited failure experi-

ence. Reliab Eng Syst Safe 77(2):167–180. doi:PiiS0951-8320

(02)00044-3

Yang CC, Shieh MD (2010) A support vector regression based

prediction model of affective responses for product form design.

Comput Ind Eng 59(4):682–689. doi:10.1016/j.cie.2010.07.019

Fig. 6 Confidence interval of 95%

268 Int J Syst Assur Eng Manag (July-Sept 2010) 1(3):263–268

123



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PAPER II:  Y. Fuqing, U. Kumar and D. Galar, "Fault Diagnosis of Railway Assets 

using Support Vector Machine and Ant Colony Optimization Method," 
International journal of COMADEM, 2012 (Accepted for publication). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 
 

Fault Diagnosis of Railway Assets using Support Vector 
Machine and Ant Colony Optimization Method 

Yuan Fuqing1, Uday Kumar1, Diego Galar1 
1Division of Operation and Maintenance Engineering, 

Luleå University of Technology, SE-971 87 Luleå, Sweden 

Tel.: +46 920 49 1682, Email: yuan.fuqing@ltu.se 

 

 

Yuan Fuqing obtained his M.Tech. in System Engineering at Beijing University of Aeronautics and 
Astronautics, China, in the year 2007. He joined the Division of Operation and Maintenance 
Engineering, Luleå University of Technology, Sweden, in September 2007 to study for the degree 
of PhD. His area of research deals with reliability data analysis and statistical learning theory. 

 

Dr Uday Kumar obtained his B.Tech. in India during the year 1979. After working for 6 years in 
Indian mining companies, he joined the postgraduate programme of Luleå University of 
Technology, Luleå, Sweden, and obtained the degree of PhD in the field of Reliability and 
Maintenance during 1990. Afterwards, he worked as a senior lecturer and an associate professor at 
Luleå University of Technology from 1990-1996. In 1997, he was appointed Professor of 
Mechanical Engineering (Maintenance) at University of Stavanger, Stavanger, Norway. Presently, 
he is Professor of Operation and Maintenance Engineering at Luleå University of Technology, 
Luleå, Sweden.  His research interests are equipment maintenance, equipment selection, reliability 
and maintainability analysis, system analysis, etc. He has published more than 170 papers in 
international journals and conference proceedings.   

 

Dr Diego Galar is a telecommunications engineer and possesses a PhD in Manufacturing from the 
University of Saragossa. He has been a professor at several universities, including the University of 
Saragossa and the European University of Madrid. He has also been the Technical Director of 
ANANTASA, and the Director of Academic Innovation and subsequently Pro-Vice-Chancellor at 
Universidad San Jorge. He has been a researcher at the Department of Design and Manufacturing 
Engineering at the University of Saragossa and a researcher at I3A, the Institute of Engineering 
Research in Aragon. At present he is a senior researcher at Luleå University of Technology (LTU). 

Abstract 
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1 INTRODUCTION 
 
Fault diagnosis is a procedure for mapping the 
information obtained in the measurement 
space to the machine faults space. This 
mapping process is called pattern recognition 
[1]. In condition monitoring, pattern 
recognition tries to discriminate failure 
patterns from normal patterns, avoiding 
unexpected breakdowns or false alarms, or to 
identify one failure pattern from another 
failure pattern based on the obtained signal, 
commonly known as diagnosis.  
 
Fault diagnosis has been widely used to 
diagnose railway systems. Eker and Camci 
proposed a method to diagnose the “drive-rod 
out of adjustment” failure using Support 
Vector Machine [2]. Chamroukhi et al. used a 
pattern recognition method to detect the 
failure of an electric motor mounted in the 
switch of a railway track [3]. Feldmann et al. 
proposed a method to diagnose the 
deterioration of track by using the Karhunen–
Loeve transformation [4]. Skarlatos et al. used 
fuzzy-logic to diagnose railway wheels [5].    
 
In recent decades, Artificial Intelligence (AI) 
techniques such as Artificial Neural Network 
(ANN) [6] and Support Vector Machine 
(SVM) [7] have been widely used to perform 
fault diagnosis [8]. The ANN and SVM are 
similar techniques, but the SVM has been 
claimed to be more accurate than the ANN [9-
11]. A detailed review of fault diagnosis using 
the SVM was carried out by Yang and 
Widodo [10]. To solve real problems, the 
SVM is usually combined with other 
techniques, such as Bayesian Theory, Wavelet 
Analysis, Component Analysis, Fuzzy Logic, 
and Rough Set Theory [12].  
 
This paper uses the multi-class SVM 
combined with Ant Colony Optimization 
(ACO) to perform fault diagnosis. In the 
remaining sections, Section 2 presents the 
principle of the multi-class SVM, discusses 
the functionality of the kernel function, and 
presents the procedure for using the SVM for 
failure diagnosis. Section 3 presents a heuristic 

algorithm called Ant Colony Optimization 
(ACO) to optimize the parameters of the 
SVM. Section 4 illustrates a case study of fault 
diagnosis for railway systems to demonstrate 
the developed methodology.        
 

2 MULTI-CLASS SUPPORT VECTOR 
CLASSIFIER 

2.1 Multi-Class Classifier 

 
The SVM was initially developed to classify 
two classes of objects. Only one decision 
function needed to be found for such binary 
classification [13]. However, there are a great 
number of applications where the number of 
classes is more than two. For example, one 
may need to discriminate between the various 
states of a machine, e.g. different failure 
stages or functional states, or one may need to 
discriminate different failures from each other 
based on the obtained signal. In terms of 
pattern recognition, this is a multi-class 
classification problem. To accommodate this 
multi-class problem, several SVMs can be 
merged together. The one-against-all multi-
class SVM is one of the tricks used to merge 
several binary SVMs.  For the sake of 
simplicity, this paper calls the multi-class 
SVM the SVM hereafter.  
 
Suppose there are  classes of objects to be 
separated. Moreover, assume that there are l  
training data sets , which are 
used as input for the SVM. 
Then

k

,1x

}

),(),...,( 1 ll yxy

k,..3,2,1{yi  is the output of the SVM 
and it is the category (class) to which a data 
set belongs. The one-against-all method 
transformed the multi-class problem into n 
sub-binary classification problems.  The 

sub-binary classification problem labels the 
indicator of the data sets belonging to the 

class with “1” and labels all the remaining 
data sets with “-1”. The mathematical formula 
for this  binary classification is [14]: 
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(1) 
Each sub-classification has one decision 
function. For all the k classes, one can obtain 

 decision functions:  k

                       
11 )()( bxT

                 … 
                                            (2) kTk bx)()(
 
The predicted class of x  is regarded as the 
class with the largest decision function value. 
In terms of mathematics, it is:  

))()max((arg iTi bxi                          (3) 
 

2.2 Role of the Kernel Function 

 
In the case of the SVM, the decision function 
formulated as Eq (3) is usually described in 
the form of kernel functions, i.e.:  

l

i
ii xxkbxf

1

),()(                                 (4) 

where  is a kernel function, ),( ixxk i  is the 
coefficient corresponding to the kernel 
function, and b is a constant. The kernel 
function plays a key role in the SVM, in 
defining and measuring the similarity of two 
data sets. It can perform data transformation 
from a lower dimension to a higher dimension 
explicitly.  
 
The performance of the SVM is intrinsically 
and significantly affected by its kernel 
function. The selection of the kernel function 
and the selection of the internal parameter of 
this function control the SVM’s classification 
capacity and classification accuracy. The most 
common kernel functions in the literature are 
the Gaussian function and the polynomial 
function.  
 
The form of the Gaussian function is: 

)
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'
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whereas the form of the polynomial function 
is: 

dxxxxK )1,(),( ''                                     (6) 

2.3 Fault Diagnosis using the SVM 

The SVM can be a flexible classifier. Since 
the parameter C in Formula (1), the parameter 

 in Eq (5), and  in Eq (6) influence the 
performance of the SVM significantly, one has 
to determine their optimal values before using 
the SVM. This paper uses ACO to find these 
optimums, and Section 3 addresses this 
problem in detail. The Gaussian function is 
used as the kernel function herein. The 
parameters of interest are described as 

d

),(C  
for the sake of simplicity. The proposed model 
for fault diagnosis combining ACO and the 
SVM is shown in Figure 1. There are three 
steps to take in performing the classification.  

 
Figure 1: Procedure for fault Diagnosis 

 
a. Parameter Optimization using ACO: A 
better set of parameters ),(C  can improve 
the performance of the SVM greatly. The 
optimal ),(C  is found by ACO.     
b. Train the SVM. The training process is the 
process of finding the optimal solution for Eq 
(3). This step is time-consuming. For small-
scale data sets, the active-set method can be 
used. As a large-scale method, the Sequential 
Minimal Optimization (SMO) algorithm can 
be used [13].    
c. Fault Diagnosis using the SVM. Given a 
new signal obtained from the monitored 
machine, the identification of an existing 
failure among all the failures considered is 
performed by using Eq (3).  
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3 ANT COLONY OPTIMIZATION  
 
As mentioned before, the SVM is sensitive to 
its parameter values. The appropriate selection 
of these values is a major issue for the 
performance of the SVM as a classifier.  
 
As a heuristic optimization technique, ACO 
mimics the way in which natural ants find the 
optimal route for food. Ants release 
pheromones to mark the travelled path for the 
ants following them. Ants frequently move 
between their nest and food source and they 
prefer the path with a larger amount of 
pheromones. Therefore, after a time period 
and gradually, the shorter path will gain more 
pheromones. The paths will finally vary in 
their amount of pheromones. The route having 
the largest amount of pheromones will be the 
shortest (optimal) route. This procedure has 
inspired the new heuristic optimization 
approach entitled ACO. ACO was initially 
proposed to solve combinatorial problems 
[15]. Most of the application areas of ACO 
involve finding the optimal route, i.e. solving 
discrete problems such as the Travelling 
Salesperson Problem (TSP) [16]. Currently, 
ACO has been extended to solve continuous 
problems [15, 17-18]. A detailed survey of 
ACO has been performed by Dorigo and Blum 
[19]. 
 

3.1 ACO for Continuous Problems  

 
Each feasible solution in ACO is designed to 
be associated with a probability which is used 
as an amount of pheromones. This probability 
implies the possibility of the solution being 
selected as optimal. For the combinatorial 
problem, this probability is discrete. For the 
continuous problem, it is continuous, along 
with its continuous solution space. This paper 
uses a methodology developed by Socha and 
Dorigo [15] to solve the continuous problem, 
and the methodology is called ACO herein for 
the sake of simplicity.   
 
In an n-dimensional problem, ACO uses for 
each dimension a weighted superposition of 
Gaussian functions, which acts as ACO’s 

probability (pheromones).  The SVM in this 
paper considers a two-dimensional problem, 
as only two parameters ),(C  are of interest. 
This weighted superposition biases the search 
path towards the optimal solution. The sum of 
the Gaussian functions for the ith dimension is 
defined as follows: 
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One Gaussian function possesses only one 
minimum or maximum (see G1, G2, etc. in 
Figure 2), and therefore it can only suit the 
monotonic problem. A superposition of 
Gaussian functions can possess more than one 
local minimum and maximum, as shown in 
Figure 2. Hence they can deal with a problem 
with several minimums or maximums.   

 
Figure 2: Superposition of Gaussian Functions 

 
Let the n-dimensional problem be denoted by 

),...,,,()( 321 nssssfsf . The objective is to 
find the s which minimize or maximize . 
A k-row archive table is defined to store the 
recent solutions, with each row corresponding 
to a Gaussian function. As shown in Table 1, 

)(sf

l  denotes the weight of the Gaussian 
function, ( )lf s denotes the lth objective 
function value and denotes the ith 
dimension of the lth solution.  

l

is

 
Table 1: Archive of Partial Solutions 

Solution 
No. i  f(s) 

D 1 … D i … D n
1 1  )( 1sf 1

1s  … is1  … ns1  
2 2  )( 2sf  

1
2s  … is2  … ns2  

… … … … … … … … 
l l  )  ( lsf 1

ls  … i
ls  … n

ls  
… … … … … … … … 
k k )( ksf  

1
ks  … i

ks  … n
ks  
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The size of the table is fixed to k (which 
means that a superposition of k Gaussian 
functions is used as a pheromone). Notably, as 
Socha and Dorigo suggest, the size of the table 
should be larger than the number of 
dimensions. For the problem of minimizing 
the objective function, these objective values 
f(s) are placed in descending order. For the 
problem of maximizing the objective function, 
they are placed in ascending order.  
 
