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Abstract: The Proportional Intensity Model (PIM) extends the classical Proportional 
Hazard Model (PHM) in order to deal with repairable systems. This paper develops a 
more general PIM model which uses the imperfect model as baseline function. By using 
the imperfect model, the effectiveness of repair has been taken into account, without 
assuming an “as-bad-as-old” or an “as-good-as-new” scheme. Moreover, the effectiveness 
of other factors, such as the environmental conditions and the repair history, is considered 
as covariant in this PIM. In order to solve the large number parameters estimation problem, 
a Bayesian inference method is proposed. The Markov Chain Monte Carlo (MCMC) 
method is used to compute the posterior distribution for the Bayesian method. The 
Bayesian Information Criterion (BIC) is employed to perform model selection, namely, 
selecting the baseline function and remove the nuisance factors in this paper. In the final, a 
numerical example is provided to demonstrate the proposed model and method. 

Keywords: Proportional intensity model (PIM), imperfect repair model, intensity function, 

Markov Chain Monte Carlo (MCMC) method, model selection. 

1.   Introduction 

A repairable system can be defined as a system which is in continuous operation, and 
which is repaired, but not replaced, after each failure [1]. Intensive research has been 
performed to address the problem of determining the reliability characteristics of 
repairable systems, using models based on the Homogeneous Poisson Process (HPP), the 
Non-Homogeneous Poisson Process (NHPP), and the imperfect repair model etc. Such 
models have been proven successful in engineering. However, the weakness of such 
models is also criticized by some researchers. As Ascher and Feingold have mentioned, 
most probabilistic models in the field of reliability have been simplified highly and are 
based on unrealistic assumptions. Most models consider only one variable, namely the 
operating time. However, in some situations, the operating time is not the only effective 
factor influencing reliability, some factors such as the environment, repair history, load 
etc., will also affect reliability greatly [2].  
     The Proportional Hazard Model (PHM) is one important model which can take the 
above-mentioned factors into account. The PHM was initially developed for the medical 
industry [3]. This model comprises two parts. The first part is called the parametric model 
or baseline function, where the exponential distribution or the Weibull distribution can be 
used. The second part is called the covariant part. This part accommodates all the 
covariates, such as the environmental factors, the repair history factors, and so on. Kumar 
has carried out a thorough survey on the PHM [4, 5]. However, the PHM is suitable for 
non-repairable systems. When one replace the baseline function with an intensity 
function, the PHM is extended to the Proportional Intensity Model (PIM), by which the 
problems of repairable systems can be addressed [6]. 
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     For repairable system, Guo and Love have developed a series of PIMs [7, 8]. These 
models assume that the system undergoes Preventive Maintenance (PM) and Corrective 
Operation (CO). After each PM action, the system is assumed to be restored to an as-
good-as-new state. Hence the system in each PM periods can be considered as a new 
identical system. This assumption facilitates parameter estimation for covariates. Based on 
this assumption, one can use the partial likelihood method to estimate the covariant 
parameters, regardless of the baseline function [9]. This is one of the significant 
characteristics of the PHM. However, when no identical systems are observed, this 
parameter estimate method is not feasible.  
     In state-of-the-art applications, some NHPP models are usually used as the intensity 
function in PIM [7, 8]. The NHPP assumes that, after repair, the system is restored to a 
same-as-old state. Guo et al. argue that this assumption is rarely satisfied in practice [10]. 
In the present paper, we employ the imperfect repair model instead of the NHPP model as 
the baseline function.  
     In our paper, we assume that the operating conditions are invariant between each repair 
and that no PM is carried out on the system. As no identical systems are observed, the 
partial likelihood estimate method cannot be applied to this case. We propose a Bayesian 
method to perform parameter estimation. In the Bayesian method, an MCMC method 
based on slice sampling is used to approximate the posterior distribution.        
     In the remaining of this paper, Section 2 discusses the model development 
incorporating imperfect model into PIM. Section 3 discusses the parameter estimate for 
the developed model. Section 4 presents a numerical example. Section 5 presents the 
conclusion and discusses the limitation of this proposed model.     

Notation 

nV  Virtual age at failure n 

q  Repair factor 

nx  Inter-arrival time between nth and n-1th failure 

0λ  Intensity function without covariate 

λ  Intensity function  of PIM model 

z  Covariant such as repair history, repair history 
γ  Coefficient of covariant 

F  Failure probability 

R  Reliability 

f  Probability density