The weight l is updated using the following 
formula: 

22
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2
1 kq

l

l e
qk

                                      (7) 

where q is a predefined parameter which is 
used to control the diversification of ACO.   
 
The objective is to control the search direction 
in order to obtain optimal solutions in the 
solution space. As was mentioned before, a 
superposition of k Gaussian functions 
(described in Eq (6)) is used to guide the 
search. The mean  of the Gaussian functions 
is defined as follows:   

i
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i
k

i
k

iiii sss ...;;; 2211                        (8) 
 
Further on, ACO defines the average distance 
from the mean  to other  in the 
same dimension as the standard deviation 

i
ls )( ljsi

j

 
of the Gaussian function in Eq (6). The  in 
Eq (6) is estimated using the following 
formula:  
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i
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i
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l k

ss

1 1
                                         (9) 

where  is a predefined parameter which is 
adopted to adjust the convergence speed of the 
algorithm.  
 
After the Gaussian functions have been 
defined, ACO then uses these functions to 
search for new solutions. The probability with 
which the lth Gaussian function can be 
selected is defined as in Formula (10):   

k

j
j

l
lp

1

                                               (10) 

Suppose that the lth Gaussian function is 
selected, whose mean and standard 
deviation are defined by Eq (8) and (9). 
Then use this Gaussian function to sample a 
new value for this dimension. If the new 
solution is better than the best one so far in the 
archive table, add the new solution to the 
archive table.  
 

3.2 Algorithm for Optimizing Parameters 
in the SVM 

 
The objective of ACO in this paper is to 
minimize the classification error of the SVM 
in the diagnosis process: . 
The  can be described as a function 
of

SVMError

SVMError
),(C , i.e. ),(CfErrorSVM . Eq (11) is 

an approximation of this function:  

l
kP

Error ki
SVM

)(
                         (11)  

where  is the total number of data sets, is 
the data set from the k-class, and 

l kP

i  is a 
function of  (when , then kP kPk 1i  and 
when kPk , then 0i ). The parameters 

),(C  with the minimal  will be 
considered as the optimum.  

SVMError

 
Using ACO, the detailed algorithm described 
below is used to find the optimal ,C : 
 
Step 1: Initialization. Initialize the number of 
ants, nAnt, the number of iterations for each 
ant, nIteration, and the size of the archive 
table, nSize. Moreover, initialize the 
coefficient parameters: q, described in Eq (7), 
and , described in Eq (9).         
Step 2: Initialize the archive table. Generate 
feasible solutions randomly according to the 
uniform distribution. Calculate the objective 
function values  and place the 

 in descending order. Calculate the 
SVMError

SVMError
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weight l  and the probability  using Eq (7) 
and Eq (10), respectively.       

lp

SVM

Step 3: Start the iteration. Generate a new 
solution. For each dimension of the solution, 
select a Gaussian function out of the k 
functions according to the probability . 
Calculate the standard deviation, using Eq (9), 
for the selected Gaussian function and take the 
current values of  as the mean. Generate a 
random real number according to the Gaussian 
function. This real number is the new value of 
this dimension. Repeat this for all the 
dimensions and then a new solution comes 
out.  Repeat step 3 nAnt times. Therefore, the 
number of new solutions coming out will be 
equal to nAnt.  

lp

i
ls

Step 4: Update the archive table. Calculate the 
 for each new solution generated in 

Step 3 and select the solution with the minimal 
 as the best. Insert the best solution 

into the ordered archive table. 

SVM

SVM

Error

Error

Step 5: Stop criteria. If  is less than 
the predefined value, stop the iteration, or if 
the maximum number of iterations has been 
reached, stop the iteration (which means that 
the optimal solution has not been found); 
otherwise go to Step 3.    

Error

Step 6: Take out the optimum solution. The 
last solution in the archive table is the 
optimum solution if the stop criteria have been 
satisfied.     

,C

 
Figure 3: Flowchart of ACO 

4  NUMERICAL CASE STUDY 

4.1 A Numerical Example for Railway 
Turnouts 

 
Railway turnouts are composed of elements 
known as crossings and switches. They enable 
vehicles to be diverted from one track to 
another and consist of a pair of switches and a 
crossing, connected by closure rails [20], as 
shown in Figure 4.  

 
Figure 4: Components of Turnouts [20] 

 
Turnouts are important devices along a 
railway track. For example, Sweden has a 
railway infrastructure consisting in total of 
17,000 km of track and about 12,000 switches 
and crossings. Turnout-related failures cause 
14% of all train delay time. That means an 
approximate delay time of 15 minutes per 
turnout and year, assuming that there is one 
turnout per 2 km of main track and that the rail 
traffic consists of 50 trains per day. 
Furthermore, the maintenance cost for 
turnouts represents at least 13% of the total 
maintenance cost. Consequently, the turnout 
plays an important role in the railway industry 
both from a functional and a financial point of 
view [21]. 
 
The motors and mechanical drive systems in 
the turnout must perform safely and reliably 
over a wide range of temperatures and other 
environmental conditions [22]. Figure 5 shows 
a kind of switch which is driven by an electric 
motor. The failure of the electric motor leads 
to the failure of the switch and the track, 
thereby compromising the safety of the entire 
system. One root cause of failure is a “lack of 
lubrication”. To exemplify the use of the SVM 
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for fault diagnosis, we now attempt to identify 
this failure mode, so that the failure can be 
detected incipiently.  

 
Figure 5: Electric Motor in Switch [3] 

 
According to [23], power consumption and 
dissipation are effective parameters for the 
condition monitoring of railway points. When 
there is a lack of lubrication in a switch 
operation, the action taking place in the 
“translation” stage consumes a much higher 
amount of power, as illustrated in Figure 6 [3]. 
Based on these findings, the power 
consumption signal can be assumed to be a 
condition indicator of the switch and can be 
used to diagnose the “lack of lubrication” 
phenomenon in its early stages.  

 
Figure 6: Patterns in the Power Consumption 

Signal 
 
In simple terms, the different statuses of the 
electric motor in the switch of a turnout can be 
classified into three patterns:  

 Normal.  
 Showing a minor lack of lubrication. 

Maintenance is suggested.  
 Showing a critical lack of lubrication. 

Maintenance must be carried out.   
For this fault diagnosis problem, our target is 
to find the optimal boundaries separating the 
three patterns. Similar to Chamroukhi’s 

approach [3], several features are extracted 
from the power consumption signal: the 
maximum, minimum, mean, deviation, and the 
coefficients of the polynomial fit. The number 
of coefficients of the polynomial fit depends 
on the order of the fitting. For an n-order 
polynomial fit, the approximate function is as 
follows: 

0
1

1
1

1 ....)( axaxaxaxf n
n

n
n     (12) 

The higher the order n is, the more flexible is 
the polynomial fit. The coefficients  are 
used as features. These features compose the 
input of the multi-class SVM. 

ia

4.2 Results Analysis 

In this numerical case study, simulated data 
are used to demonstrate the proposed 
methodology. For each pattern mentioned 
above, 120 data sets are simulated, as shown 
in Figure 7. These 120 sample data sets for 
each pattern are divided into three different 
subsets: the first 60 data sets are used to train 
the SVM. The next 30 data sets are used to 
find the optimal parameters in the SVM. The 
remaining 30 data sets are used to validate the 
developed SVM and to obtain the accuracy of 
the SVM. 
 

 
Figure 7: Simulated Data 

 
The optimal parameters in the SVM are 
optimized using the methodology proposed in 
Section 3. Figure 8 and Figure 9 plot the 
figures for the error with the penalty parameter 
and the parameter in the kernel function, 
respectively. They show that there are a great 
number of local minimums in the 
function ),(CfError . The ant colony 
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algorithm is useful for solving the problem 
with a great number of local minimums.  

 
Figure 8: The Function ),(CfError  

 
Figure 9: Contour of ),(CfError  

 
The optimal parameters obtained by ACO are 
used by the SVM and several orders of 
polynomial fit are used for the power 
consumption signal. The results are tabulated 
in Table 2.  
 

Table 2: Error with Various Polynomial Orders 

n C  
Training 

Error 
(%) 

Validating 
Error (%) 

Test 
Error 
(%) 

1 1,035 3.79 3.89 7.78 5.56 
2 7,902 6.18 1.67 5.56 1.11 
3 14,626 2.69 1.67 6.67 5.56 
4 3,969 3.66 2.22 8.89 7.78 
5 3,910 5.44 3.33 8.89 5.56 
 
Table 2 shows that the lowest test error occurs 
for n=2, that the corresponding penalty is 

 and that the kernel function 
parameter is 

7902C
18.6 . Therefore, the 2nd order 

polynomial fit are selected as kernel function 
to diagnose whether or not the DC motor lacks 
lubrication. The results using the simulated 
data show that the accuracy of diagnosis can 
reach 100%-1.11%= 98.89%.  

 
Figure 10: Minimum Point of ),(CfError  

 
To verify if the minimum point of error is 
achieved with 7902C  and 18.6 , Figure 10 
plots ),(CfError  by including the point 

7902C  and 18.6 . It is shown that this 
point is the point with the lowest error.  

5 CONCLUSIONS 
 
This paper uses the multi-class SVM to 
diagnose incipient failures. ACO is used to 
find the optimal parameters for the multi-class 
SVM. The numerical case study on fault 
diagnosis of the electric motor of a railway 
switch shows that ACO is efficient in finding 
these optimal parameters. The diagnosis 
accuracy is highest using the parameters 
obtained from ACO. Consequently, using the 
SVM and ACO for fault diagnosis is feasible 
and practical.         
 
Our future work will focus on the collection of 
condition monitoring data from switches. The 
SVM will be applied to the fault diagnosis to 
improve the diagnosis accuracy.   
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Abstract: 

Classification is an important technique in pattern recognition, data mining and 
knowledge discovery. It is also a common tool that can be used in decision support 
systems. Intensive researches have been done on the classification and plenty of 
techniques have been developed. Support Vector Machine (SVM) as one of the classifier 
techniques possesses an excellent classification capacity and has been widely used in 
literature. Support Vector Machine (SVM) is a machine learning algorithm based on the 
Statistical Learning Theory (SLT), which can get good classification effects with a few 
learning samples with low computational cost. The effectiveness of SVM depends on the 
selection of the kernel function so in order to maximize performance; this paper proposes 
an Adaptive Multiple Kernel SVM (AMK-SVM) for classification. Using AMK, large 
number and heterogeneous features such as continuous, categorical, logic, etc. can be 
merged together. Instead of predefining the parameters in kernel functions as other 
Multiple Kernel SVM, this method can adapt its parameters to data automatically by 
using Kernel Alignment. A numerical example with benchmarking data is presented to 
demonstrate the feasibility of the developed approach and test its performance. A three-
layer neural network and two single kernel SVMs are also applied to the same data sets to 
compare their performance with AMK-SVM.          

Keywords: Support Vector Machine (SVM); Classification; Adaptive MK; Kernel 
Alignment. 

1. Introduction 

Classification target consists of the clustering of given data to a specific class.  Areas 
where classifiers are used cover all aspects of business, technology or sciences. For 
instance, an email server should decide if the incoming mails are spam. In this case 
performance and processing speed are crucial because thousands of emails can be 
received simultaneously by the system, and they could degrade or disable the system.  In 
face recognition, the human face should be discriminated from other objects, and medical 
image processing uses these classifiers to detect known patterns in X-ray pictures, etc... 
In fact medicine is a popular area for classifiers utilization; Automatic diagnosis cab be 
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done in function of patient’s symptoms in order to decide the proper treatment. Business 
areas for banking risk analysis are a recent interesting topic because bankers can evaluate 
their customers to decide if they give loans or no. Finally, many industrial applications 
require classifiers to diagnose possible failures in machinery, extracting this information 
from known states. In these applications, decision making based on the probability of 
occurrence of a scenario is crucial to take proper further actions. Obviously, these areas 
are different but the above mentioned problems can be formulated in a similar way, using 
the same tools, as a mathematical classification problem. 

In terms of mathematics, classification tries to create a model that shows the dependence 
between observed data and its class. Due to its wide occurrence in the filed of pattern 
recognition, data mining, knowledge discovery, cancer diagnosis, fraud detection and, 
etc., intensive researches have been done in this field and plenty of techniques have been 
developed. Most popular methods are Logistic regression [1], Naive-Bayes Classifier [2], 
Recursive Partitioning Methods [3], Linear Discriminant classifier [4], the k-nearest 
neighbor [5], Artificial Neural Network (ANN) [6],Support Vector Machine (SVM)[7-8], 
etc. For all these techniques, many variations have been developed for specific 
applications trying to improve the performance in concrete areas.     

Logistic regression and Naive-Bayes Classifier assume the observed data follows a 
specified distribution. Using these data, optimal parameter of these distributions can be 
estimated. User can decide the class of new date based on the distribution where this date 
most probably belongs to. The other techniques above mentioned are non-parameters 
techniques. Such techniques don’t need to consider the distribution of the data sets. 
Linear Discriminant classifier is the simplest model with the lowest computational cost 
among them. This model is easily to be understood and interpreted. However, its 
performance is poor due to the strict linear assumption on the decision function. K-
nearest neighbor is to perform classification based on closest training data sets. Such as 
method is also simple yet its computational cost is high.  

ANN, SVMs are later developed techniques. As intelligence techniques, both techniques 
are flexible and nonlinear in data classification. ANN and SVM are similar because they 
try to minimize the error in the classification process, but they differ at their basis 
principle. The differences of performance of both methods have also been widely 
discussed in literature. Scholkopf etc. proved SVM can outperform ANN by using USPS 
database of handwritten digits [9]. Chen also proved SVM can outperform ANN for his 
case[10].  

As a classifier, SVM has thousands of applications, which cover image process [11], 
failure diagnosis [12], cancer diagnosis [13], cancer issue validation [14], text 
classification [15], credit risk evaluation [16], speech recognition [17], spam email 
detection [18], financial forecasting [19], etc. SVM is characterized by its using of kernel 
function. Normally, SVM uses a single kernel. Recently, in order to improve prediction 
accuracy, SVM has been developed from single kernel to multiple kernels. Chapelle et al. 
developed a multiple kernel SVM. According to the author, different attribute or element 
in data use different kernel parameter. The final kernel function is a combination of all 
basic kernels [20]. Similar to Chapelle’s model, Rakotomamonjy et al. developed a 
multiple kernel method called SimpleMKL [21]. In SimpleMKL, each attribute can use 
different kernels and for the whole set of attributes multiple kernels can be used as well. 
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Subrahmanya and Shin developed another methodology to use multiple kernels. Their 
proposal weights the regularization parameter for features from different data source 
instead of do it with the individual kernel function [22].  

The remaining part of this paper is structured as follows: Section 2 presents the concept 
and characteristics of some preliminary theory of kernel method. Section 3 presents the 
developed Adaptive Multiple Kernels SVM (AMK-SVM) and proposes a parameter 
optimization method for the AMK-SVM. Section 4 presents a case study and finally, 
Section 5 presents discussion and future work. 

2. Preliminary theory 

The measurements used for classification are called features. SVM uses kernel method to 
transform original input space into a higher dimensional feature space. In the higher 
dimensional space, the pattern is more identifiable. In this section, we introduce the 
concept of kernel method and describe some property of kernel function related to our 
proposed AMK-SVM.  

2.1 Kernel Method 

Kernel method is a class of algorithms developed for multivariate data analysis and 
pattern recognition. The major characteristic of kernel method is its use of kernel 
function, which is denoted as . It calculates the similarity between two 
observations (data sets)

),( xzk
z and x . The notion “similarity” can be geometrically interpreted 

as the distance of between the data set andz x .  

Kernel function plays a key role in SVM. It settles the performance of SVM. To show the 
principle of kernel function mathematically, we present the classical method to calculate 
similarity of two data sets. 

The distance or similarity between data sets andz x  can be calculated by inner product of 
z and x .  

xzxzk ,),(                                                                   (1) 

As in a higher dimensional space, the difference of two data sets may be more distinct. So 
we transform the original data sets to a higher dimensional space by using transformation 
function ,  as shown in following Equation (2).  )(z

),...)(),...,(()(),...,( 121 zzzzzzz in            (2) 

In the higher dimension, the patterns tend to be more identifiable. Figure 1 shows the 
schema of this advantage. In the Figure1 a, the circle and crossing are not linearly 
separable in two-dimension space. By using of the transformation , the original two-
dimension data are transformed into a higher three-dimension data, as shown in Figure 1 
b. In the higher three-dimension space, the two classes of dots can be separated more 
easily.  
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Fig. 1. Transformation of Data Set 

In the transformed higher dimensional space, the similarity quantity of data sets andz x is 
calculated by: 

)(),(),( xzxzk                                                       (3) 

As the transformation  is an expansion of function)(z )(zi , the kernel function 
calculates similarity in Equation (3) is equivalent with: 

1

)()(),(
i

iii zxzxk                                                  (4) 

The above mentioned method is the classical method to calculate similarity. The 
objective is to find the similarity quantity . Instead of using the above procedure to 
calculate similarity of two data sets, SVM usually use a kernel function to directly 
calculate , where the transformation function

),( zxk

),( xzk is implicitly defined in that kernel 
function.  

The common kernel function used in literature survey is Gaussian and polynomial kernel 
function. The form of Gaussian function is:  

)
2

exp(),( 2

zx
zxk                                              (5) 

And polynomial function is: 
dzxzxk )1,(),(                                              (6) 

 

The advantages of kernel function are one need not define the transformation 
function explicitly, and the computational cost is also low.      

When kernel function is used to define the similarity of data sets, the corresponding 
decision function is thus represented by a combination of kernel functions. For example, 
the decision function for a binary classifier of SVM is:  

)),(sgn()(
1

m

j
jjj bxxkyxf                         (7) 
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where j denotes coefficient of data sets , b denotes a constant bias. This decision 
function can be nonlinear depending on the kernel function . Figure 2 shows the 
decision function when Gaussian kernel function is used. The “1 0 -1” are values of 
decision function. Line with “0” is the optimal separator to classify the two classes of 
dots. Evidently, this separator is nonlinear and it is flexible to fit data.  

jx
),( jxxk

 
Fig. 2. Decision function using Gaussian function 

2.2 Additive property of kernel function 

All functions satisfy Mercy theory can be a kernel function [23]. As the linear 
combination of kernel function also satisfies mercy theory, so this combination is still a 
kernel function. We call this property additive property. This property lays the foundation 
of multiple kernel method. One can obtain an optimal kernel function via the 
optimization on the linear combination of kernel function.  

The additive property is described mathematically as: Suppose k1 and k2 are kernel 
functions, given 01 , 02 , the 2211 kk is also a kernel function.  

The combination of kernel function sometimes can improve the performance of SVM 
because special characteristics of these kernels are added. For instance, Gaussian function 
is local function, which means it can fit a nearby datasets perfectly, whereas it neglects 
the influence of other far data sets. On the other hand global kernels such as polynomial 
kernel consider the classification problem globally while lacking of local flexibility. To 
obtain benefits from both local fit and global influence of kernel, Use a combination of 
kernel functions can be one solution.  

2.3 Kernel Alignment 

The performance of SVM is sensitive to the parameter value in kernel function, such as 
in Gaussian kernel function. So Parameter estimation on these parameters is important 

to the performance of SVM. Some existing parameter estimation methods such as 
crossing-validating are effective but their computational cost is expensive [20]. As for 
each tentative parameter, one needs to train the SVM at least once. However, the training 
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of SVM is computational cost, so these methods are inefficient. Kernel alignment 
provides a method to tune the parameter without training of SVM and obtaining 
important savings.        

Kernel alignment tries to measure the distance (or similarity) between two kernel 
matrixes [24]. Kernel matrix is a matrix composed by kernel function value. Suppose the 
data sets are denoted by  

)...y,(x,),y,(x),y,(xS ii2211                                   (8) 

where the xi as an input corresponds an output yi.  

The kernel matrix defined on theS  is defined as:  

),()...,(),(
...

),(...),(),(
),(...),(),(

21

22212

12111

nnnn

n

n

xxkxxkxxk

xxkxxkxxk
xxkxxkxxk

K                       (9) 

The definition of kernel alignment is: 

Definition: Let  and  are kernel matrixes by two kernel functions on data sets . 
Assume the  and are same size. The alignment between  and then as follows: 

1K 2K S

1K 2K 1K 2K

FF

F

KK
KKSKKA

21

21
21

,),,(                                                (10) 

The F in Formula (8) denotes Frobenius inner product. Frobenius inner product of the 
matrixes is defined as [24]. )(, 2121 KKTraceKK

In SVM, it has been known the optimal kernel matrix is the kernel matrix constructed by 
YTY [26], where Y=(y1,y2,..yi,..).. The  is the indicator of classes for ith data set. For 
binary classification, the is defined as

iy

iy }1,1{iy .  This best kernel matrix provides a 
target to design kernel. One can construct a new kernel to make its corresponding kernel 
matrix as similar as possible to the optimal kernel matrix YTY.  The corresponding 
kernel alignment is: 

F

T
F

F
T

T

YYK
YYKYYKA ,),(                                                     (11) 

This kernel alignment implies the separability of the kernel function. When one design 
kernel function or optimize a linear combination of kernel functions, the maximum kernel 
alignment can be of its optimization objective.  

3. Adaptive Multiple Kernel Method 

The use of single kernel function in SVM is rigid to fit data, especially when the input 
features are extracted from different data sources. Multiple kernel functions facilitate 
SVM to fit data more flexibly. The present paper proposes a multiple kernel method 
based on the kernel alignment above mentioned.  
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3.4 AMK Development 

For features from different data source or everyone feature, one can select a special 
kernel to fit their characteristics. For example, for continuous feature, Gaussian kernel 
can be selected; for feature extracted from text expression, string kernel can be selected. 
On the other side, for a feature, one can use more than one kernel. For instance, as 
mentioned in Section 2.2, both Gaussian and Polynomial kernels can be used to a 
continuous feature by lineally combining them.  

To illustrate the above mentioned concept, we propose a schematic example as shown in 
Figure 3. Suppose the data are from n data sources. In source 1, features are extracted 
from both time and frequency domain. Let the features from time domain and frequency 
domain feature accommodate in kernel function  and respectively. For data source n, 
the features are only from the time domain. We accommodate these features in kernel 
function  and . The  and  can be same kind of kernel but with different 
parameter, or using a different kind of kernel function, e.g. Gaussian and Polynomial 
function. The final kernel function is then a linear combination.  

1k 2k

3k 4k 3k 4k

x1 x2 x3 x4 x5

Sensor 1 Sensor n

...
x6 x7 x8 x9 x10

Group1: Time 
domain feature

Group 2: Frequency 
domain feature

Group3: Time domain 
feature

k1 k2 k3

44332211 kkkkk

k4

 
Fig. 3. Multiple Kernel Method 

When the parameters of kernel function, such as  in Gaussian function, has been 
predefined. One multiple kernel function is as follows [21]: 

...)( 5544332211 kkkkkkM             (12) 

where i is the weight of kernel function .  ik

Our AMK considers these parameters in kernel functions as variable, which depend on 
the data, i.e. it is adaptive to the data. The corresponding multiple kernel function is as 
follows: 

...)(...
)()()(),(

11

33222111

iiiii

M

kk
kkkk

                (13) 

In multiple kernel method, the value  for different kernel function may differ 
drastically. For example, using the polynomial kernel function, for d=1, when the  
is 5, that for d= 10 is then 3125, i.e. the value of higher order polynomial will much 
higher than that of lower order. This problem will make the smaller kernel function 
ineffective when multiple kernel functions are used. For such problem, it is necessary to 

),( xzk
),( xzk
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normalize the . One effective normalization method is the method proposed by 
Shawe-Taylor and Cristianini [25], which is shown as: 

),( xzk

),(.),(
),(

xxkzzk
xzk                                                     (14) ),(' xzk

Notably, the normalization on kernel function will improve the computational cost 
considerably. Sometimes one can avoid such normalization by selecting other kernel 
function.     

3.5 Parameter Estimation 

In our AMK, both the coefficients of each kernel function and the parameters in kernel 
functions are variable. For simplicity, in this paper, we call coefficient as parameter as 
well. Such large number of parameters is a challenge for parameter optimization. The 
improper parameter will lead to poor performance both in terms of computational cost 
and accuracy. Determination of such parameters has been a hot topic. Crossing-validation 
method is the effective method to solve this problem [8]. However, the computational 
cost of this method is high, as given each heuristic parameter value, the SVM should be 
trained at least once. However, training the SVM is a time consuming process. If the 
number of training data sets is large then the crossing-validation method will be almost 
infeasible.  

The kernel alignment, as mentioned in Section 2, provides a solution to estimate 
parameters where time-consuming training process can be avoided. Without training the 
SVM, the parameter estimation will be more computational efficient. Our proposed 
parameter estimation method based on kernel alignment. It sets the maximum kernel 
alignment between kernel matrix  generated by multiple kernels and the target matrix 
YTY. The optimization programming formulation of this problem is as follows: 

MK

0
0

max

0.

max

;

),,(

F

T
FM

F
T

M

YYK
YYK

                                          (15) 

As discussed in paper [26], the above Formula (15) is equivalent to 

0;.

)(),()(

i

k kl
Fllkklkkk

T

ts

KKYKY

i

k
              (16) 

where denotes the kernel matrix of kernel,kK thk k  denotes its corresponding 
coefficient, k denotes parameter of the kernel.  thk

Formula (16) can be transformed into a non constraint optimization problem. We replace 
the coefficient i  by  and ieln i  by iln .  The equivalent of Formula (16) without 
constraint is as follows:  
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k kl
Fklkklkkk

T
ie

KKeeYKYe )(ln),(lnlnln)(lnlnmax
,

                (17) 

Some constraint or unconstraint optimization algorithm can be utilized to obtain the 
optimal parameters. However, when the parameters in kernel method are adaptive, these 
methods will also be computationally inefficient, as for each heuristics parameter, the 
kernel matrix needs to be recalculated once. The computational cost on kernel matrix is 
high. One computationally cheaper method is to use following two-step approximate 
method:   

Step 1: For each kernel function , use kernel alignment method as follows to find its 
optimal parameter

ik

i . 

;0

)(
),(

F

T
Fi

F
T

i

YYK
YYKMax

                                                     (18) 

Step 2: Fix the i in kernel function. Optimize the coefficient i of each kernel function 
using following Formula. 

0..

)(),()(

i

k kl
llkklkkk

T
k

ts

KKYKYMax
   (19) 

This algorithm decomposes the parameter estimation into two sub problems. Each sub 
problems is easily to be solved. Notably, the parameter obtained from the above two-step 
method is an approximate of that obtained from Formula (16). But this approximate is 
reasonable as it can improve the computational efficiency.    

After the optimal coefficient has been obtained, some coefficient could be insignificant. 
Such insignificant coefficient implies the irrelevance of the corresponding features. We 
can remove the features with a small contribution. In this way, we have performed a kind 
of dimension reduction implicitly. 

3.6 AMK-SVM 

We apply this proposed AMK to SVM. This is called AMK-SVM. The dual problem of a 
2-norm binary SVM classifier is as follows [23]:   

m

i
ii

i

m

k
k

m

i

m

j
jiMjiji

y

miCts

xxkyy

0

11 1

0

...,3,2,1,0..

,
2
1max

            (20) 

where i represents Lagrangian multiplier which corresponds a data sets xi. C is penalty 
parameter which trade-offs classification accuracy and computation complexity. 
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jiM xxk ,
),(

 is the multiple kernel function which equivalent to 
...),(),(),( 332211 jijiji xxkxxkxxkjiM xxk . . 

 

Using optimization method such as active set methods [27] to obtain optimal solution 
(values of i ) for Formula (16), we get the following decision function to predict class 
for the new data set x. 

                        (21) )),(sgn()(
1

m

j
jMjj bxxkyxf

3.7 Features Subset Selection by Kernel alignment 

Feature selection is to remove the insignificant feature. The motivation of feature 
selection mostly is to reduce the computational complexity and to improve generalization 
performance. Using kernel method, the major motivation of feature selection is to 
improve generation performance.  

As we mentioned before, higher KA value implies better separability of a kernel function. 
This separability depends on both the kernel function and the data sets for training. When 
we aim to perform feature selection, we fix the kernel function and compare the kernel 
alignment for a different subset of features. Suppose a number of n features present 
initially. There will be 2n combinations (subset) by these features. We calculate the 
kernel alignment for each of these combinations. The optimal feature combination is that 
combination with highest kernel alignment. The detail procedure to perform feature 
selection is as shown in Figure 4. 

End

All KAs for subset of features have been calculated?

Predefine a Kernel function

Start

Select one subset of features

Compute kernel matrix

Calculate KA for the kernel matrix

Select the subset with maximum KA

Yes

No

 
Fig. 4. Feature Selection Procedure 

The major advantage of this feature selection method is its computational efficient, as KA 
can be obtained without the time consumption for the training process of SVM. When the 
number of n is large, the abovementioned method enumerating all subsets is impossible. 
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One can employ some heuristic method such as Genetic Algorithm, Tabu Search to 
obtain the optimal combinations [28].  

4. Numerical Example 

The data of this numerical example is the widely used benchmarking ionosphere dataset. 
These data is collected by a radar system [29]. The data is for a binary classification 
problem, which contains 33 inputs (i.e. 33 features), a single binary output with 351 data 
sets. Positive output 1 returns shows the evidence of structure in the ionosphere, negative 
output -1 returns shows no structure. Figure 5 shows the original raw data in 2-
dimensional space for the 2nd and 3rd features. It shows the two patterns (1,-1) are mixed 
together geometrically. In order to classify the two patterns efficiently, nonlinear 
classifier such as ANN, SVM should be introduced. The line “0” in Figure 5 is the 
decision function of SVM using single Gaussian function. It shows the performance of 
this function is low, as lots data are misclassified.        

 
Fig.5. Pattern in 2-D space 

The proposed AMK-SVM is used to classify the two patterns and predict if structure 
exists in the ionosphere. In order to compare performance, an artificial neural network 
and single kernel SVMs is also applied to the same data sets. The AMK is selected as a 
linear combination of one Gaussian kernel and one Polynomial kernel, where the 
parameters for each kernel are adaptive. The parameter of the single kernel SVMs is also 
adaptive. ANN selects 3-layer with 24 hidden neurons. The data has been normalized. 
And all these methods are implemented by Matlab. The algorithm to train the SVM is 
Active Set Method. The optimal coefficient in AMK-SVM is obtained by the built-in 
fminunc function in Matlab. This function includes several optimization methods such as 
Quasi-Newton and trust-region method.  The ANN used here is from the pattern 
recognition algorithm in Neural Network Toolbox.     
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The total 351 data sets have been divided into two groups. The first group is used to train 
the SVM or ANN, the other group is used to validate the predicting results. Out of the 
351 data sets, 50% and 80% data sets are selected for training and the remaining data sets 
for validating. These 50% or 80% data sets are selected randomly. Twenty times runs for 
each division have been carried out, thus 20 training sets have been selected for each 
division. This random selected training sets are not replicate, as using various training 
sets to test the proposed approach is more reasonable.    

4.1 Accuracy 

The predicting accuracy of using these techniques is tabulated in Table 1. Most of the 20 
runs, the AMK-SVM can achieve highest accuracy and the Gaussian adaptive is second 
highest for both 50% and 80% data division.     

Table 1. Accuracy using Various Techniques 
50% Training 80% Training 

No. Gaussian  Poly AMK-SVM ANN No. Gaussian Poly AMK-SVM ANN 
1 90,34 85,80 94,32 87,16 1  87.32 83.10 91.55 85.77 
2 89,20 86,36 92,61 85,06 2 94.37 85.92 94.37 89.15 
3 89,20 82,39 95,45 86,82 3 90.14 85.92 95.77 91.55 
4 90,91 84,09 92,05 80,63 4 88.73 83.10 94.37 86.76 
5 89,20 82,95 94,32 88,18 5 90.14 87.32 94.37 77.61 
6 92,61 83,52 95,45 82,27 6 95.77 88.73 98.59 91.55 
7 90,91 86,36 94,89 86,70 7 90.14 83.10 97.18 90.85 
8 87,50 84,66 93,18 86,76 8 90.14 85.92 97.18 88.45 
9 92,61 85,23 93,18 84,77 9 88.73 84.51 92.96 85.49 

10 88,07 82,39 92,61 86,14 10 90.14 88.73 100 89.44 
11 89,20 86,93 92,05 87,95 11 90.14 83.10 91.55 82.68 
12 89,20 76,70 93,18 88,58 12 90.14 78.87 92.96 88.31 
13 88,07 85,23 95,45 82,84 13 90.14 81.69 91.55 87.46 
14 93,75 86,93 93,75 88,41 14 91.55 85.92 92.96 88.45 
15 83,52 85,80 92,05 86,31 15 91.55 85.92 94.37 90.00 
16 84,09 75,57 91,48 83,24 16 91.55 88.73 95.77 89.44 
17 89,20 81,25 91,48 86,19 17 94.37 88.73 95.77 91.41 
18 90,34 88,07 93,75 80,74 18 92.96 87.32 91.55 92.82 
19 88,07 86,36 91,48 86,99 19 91.55 85.92 92.96 86.48 
20 86,93 84,66 93,18 85,74 20 87.32 74.65 91.55 81.97 

 

The data in Table 1 is listed in the Figure 6. For the 50% training data, all the accuracy of 
AMK-SVM are higher than that of the others. For the 80% training data, AMK-SVM 
achieves higher accuracy for most runs, where only 1 out of the 20 runs can not be better 
than that of other.      
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Fig. 6. Comparison of Accuracy 

Table 2 below is a summary of predicting error, where mean error is the mean of error 
from the 20 runs. Deviation is the standard deviation of error from the 20 runs. In terms 
of mean error, Table 2 shows the error of AMK-SVM is lower than single kernel SVMs 
and ANN. This result shows interestingly the AMK-SVM can achieve better results than 
that from its constituent single kernel function.  

Table 2. A Summary of Predicting Error (In Percent %) 
 Gaussian Polynomial AMK-SVM ANN 

80% Mean Error 9.15 15.14 5.63 12.22 
80% Deviation 2.21 3.56 2.50 3.74 

50% Mean 10.85 15.94 6.70 14.43 
50% Deviation 2.54 3.24 1.34 2.43 

 

4.2 Computational Cost 

As shown above, the AMK-SVM has a higher accuracy. However, compared with the 
single kernel SVMs and ANN, the computational cost of AMK-SVM is also high. Figure 
7 plots the computational time for AMK-SVM, single kernel method and ANN. For both 
the 50% and 80% data sets, the computational time of AMK-SVM is highest.  
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Fig.7. Comparison of Computational Cost 

Table 3 shows the mean of the computational time.  
Table 3. A Summary of Computational time (In Second) 

Training Data Gaussian Polynomial AMK-SVM ANN 
50% 0.3418 0.077 1.1702 0.5376 
80% 1.3507 0.2233 3.6676 0.5857 

Evidently, the mean of computational time of AMK is also higher than others. This 
computational time is acceptable. The neck bottle of the computational cost is the 
optimization on coefficient, i.e. step 2 in Section 3.5. Some efficient method should be 
implemented to fasten this computation. Nevertheless, the proposed approach in this 
paper is still efficient than the classical crossing-validating method. We don’t discuss it in 
detail since it is not the main concern of this paper. 

5. Conclusion and Discussion 

Numerical examples provided in Section 4 show that the proposed methodology is 
feasible to perform classification. In terms of accuracy, developed AMK-SVM shows a 
good performance for the demonstrated case. However, in terms of computational cost, 
the AMK-SVM cannot outperform ANN and single kernel SVM for some applications 
such as cancer diagnosis, where accuracy prioritizes over computational cost, the AMK-
SVM is the optimum. Nevertheless, some applications as real time control where a quick 
response is required, the single kernel SVM or ANN is better.  

However, in some situation the multiple kernel method is inevitable. For example, some 
features are a mixture of continues, categorical, or logic. Some feature even is a text 
expression. Using a uniform kernel function to fit such a mixture feature is infeasible. 
Even so, the AMK-SVM can accommodate such heterogeneous features naturally. More 
importantly, proposed AMK-SVM does not need to predefine the parameter for each 
kernel function heuristically, as our AMK-SVM can automatically adapt its parameter to 
fit the data. This advantage can avoid the heuristic determination of the kernel parameters 
where an improper value will result to a poor performance on the SVM. Moreover, using 
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kernel alignment method, our AMK-SVM is computationally efficient compared with the 
classical time-consuming crossing-validating method.    

Summarizing, AMK-SVM is for binary classification. This model can be extended to 
solve multi-class classification problems. The only thing needs to be improved is to 
change the calculation of kernel alignment to accommodate multi-classes classification. 
A limit of the developed method is: when a large number of kernels presents, the 
procedure to obtain the optimal parameters is time consuming. The improperly estimated 
coefficients will lead to poor performance as well, even it is worse than some single 
kernel method. The future research will focus on developing an effective optimization 
programming method to obtain optimal parameters. 
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Abstract: Fault diagnosis is a crucial step in condition based maintenance 
requiring. The importance of fault diagnosis necessitates an efficient and 
effective failure pattern identification method. Artificial Neural Networks 
(ANN) and Support Vector Machine (SVM) emerging as prospective pattern 
recognition techniques in fault diagnosis have been showing its adaptability, 
flexibility and efficiency. Regardless of variants of the two techniques, this 
paper discusses the principle of the two techniques, and discusses their 
theoretical similarity and difference. Eventually using the commonest ANN, 
SVM, a case study is presented for fault diagnosis using a wide used bearing 
data. Their performances are compared in terms of accuracy, computational 
cost and stability. 
 
Keywords: Failure Pattern Recognition, Artificial Neural Networks (ANN), 
Support Vector Machine (SVM), Fault Diagnosis. 

 

1. Introduction 
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As artificial intelligence techniques, the Support Vector Machine (SVM) and the 
Artificial Neural Networks (ANN) can be used for failure diagnosis. Both techniques 
have the ability to automatically learn and remember relationships among input data. 
This learning process can be supervised or unsupervised. Supervised learning requires 
a set of empirical data (x,y), paired up as input and output, to estimate the dependency 
between x, y. To achieve the learning, the ANN and the SVM adjust their internal 
parameters to minimize the margin between real output y and predicted ŷ . In Ar icial 
Intelligence, this learning process is called training.  When the minimal error has been 
determined, the relationship between x and y is establish d and the tool is used to 
make further predictions.  

e

 
The ANN and the SVM are the most popular artificial intelligence techniques for fault 
diagnosis. Yang et al. (2002) propose a method to diagnose bearing failures using 
Neural Networks to classify data, whereby features are extracted from spectrum 
analysis [1]. Samanta et al. (2003) diagnose bearing failures using time domain 
features; the ANN is also used as a classifier [2]. Hajnayeb et al. (2008) use the ANN 
to perform feature selection for ball-bearings [3]. The SVM is also widely used for 
condition monitoring in state-of-the-art research [4]. Abbasion et al. (2007) use the 
SVM as a classifier to diagnose rolling element bearings [5]. Sugumaran et al. (2008) 
use the multi-class SVM to diagnose bearing faults using features extracted from the 
time domain [6].  



The paper compares the performance of the SVM and the ANN in fault diagnosis and 
is an improved version of Yuan et al (2011) [7]. Section 2 explains the principles of 
the ANN and the SVM, while Section 3 discusses their computational complexity. 
Section 4 provides a numerical study, and Section 5 presents the discussion.   
 

2. ANN and SVM in principle 

 
The ultimate objective of the ANN and the SVM is to find a learning algorithm 
maximizing the generalization ability. The generalization ability can be bounded by a 
formula described as [8]:  

)()()(
h
lRR emp

                              (1) 

In this formula, )(R  denotes the real risk of the function with parameters  and it is 
the quantitative measurement of the generalization ability. )(empR  is the empirical 
risk. denotes the confidence of )/( hl )(empR , where l is the number of data sets and 

is the VC dimension of the admissible functions. More complex functions have a 
higher  and a lower 
h

)/( hl )(empR . Formula (1) suggests that a good learning 
algorithm minimizing )(R should balance the empirical risk and the confidential 
interval.  

 
Figure 1 Risk Bound of learning algorithm 

 
The ANN and the SVM achieve this goal in different ways: The ANN fixes  
but minimizes 

)/( hl
)(empR ; the SVM fixes )(empR but minimizes )/( hl . The different 

ways to accomplish the same goal result in myriad learning algorithms in various 
forms. In this sense, Formula (1) unifies ANN and SVM. The next two sections 
describe the principles of the ANN and the SVM. 
 

2.1 Artificial Neural Networks 

 
Artificial neural networks are simplified artificial models based on the biological 
learning process of the human brain. The ANN has been widely used in recent years 
for many non-linear applications, including classification, function approximation, 
control filter, pattern recognition etc. Numerous attempts have been made to use the 
ANN for machinery fault diagnosis. For example, an application of the ANN to pre-
process, compress and classify vibration spectrum and time signals for bearing faults 
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is demonstrated by Hajnayeb et al. (2008) [3]. Li et al. (2000) use ANN to diagnose 
motor rolling bearing faults  [9]. Raheem et al. (2010) propose an approach to 
diagnose bearing failures using ANN and Laplace wavelet [10]. Liu et al. (1993) use 
the neural network to detect bearing defects [11].  
 
There are numerous neural networks available with different implementation 
methods, and thus having different complexity and performance. The simplest ANN is 
McCulloch-Pitts’s neuron [12] shown in Figure 2. are the inputs of the 
neuron and the weights are adjustable parameters. The optimum of  is obtained 
by minimizing the discrepancy between the desired output and the real output. 

denotes the addition of  these weighted inputs,

nxxx ,..., 21

iw iw

wz ii x .  is the 
activation function that defines the output of the neuron.  

)(f

)( iixwbf

 
Figure 2. McCulloch-Pitts’s Neuron 

 
The ANN uses numerous neurons to construct a multi-input and multi-output neural 
network. In condition monitoring, the multi-layer neural networks are the most 
commonly used type of ANN. The topology of this kind of neural network is shown 
in Figure 3. 

 
Figure 3. Three-layer ANN 

 
This type of ANN is called “feed forward ANN;” the data flow is strictly forward and 
not cyclic, so there is not feedback connection, and the loop is not closed. The feed 
forward ANN is the most common type of ANN used in engineering. 
 

2.2 Support Vector Machine 

 
The SVM was originally developed for classification. Figure 4 provides a simple 
illustration of the classifier. Suppose there are two classes of dots (black and white). 
The solid line shown in Figure 4 separates them. This line is named “separator” or 
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“Hyperplane”. The SVM tries to find the optimal line which maximizes the distance 
between these two classes of dots.  

L1 L3L2

A1 A2 A3

d1

d2

W1
W2

 
Figure 4. Binary Classifier 

 
To find the optimal separator, the SVM employs the architecture shown in Figure 5. 
Given a set of training data, the SVM employs the Lagrangian method to obtain the 
optimal decision function based on the kernel function [8, 13, 14]. The kernel function 
is used to measure the distance between two vectors; it can transform the input vector 
to a higher dimension space where the pattern is more identifiable. The SVM has a 
nonlinear decision function when its kernel function is nonlinear. 

 
Figure 5. Architecture of SVM 

 
The decision function of the SVM is  

N

i
ii bxxkxf

1

),()(                         (2) 

where is the training data sets, is the kernel function and b is the bias. The 
mathematical formula to obtain the optimal solutions is omitted here, which is readily 
available elsewhere [8, 14].      

ix (.,.)k

 
2.3 Regularized Neural Networks 
 
As mentioned in Section 2, the neural networks fix the complexity of the model and 
minimize the empirical risk. This empirical risk is normally measured by the mean 
square error. The “overfitting” phenomenon is more likely occur when the model is 
complex and the available data set is small. To prevent this phenomenon the ANN 
usually uses the early stopping technique or the regularization technique. This paper 
focuses on the latter. The optimization objective in the regularization framework for 
the ANN is in the form of [15, 16]: 

wd EEF                       (3) 
where  is the expected mean square error,  is the regularizer controlling the 
weights in the neural networks, and 

dE wE
and  are coefficients. This framework can 

prevent the “overfitting” problem with the proper and . And inversely, the 
improper and  will degrade the performance of the ANN.  
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The Bayesian regularization determines and adaptively using the Bayesian 
inference. The regularized ANN has been described as equivalent to the SVM [15]. 
For the neural network with one hidden layer, the decision function 

is . N is the number hidden neurons. This form is similar 

to the SVM decision function. The difference is that in the ANN 

N

k
kkFNN xbxf

1
0 ),()(

),( xk  is the 
activation function, whereas in the SVM it is the kernel function.      
 
2.4 Similarities and differences of ANN and SVM 
 
Both the ANN and the SVM are adaptable. Adaptability means that the dependency 
between data is automatically established and can be updated when new data are 
available. Adaptability to data gives the ANN and the SVM a learning ability. 
Differences between them are summarized in Table 1. 

 
Table 1. Differences of ANN and SVM in principle 

 ANN SVM 
Transparency Black box Transparency 
Optimization 

objective 
Minimize empirical 

error 
Structural risk 
minimization 

Optimum Solution Local minimum Global minimum 
Stability Low High 

 
Stability refers to performance stability in this paper. Both the ANN and the SVM 
show random performance when the selection of internal parameters is random or the 
selection of training sets is random. In principle, the stability of SVM should be better 
than the ANN because the SVM solution is global while the ANN solution is local. 
Different initial values in the ANN in the configuration and the input data sets lead to 
different local optimums and result in different performance. The numerical example 
studied in this paper shows that the randomness of the ANN is evident.  
 
Both the SVM and the ANN are able to solve nonlinear problems. However, the ANN 
attempts to minimize empirical errors, so it has an “overfitting” problem, which 
means it tends to fit specified training data. The improved ANN, such as  regularized 
ANN, can avoid the “overfitting” problem to some extent by bounding the weight of 
parameters [17], for example, the Bayesian Regularized (BR) ANN. The case study in 
this paper shows the effectiveness of this regularization process of the BR ANN. To 
avoid the “overfitting” problem, the SVM employs structural risk minimization [8], 
which is also a regularization framework. 
 

3.  Computational complexity of ANN and SVM 

 
Computational complexity of the learning algorithm depends on the particular training 
algorithm. The training algorithms of the ANN and the SVM differ dramatically due 
to their different principles. For the ANN, this paper uses the following three training 
algorithms to get benchmarks points;  denotes the number of training data sets [18]:   n

 Scaled Conjugate Gradient (SCG) Algorithm, complexity )( 2n  
 Levenberg-Marquardt (LM), complexity )( 3n  
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 BFGS quasi-Newton method with complexity )( 2n  
In the case of the SVM, for small and median scale data that do not require to be 
chunked during training, the training of the SVM is a simple quadratic optimization 
problem whose computational depends on the penalty C. Let denote the number of 
support vectors and denote the dimension of the training data. If the C is large, the 
coefficients of a few data sets in SVM can reach C,  

sn

ld

 the complexity is )  if 1/( 23 ndnnnn lss s
nns , or 

 the complexity is )  if 1/( 3 ndnnnn lsss nns  
When C is small, the computational complex can be reduced:  

 if 1/ n , the complexity is  ) and ns ( 2 ndnn lss

 if 1/ nns , the complexity is  )( 2ndl [19] 
Although the computational cost depends on the particular algorithm, the 
computational complexity of the SVM and the ANN are theoretically close. However, 
in practice, for small and medium scale data sets, the computational cost of SVM can 
be much less than the ANN [2, 20].   
 

4. Numerical Comparison 

 
The case study uses the public data on bearings obtained from a test rig in Case 
Western Reverse Lab [21]. In this rig two bearings are installed on this rig, one at the 
end of the driver, and the other at the end of the fan. Vibration data are collected by 
accelerometers attached to the housing with magnetic bases. The data used here are 
from the bearing located at the driver end. The data are collected when the shaft speed 
is 1797 rpm. Five signals are obtained for different defect sizes in the inner race of the 
bearing. The signal is sampled at 12k per second. The defect sizes and the 
corresponding total data points are shown in Table 2.  
 

Table 2. Defect sizes of inner race 
 Normal Inner defect 1 Inner defect  2 Inner defect 3 Inner defect 4 
Defect Size 0 0.007 inches 0.014 inches 0.021 inches 0.028 inches 
Data Points 243938 121265 121846 122136 120801 

 
Figure 6 shows that the patterns of normal and defect signals differ in shape and 
amplitude. In this study, both the ANN and the SVM are used to discriminate them 
automatically. 

 
Figure 6. Normal and Defect Signals 
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Feature for vibration signal can be extracted from time domain, frequency domain or 
other domain [22]. The following features are extracted from the time domain: 
Kurtosis, Impulse Factor, and Normal Negative Likelihood value (NNL) [23]. The 
SVM and the ANN diagnose fault with five inner race defects. Their performances are 
compared in terms of accuracy, computational complexity and stability.  
 
Each category in Table 2 corresponds to a signal and each signal is divided into 20 
slots. Hence, 100 data sets are obtained. Out of these 100 data sets, 60% are randomly 
selected as training data sets; the remaining 40% are selected as validation data sets.   
 
4.1 Fault Diagnosis using ANN 
 
A two-layer ANN with multiple hidden neurons and one output neuron is used. The 
selection of this ANN is because its complexity similar to that of the SVM [24]. The 
structure of the ANN shown in Figure 7.    

 
Figure 7. Structure of ANN used 

 
Various numbers of neurons from 1 to 30 are used for this two-layer ANN. Three 
training algorithms are used to test its computational cost: Scaled Conjugate Gradient 
(SCG), Levenberg-Marquardt (LM), and BFGS quasi-Newton method (BFGS). The 
computational complexity is discussed in Section 3.  
 
For the ANN, the training target is selected as the Mean Square Error (MSE). This 
predefined MSE significantly influences the performance of the ANN. To 
demonstrate this, we arbitrarily select several MSEs to show the MSE influence. 
Figure 8 shows the accuracy (left side) and elapsed time (right side) for various 
numbers of hidden neurons. The accuracy is highest for MSE=0.001, the accuracy of 
MSE=0.01 follows. Despite the high level of accuracy for MSE=0.001, however, the 
computational cost of this MSE is also high, as shown in the right figure in Figure 8. 
Trading off accuracy and computational cost, MSE=0.01 is selected as the training 
target.     

 
Figure 8. Accuracy and elapsed time for various MSEs  
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As mentioned, the training algorithms can significantly affect the computational cost. 
To compare the computational cost and their accuracy, several popular algorithms is 
used to train the ANN. As shown in Figure 9, when the number of neurons exceeds 
10, the performances of all the training algorithms stabilize. The regularized ANN 
(BR in Figure 9) has most outstanding accuracy. Essentially, the BR shown in Figure9 
is not a training algorithm but a Bayesian Reutilization ANN using the LM algorithm 
for training. The BR is presented here to facilitate the comparison. In terms of 
computational cost, the LM has a much lower computational cost and the BR follows. 
Trading off computational cost and accuracy, the BR is evidently the best ANN for 
this case.  

 
Figure 9. Accuracy and time Elapsed for various algorithms 

The ANNs are using fixed 10 neurons as hidden layers. Each algorithm has been run 
10 times. As discussed, the performance of the ANN could be random, as the 
selection of initial weights is random.  The mean, maximum, and minimum for each 
of the 10 runs are shown in Table 3. Evidently, the performance of ANN is random, as 
the accuracy varies even when the same data sets used. Out of these training 
algorithms, the BR has the best performance. 

Table 3. Accuracy with 10 hidden neurons 

Algorithm Mean Accuracy Max Accuracy Min Accuracy Mean CPU Time Mean Time 
Elapsed  

SCG 92.4 100 88 0.69 0.60 
LM 79.6 100 20 0.33 0.19 
BFGS 76.9 100 20 0.46 0.41 
BR 99.2 100 97 0.72 0.37 

  
As mentioned in Section 2, the ANN is a nonlinear learning algorithm. Therefore, the 
decision function of the BR ANN is nonlinear. This nonlinear is evident as 
demonstrated in Figure 10. 

 
Figure 10. Decision function of BR ANN 
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4.2 Fault Diagnosis using SVM 
 
The SVM uses both the Gaussian and the polynomial kernel functions to diagnose 
faults. For the Gaussian kernel function, the parameters range from 0.01 to 10 with a 
step size of 0.05. Results shows an SVM using all these parameters can detect faults 
with 100% accuracy, but the computational cost varies, as shown in the left figure in 
Figure 11, where the elapsed time varies with various parameters. However, for the 
most part, it is around 0.1 seconds. When SVMs using the polynomial kernel function 
with parameters from 1 to 20 are applied to this problem, results show that faults can 
be also detected with 100% accuracy as well. Their computational cost is shown on 
the right hand side of Figure 11. The elapsed time is below 0.1 seconds, which is 
lower than the Gaussian kernel function. 
 

 
  

Figure 11. Computational cost of SVM 
 
The SVM can be a linear or nonlinear classifier. Decision functions using a 
polynomial function with a parameter of 1 is linear, as shown in Figure 12. Here, the 
decision is a plane which means it is linear.  

 
Figure 12. Linear SVM 

 
4.3 ANN vs SVM 
 
The BR ANN has been found to be the best among the ANNs discussed in the 
previous section. Therefore, only the BR ANN is compared to the SVM. In this case, 
 9
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the predication accuracy of the SVM is 100% for all the Gaussian and Polynomial 
parameters used, while the mean accuracy of the BR ANN is 99.2. Thus, the SVM has 
better accuracy. In terms of computational cost, the SVM is also more efficient than 
the BR ANN as shown in Table 4.  
 

Table 4. ANN vs SVM 
Techniques Mean Accuracy Max Accuracy Min Accuracy Time Elapsed CPU Time 
SVM Poly  100 100 100 0.075 0.127 
SVM Gaussian  100 100 100 0.096 0.179 
BR 99.2 100 97 0.72 0.37 

 
The performance of the ANN and the SVM depends on the internal parameters, such 
as the MSE in the ANN, and the parameter in the kernel function in SVM. Both ANN 
and SVM show random performance, when the selection of internal configuration 
parameters is random and the selection of training sets is random. The cases study in 
this paper clearly shows the randomness of ANN performance. As shown in Table 4, 
for the same data sets, the accuracy of the BR ANN is ranged between 97% and 
100%. The SVM is more stable; when the parameters are changed, the accuracy 
remains 100%.  
  

5. Conclusions 

 
This paper compares the performance of the ANN and the SVM with respect to fault 
diagnosis, using measurements of accuracy, computational cost, and stability. The 
case study shows the SVM can outperform the two-layer ANN in all three 
measurements. The regularized ANN has the best performance among the ANNs but 
cannot outperform SVM, even though in theory, the two-layer regularized ANN has 
the same model complexity as the SVM.  
 
This selection of techniques for failure diagnosis is a trade off between time efficiency 
and accuracy. For example, for the ANN, the smaller MSE leads to higher accuracy, 
but consumes more training time, as shown in Figure 8. For fault diagnosis, the 
simpler model seems a better option. One might, for example, select fewer neurons in 
the ANN or use a lower order polynomial kernel function in the SVM, as the less 
complex model could demonstrate similar or better performance while incurring less 
computational cost.  
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Abstract: Feature extraction is crucial to efficiently diagnose fault. This paper 
discusses a number of time-domain statistical features, including Kurtosis or the Crest 
Factor, the Mean by Variance Ratio (MVR), and Symbolized Sequence Shannon 
Entropy (SSSE). The SSSE reflects the spatial distribution of the signal which is 
complementary with the statistical features. A new feature, Normalized Normal 
Negative Likelihood (NNNL), is used to improve the Normal Negative Likelihood 
(NNL). A Separation Index (SI) called the Extended SI (ESI) evaluates the 
performance of each feature and to remove noise feature. The Multi-Class Support 
Vector Machine (MSVM) recognizes bearing defect patterns. A numerical case is 
presented to demonstrate these features, their selection method and the pattern 
recognition method. The MSVM is used to detect three different types of bearing 
defects: defects in the inner race, outer race and bearing ball.     
 
Keywords: Fault Diagnosis, Time domain; Feature extraction; Extended Separation 
Index (ESI); Multi-class Support Vector Machine (MSVM). 

1. Introduction 

Rolling element bearings are critical components in industrial machinery and thus 
play an important role in industry [1]. Because unexpected failures in the bearings 
lead to costly downtime [2], much research has considered their prevention. Fault 
diagnosis aims to find the incipient failure so that the catastrophic failure can be 
prevented. Within this paper, fault diagnosis refers to determining the state of the 
system (faulty or normal) as well as the type of faults [3]. 
 
The fault diagnosis of rolling element bearings is generally done manually based on 
practical experience. This is an intuitive and subjective method; therefore, when 
numerous patterns are involved, this method is inefficient. More recently, pattern 
recognition has been used to diagnose fault automatically. There are four steps in 
automatic fault diagnosis: signal acquisition, feature extraction, feature selection and 
pattern recognition. Signal acquisition installs sensors and collects the signal for 
analysis. Feature extraction is to extract the numerical measurements of the signal that  
 
——————————— 
*To correspond with author: Tel.: +46920491682; fax: +46920491935  
E-mail: yuan.fuqing@ltu.se   
Postal address: Div of Operation and Maintenance Engineering, Luleå University of 
Technology, Luleå, SE-971 87, Sweden. 
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is more interpretable than the raw signal [4]. Feature extraction generates 
measurements, and feature selection chooses a subset of optimal features based on 
those measurements. Finally, pattern recognition techniques such as classification or 
cluster algorithms can be used to discriminate among different bearing states, for 
example discriminating failure patterns from normal patterns [4].   
 
Signal acquisition in the case of the rolling element bearing focuses on collecting the 
vibration signal. The presence of a defect in a bearing produces impulses from the 
contact between metal surfaces when the bearing is running. These impulses are 
periodically produced with a frequency determined by the location of the defect and 
its size [5]. Accelerometer sensors can be mounted on the bearing house to measure 
the vibration signal which contains the defect information. As the vibration signal can 
be collected online, by analyzing this signal the status of the bearing, e.g. the location 
of the defect and possibly the severity of the problem, can be diagnosed without 
stopping the machine. This is the advantage of vibration analysis.   
 
Feature extraction is very important as the raw vibration signal is normally too chaotic 
to find defect directly. A feature can be considered to represent the signal and can 
therefore be used as the indicator of the bearing state. Features can be extracted either 
from time domains, such as Kurtosis, Crest Factor, etc., or from frequency or time-
frequency domains. Most analyses of vibration signals use the frequency domain or 
time-frequency domains. Nevertheless, the use of time domains has been argued to be 
computationally efficient [6], understandable and more easily implemented. 
Additionally, as argued by Tao et al., the time domain feature is less sensitive to 
bearing load and speed variance [7]. Finally, in the early stages of the defect, the 
frequency features are not significant, and frequency domain analysis is inefficient.  
 
Extracting a large number of features may provide more information on the signal, but 
it adversely affects the computational cost inversely and could degrade the 
performance of diagnosis. In feature selection, a set of optimal features are chosen. 
State-of-the-art feature selection methods are individual feature selection and subset 
feature selection. The Separation Index (SI) can be used to measure the classifiability 
of an individual feature or a subset feature and thus can be used to perform feature 
selection [8, 9]. For example, Zio et al. propose an SI called the classifiability 
evaluation function to select a subset of features. Qiu et al. propose a method based on 
the geometry distance. Kim et al. develop one SI to evaluate the significance of an 
individual feature. This paper extends Kim’s SI [10] by improving the statistical 
property and using it to remove noise feature.  
 
A classification algorithm can be used to discriminate patterns; the traditional 
algorithms used are the linear classifier and Bayesian classifier [4]. More recently, 
researchers have advocated classification algorithms such as neural networks and 
support vector machine as an optimal way to automatically discriminate between 
faulty and normal patterns. These advanced methods can adapt their decision to new 
data automatically, i.e. self learning. More importantly, the advanced algorithms can 
perform classification flexibly. Chen and Lee have proposed a neural network method 
to identify failure patterns for F-16 aircraft [11]. Pfeufer and Ayoubi proposed a 
hybrid of fuzzy logic and neural networks to perform fault diagnosis [12]. Sugumaran 
et al. used Multi-class SVM to diagnose rolling bearings using features from the time 
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domain [13]. Abbasion et al. used Wavelet analysis and SVM to detect different types 
of faults [6] . 
 
This paper discusses state-of–the-art time domain features and proposes some new 
ones to represent vibration signal more accurately; these include features adopted 
from another field and improvements on existing ones. A separation index is proposed 
to remove noise feature, and a commonly used subset selection method chooses the 
optimal subset of features. The optimal subset features are used as SVM input to 
diagnose fault. The multi-class SVM is selected to discriminate fault patterns, as the 
SVM can be linear or nonlinear depending on the kernel function chosen.  
 
Section 2 of the paper discusses state-of-the-art time domain features and the 
proposed new feature. Section 3 presents a feature selection method. Section 4 
discusses the multi-class SVM as a classifier of time domain features for diagnosis 
and prognosis purposes. Section 5 presents a numerical example using public test-rig 
data. Section 6 discusses the findings.  

2. Feature Extraction from Time Domain 

2.1 State-of-the-art features in the time domain 
 
In the early stage of fault development, the bearing is not significantly damaged and 
the defective signal is masked by the noise. As the periodicity of the occurrence of the 
signal is not significant, the spectral analysis is ineffective. Even when the periodicity 
is significant, using the time domain feature is still recommended because normal and 
defective signals differ in their statistical characteristics.  
 
Some time domain features found in the literature shows in Table 1.  Kurtosis is an 
important and popular feature used in rolling element machines. It defines the 
peakedness of the amplitude of the signal. Beta parameters are the shape and scale 
parameters in the Beta distribution when the amplitude of the signal is assumed to 
follow a Beta distribution. This is a flexible distribution and most signals can fit it. 
Since the parameters in Beta distribution for a normal vibration signal (bearings 
without defects) and a defective signal (bearings with defects) differ, they can be used 
to differentiate between types of defects [14]. However, some critics, such as Heng 
and Nor, argue that the Beta method has no significant advantage over using the 
Kurtosis and Crest factor for rolling element bearings [14].  
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Table 1. State-of-the-art time domain features  
 Feature Definition  Feature Definition 
1 Peak value Pv=(1/2)[max(xi)- 

min(xi)] 
6 Clearance 

factor Clf = n

i
ix

n

Pv

1

2)1(
 

2 RMS RMS = 
n

i
ix

n 1

2)(1
 

7 Impulse 
Factor Imf = n

i
ix

n

Pv

1

1
 

3 Standard 
Deviation 

Std= 
n

i
i xx

n 1

2)(1
 

8 Shape factor 
Shf = n

i
ix

n

RMS

1

1
 

4 Kurtosis 
Value 

Kv= 

4
1

4)(1

RMS

xx
n

n

i
i

 

9 Normal 
Negative 
Likelihood 
value 

NNL=

 

Lln ;   
N

i
i uxfL

1

),,(

5 Crest factor Crf = Pv/ RMS 10 Beta 
Parameter 

The estimated parameter values ( ,
1)x

) in 

beta function  

are used as features 

1

0

1 1(),( dxxB

The Kurtosis, Crest and Impulse factors are non-dimensional features and are 
independent of the magnitude of the signal power. RMS, Peak value, standard 
deviation, and Normal Negative Likelihood (NNL) value are fully dependant on the 
signal power. Some nuisance factors such as the quality of the sensors and the 
location where they are mounted can influence the power of the signal. The main 
advantage of non-dimensional features is that they are more immune from nuisance 
factors than dimensional features. RMS is an important feature in signal processing. It 
measures the power of the signal and can be used to normalize the signal. Therefore, 
some features are normalized by RMS.  Certain other features used in the past are 
normalized by RMS, as for example, Beta-Kurtosis [15], Weibull negative likelihood 
value [16], Kurtosis Ratio [17], etc. They are not discussed here as the focus is on 
commonly used time domain features. 

2.2 Normalized NNL 
 
Normal Negative Likelihood (NNL) has been used by some researchers to diagnose 
fault [16]. In NNL, the amplitudes of the signal are assumed to follow Normal 
distribution. The parameters u and are calculated using the maximum likelihood 
estimator method. This paper proves that the performance of NNL is equivalent to a 
much simpler feature.  
 
Let the amplitudes of the signal denoted by a series , ,….. discretely. When 
parameters u and

1x ix nx
are unknown, the negative likelihood function of this series is:   

)
2

)(
exp()

2
1(),(),,...,,( 2

1
2

2/
2

1

22
21

n

i in
n

i
in

x
xfxxxf        (1) 

The maximum likelihood estimator of u and is: 
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Substituting Formula (2) into Formula (1) and simplifying it, the following equation is 
obtained: 

 nn
n nxxxf ).2/exp()

2
1(),,...,,( 2/2

21                                                 (3) 

Thus the negative likelihood is: 

ln)2/exp()
2
1(ln 2/ nnLn n                                                                 (4) 

It can be concluded from the above that NNL is essentially equivalent to ln  and 
obviously, ln is not non-dimensional. In order to make the feature independent of 
power, as Kurtosis does, we normalize it by using RMS in the following way: 

RMS
NNNL ln                                                                                                        (5) 

This new feature is called Normalized Normal Negative Likelihood Value (NNNL).  
 
Essentially, the old NNL is not a stable feature as it non-necessarily depends on the 
number of sample size n as shown in Formula (4). For a scenario where two signals 
are identical but differ in length, the NNL values will differ. This is evidently not 
reasonable and is the major disadvantage of this feature. The new feature, NNNL, is 
not only independent of the sample size but independent of the signal power.      

2.3 Mean Variance Ratio 
 
The distribution of amplitude in the signal samples differs from normal and defective 
rolling element bearing signal. The normal signal without defect is comprised by 
some noise signals and the shape of the signal thus tends to be peak. The distribution 
of defective signal has more wide amplitude so the variance is bigger than that of 
normal. It can be shown from Figure 1. The left figure in Figure 1 is from normal 
signal of a bearing and the other one from defective signal from the same bearing. It is 
evident that the defective signal differs from normal signal and it has wider variance.   
 

 
Figure 1. Normal and Defective signal 

Therefore, it is straightforward to be reminded that the Mean and Variance Ratio 
(MVR) could be a feature to discriminate both defective and normal condition signals. 
The definition of  MVR is: 
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MVR                                            (6) 

Obviously, MVR is also a non-dimensional feature independent of signal power.  
MVR implies the degree of scatter for the distribution of signal amplitude.  

2.4 Symbolized Sequence Shannon Entropy 
 
All the features described in Table 1 are statistical features. These features consider 
statistical characteristics of the amplitude distribution; however, in all of these 
features, the information on the spacious pattern of the amplitude is lost. For example, 
for rolling element bearing, when defect exists, the amplitude tends to be periodic and 
however this periodicity can not be reflected in the statistical features. Figure 2 shows 
a simple example to verify this argument. This figure is comprised by 100 samples. 
The amplitude of each sample is comprised by {1,2,3,4} and each value has identical 
probability of appearance. The upper figure and the lower figure in Figure 2 are 
plotted by same samples, but with different spacious distribution. In the upper figure, 
the signal is periodic where the amplitude is distributed deterministically with a 
sequence of 1234, 1234,… iteratively. In the lower figure, the amplitudes are 
randomly distributed.     

 
Figure 2. Periodic Signal and Random Signal 

From the Figure 2, it is evident that both signals are different. However their 
statistical features are the same, i.e. the statistical features are not able to discriminate 
them.  
 
The Shannon entropy has been known as a parameter capable to measure the 
uncertainty of a random process. Rolling element bearing without defect tends to 
generate a more random signal, while the machine with existing defect usually tends 
to have more deterministic signal, i.e. their Shannon entropy will be different. To 
extract the periodicity in the signal, a feature named Symbolized Sequence Shannon 
Entropy (SSSE) is used. In this feature, the signal is firstly symbolized and then the 
Shannon entropy is used. This SSSE has been used to detect weak signal in other 
research fields [18, 19]. This paper uses the SSSE to diagnose fault for vibration 
signal for rolling element bearing. The procedure for SSSE calculation is:  
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1. Discretize the signal. A threshold is predefined. The amplitude below the 
threshold is coded as 0 and the above is coded as 1. Thus the signal is 
discretized into a binary sequence, which is denoted by  

,...,...,, 321 ibbbb  

2. Segment the binary signal with equal length L. For example, segment the 
binary sequence 110010010 into 110, 010, 010 with length L=3. Calculate the 
decimal value of each segment. It is “6”, “2” , “2” in this example.   

3. Calculate the probability of each segment. The probability is considered as the 
frequency. For “6” in this example, it is 1/3 and for “2” it is 2/3. 

4. Calculate the entropy using the following  Shannon entropy formula: 

i
ii pp

N
log

log
1H                              (7) 

The is the total number of unique segmented binary sequence. The is the 
probability of the ith kind of the unique sequence. 

N ip

 
In a periodic signal, some sequences will occur frequently so the Shannon entropy 
will be lower. Therefore, the Shannon entropy values vary with different acquired 
data so it can be used as feature to measure the characteristics of a signal. For a pure 
random data, the Shannon entropy value is 1. For deterministic signal, the entropy is 
between 0 and 1 [19]. The more deterministic is the signal, the lower its SSSE value.  
Using the above procedure, for the example of Figure 2, the SSSE of periodic signal 
(upper in Figure 2) is 0 and that of the random signal is 0.905 (lower in Figure 2). 
These two signals can be significantly discriminated. Similarly different defect in 
rolling element bearing can be discriminated attending to the randomness existing in 
the acquired signals.   

2.5 Simulation of feature performance 
 
Similarly to the method discussed by Heng and Nor [14], where the authors discuss 
different features by using simulation signals, this paper simulates various signals to 
test the performance obtained with different features. The simulated signals are shown 
in Figure 3. 

 
Figure 3. Simulated Signals 

The feature values are shown in Table 2 for the signals shown in Figure 3. For the 
different signals, their feature values differ. This means these features can 
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discriminate these signal. The feature SSSE is excellent to discriminate deterministic 
signal and noise signal. The SSSE shows a small value around 0.1 for the 
deterministic signal, such as Square, Sin, Triangle, but for the for random signals, 
such Gaussian random and uniform random, the SSSE values are large above 0.9.  

    Table 2. Time Domain Feature Values for Simulated Signals 
Signals Kurtosis Crest factor NNNL MVR SSSE Shape Clear 

Square 1.0866 0.059 3.02 20.42 0.12 1.00 0.06 
Triangle 1.8 0.87 0.69 1.73 0.19 1.15 1.12 
Sin 1.93 0.71 0.83 2.07 0.26 1.11 0.86 
N(0,1) 3.91 2.08 0.50 1.32 0.90 1.25 3.07 
U(0,1) 1.79 0.86 0.70 1.74 0.91 1.15 1.12 
Sin+N(0,0.1) 1.97 0.95 0.81 2.02 0.46 1.11 1.17 
Sin+N(0,1) 3.33 1.78 0.52 1.35 0.90 1.24 2.60 

Note: N(0,1) denote normal distribution with mean 0 and variance 1, U(0,1) denotes uniform distribution ranged in 
[0,1]. 

 

To test noise sensitivity, one experiment has been done with the sinusoidal signal. 
Two white Gaussian noise N (0,0.1) and N(0,1) have been added to the same 
sinusoidal signal respectively. The results, shown in Table 2, show that all the time 
domain features differ so it unfortunately implies that time domain is sensitive to 
noise.  

3. Feature Selection 

3.1 Noise feature removal using Separation Index 
 
This paper extracts several features from time domain. Some features may not 
contribute to the fault diagnosis and even degrade the performance of the diagnosis. In 
order to remove these non significant features or noise features, an index named 
Separation Index is used to define the significance of features [16].   
 
For the sake of simplicity, each feature value is called a sample in this section. If two 
signals are presented to be compared, let dm and hm denotes the mean of samples, 

and  denotes standard deviation. Kim et al. developed one Separation Index (SI) 
as [10] 

dS hS

hd

hd

SS

mm
SI                                                       (8) 

This separation index is used defining the separability of features. This paper has 
improved this SI to gain a better statistical property. The new SI, which is called 
Extended SI (ESI), as: 

22
h

hd

SS

mm
SI

d

                                                    (9) 

Assume the samples are normal distribution and the number of sample size from each 
signal is equal with n . The quantity nSI  can be test its significance using t-test. 
That is, when  
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vtnSI ,                                                          (10) 

 the dm and hm has significantly difference, where is significance level and is 
degree of freedom. The in Inequality (10) is:  

v
v

2

2

1
)1()1(

u
nuv                                                  (11) 

where . The statistical proof of this can be found in reference [20]. 22 / hd SSu
 
The t-test proposed above assumes that the sample size is equal from both sides. For a 
problem with unequal sample size, one can use the same Separation Index but the t-
test is different from Formula (11). One can refer to the reference [20] for more detail 
for the unequal sample size t-test.  
 
The significance of the difference between two signals then has more statistical 
foundation by using ESI. This is the advantage of the new proposed separator index. 
This ESI can be used to remove noise feature. For example, when the feature values 
from two signals are tested significantly different, the feature will be retained; 
otherwise they should be excluded from further consideration.  

3.2 Feature Subset Selection 
 
The ESI can be used to remove some noise feature in the initial step of feature 
selection. Feature subset selection is to select the compact optimal feature set. The 
feature subset selection is necessary as features are possibly correlated or redundant. 
There are numerous methods available to perform subset selection [21] however the 
simplest one is the exhaustive method. This method enumerates all the subsets and 
selects the one with highest performance, for example the highest fault diagnosis 
accuracy, as the optimal. This exhaustive method is computational cost, as for a 
number of  features, there have as much as subsets, therefore, the exhaustive 
method is only suitable for small number of features. The advantage of the exhaustive 
method is a global optimal solution can be obtained. The detailed procedure of 
performing feature selection in this paper is shown in Figure 4.            

n n2

n2

 
Figure 4. Feature Selection Procedure 
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4. Pattern Recognition using SVM 

The standard SVM is a binary classifier classifying two classes of objects. To 
accommodate the multi-classes problems, as the problem shown in Figure 5, one has 
to extend the standard SVM. One solution is to combine several binary SVMs 
together. One-Against-All multi-class SVM is one of them.   

 
Figure 5. Three-Classes Classification Problem 

The One-Against-All method transforms the k-class problem into a sub binary 
classification problem. The sub binary classification problem labels the indicator of 
data sets belong to the class with 1 and label all the remaining data sets with -1 so 
the binary SVM is formulated as [22]: 
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where  denotes the training data, l  is the total number of training 
data sets. The is the input of the SVM, which is the feature vector in this paper. 
The  is the output of the SVM which is the indicator of the category 
(class).  The vector

),(),...,,( 11 ll yxyx

ix
},..3,2,1{ kyi

i  is the coefficient for vector )( jx . b is the threshold.  
 
Each sub binary SVM has one decision function. For a k-Classes SVM, one hence can 
obtain  decision functions:  k
                                           11 )()( bxT

                                         … 
kTk bx)()(                                          (13) 

The predicted class for x  is the class with largest decision function value, as 
illustrated in Figure 6. It is:  

))()max((arg iTi bxi                        (14) 
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Figure 6. Multi-Class SVM 

SVM is a kernel method which depends on the kernel function [23, 24]. Before one 
uses the SVM for pattern recognition, one should select a proper kernel function. The 
discussion on kernel function is omitted as it is not the concern of this paper. The 
motivation to select the SVM for fault diagnosis is because the decision function is 
flexible as it can be linear or nonlinear depending on the kernel function.  

5. Numerical Case 

5.1 Data Description 
 
This numerical case uses the public bearing data which is collected from a test rig in 
Case Western Reverse Lab [25]. In this rig two bearings are installed which are 
located at the end of the driver and fan respectively. Artificial defect are introduced to 
the inner race, outer race and ball in the bearings. Figure 7 shows a bearing picture 
with defect in inner race.  

  
Figure 7. Defect in Inner Race 

The vibration data is collected by accelerometers attached to the housing with 
magnetic bases. The data using in this case is from the bearing located in the driver 
end which is a signal sampled at 12 kHz as shown in Figure 8.  

 
Figure 8. Normal and Ball Defect Signal 
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5.2 Performance of individual feature 
 
The raw signal is divided into several non-overlapping segments using a fixed 
window size. The window size used in the case study is 3000 for each segment which 
is more than the minimal requirement 296lenw  suggested by following Inequality 
[17]: 

BDF

s
f

f
lenw .4

                                                           (15) 

where denotes the sampling frequency and denotes the fault frequency, for 
example the ball pass frequency on the inner race.  

sf BDFf

 

The signals used are a normal bearing signal and ball defective signal shown in Figure 
8. Features extracted from time domain are: MVR, SSSE, NNNL, Kurtosis, Crest 
Factor, Clear Factor, Impulse Factor, Shape factor. All these features are non-
dimensional features. By using the t-test described in Section 3.1, the feature SSSE is 
significantly equal for the two signals so it is removed for consideration in this 
comparison. The ESI value is computed by Eq(9) and is compared with the accuracy 
obtained by simplest linear polynomial function SVM, as shown in Table 3, where the 
0.8, 0.6, 0.5 means the ratio selected as training data, the remaining data sets are test 
datasets. The selection of the data sets is random and each ratio is repeated 30 times. 
The number listed in Table 3 is the mean of the 30 runs.  
 

Table 3. Accuracy using Single Feature 

Features Kurtosis Shape Clear NNNL MVR Impulse Crest 

SI 1.17 1.01 0.92 1.01 1.01 0.89 0.84 

Accuracy(%) for Ratio 0.8  88.17 84.6 85 83.75 81.75 74.33 64.84 

Accuracy(%) for Ratio 0.6 86.29 84 84.04 82.75 80.79 74.71 68.83 

Accuracy(%) for Ratio 0.5 86.14 83.91 83.80 82.71 80.27 75.24 68.03 

 

As shown in Table 3, the higher ESI implies the accuracy tends to be higher. The 
Kurtosis has the highest ESI, so the accuracy is also the highest. The ESI of the Crest 
is the lowest, the corresponding accuracy also lowest. This alignment implies the 
efficiency of ESI as a feature performance indicator.  

5.3 Fault Diagnosis using MSVM 
 

There are tree types of defects introduced in the inner race, out race, ball of the 
bearing. Therefore, including normal state (bearing without defect), four patterns are 
needed to be discriminated: normal, inner race defect, outer racer defect, and ball 
bearing defect. Multi-SVM is used to recognize these patterns. Segment the signal 
obtained from accelerometer sensors and use the t-test proposed in Section 3.1 to filter 
noise feature. The test results show that except feature SSSE, all the other features are 
significantly difference. The SSSE fails to pass the t-test between normal and ball 
defect. However, the SSSE is significant different between other signals. Therefore 
this feature is still kept in the feature selection. As a consequence, the input of SVM is 
the vector of feature values: MVR, NNNL, Crest Factor, Clear Factor, Impulse Factor, 
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Shape factor, Kurtosis, SSSE. The output of the SVM is the status of the bearing: 
Normal, Inner Race defect, Ball defect, Outer race defect. 

5.3.1 Pattern recognition using MSVM 
 

The polynomial function as written follows is selected as kernel function [26, 27]: 
dxxxxK )1,(),( ''                                    (16) 

The parameter d above is a predefined parameter. When d=1, the SVM is a linear 
classifier; When  it is nonlinear. The higher of d, the more flexible of the SVM 
classifies the data; whereas a too flexible classifier is prone to occur “overfitting” 
phenomenon [28], which means a classifier has low train error but have a high 
prediction error. The Figure 9 shows the “overfitting” phenomenon. In this figure, the 
training accuracy is always increasing with d. This means increasing the order can 
always improve the training accuracy as the classifier becomes more flexible. After 
d>4, the training accuracy reaches 100%. However, the test accuracy is not increasing 
with d, inversely it deceases with the order when 

d 1

4d . The higher order d turns out 
to have lower test accuracy. This is the “overfitting” phenomenon. The highest test 
accuracy in the figure is order d=1. Therefore, in this case, d=1 is selected for the 
polynomial kernel function.       

 
Figure 9. Performance of Various Kernel Parameters  

Divide the data extracted from signals at ratio 0.8, 0.6, 0.5 respectively and the first 
part is used for training, the second for test. To reduce randomness, the division of 
data for training and test are also random and each subset has been ran 30 times. 
Utilizing the approach mentioned in Section 3.2 selects the optimal subset features. 
The resulting optimal subset and its diagnosis accuracy, that is the mean of the 30 
runs, are shown in Table 4.  

Table 4. Optimal Subsets and Their Accuracy 

Features Kurtosis Crest Clear Impulse Shape NNNL MVR SSSE Accuracy%
    / /   98.71 Ratio 0.6 
      /  98.30 
 /    / /  98.55 Ratio 0.5 
   / /  /  97.95 
 /    / /  99.50 Ratio 0.8 
   /     99.25 

Note: “ ” denote the feature in the subset, “/” denote not in the subset 
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All the optimal subsets include feature Kurtosis, SSSE, Impulse and Shape. These 
four features are common features in the subsets having highest accuracy. The feature 
MVR is also in the optimal subset of Ratio 0.6, which means it is a good candidate 
feature for time domain fault diagnosis. Moreover, the proposed new NNNL is also 
important. The second row for each ratio in Table 4 list the subsets containing NNNL, 
which have accuracy very close to the highest accuracy. Nonetheless, the Kurtosis and 
SSSE are the most incredible in this case.  
 
All the statistical features contain only the amplitude distribution of the signal. The 
information about the spacious distribution of the signal has lost. This lost can be 
proved in the simulated example in Section 2.4. However, the feature SSSE considers 
the spacious distribution information but it loses the amplitude distribution 
information. In this sense, the SSSE and the statistical features are complementary. 
Therefore, combining the statistical features and the SSSE could achieve higher 
diagnosis accuracy, which can be verified from the results in Table 4.  

6. Conclusion 

The fault diagnosis on rolling element bearing is mostly on frequency domain. This 
paper proposes an approach on time domain. The feature on time domain is less 
dependent on the machine load and rotation speed, and when the defect is in its early 
stage, the defect frequency is insignificant and diagnosis on time domain is necessary. 
The numerical case shows the diagnosis on time domain is feasible. 
 
The feature SSSE shows incredible in the numerical case thus it shows its 
effectiveness used for fault diagnosis. The new feature NNNL has also shown its 
importance as using this feature the diagnosis accuracy is high as well. The proposed 
MVR is in the optimal subset so it is a feature of importance for the diagnosis. The 
SSSE is complementary with the other statistical features and thus combining them 
can have a good fault diagnosis result. This can be verified from the bearing case.   
  
The proposed Extended Separation Index shows its efficiency in the bearing case. In 
the bearing case, the higher ESI implies the higher diagnosis accuracy. Moreover, the 
MSVM used in this paper shows its flexibility by adapting itself to data. By tuning the 
order in the Polynomial kernel function, the SVM can be linear or nonlinear. In the 
bearing case, it finally uses the simplest linear Polynomial kernel function that shows 
better performance than the more complex nonlinear Polynomial kernel function.  
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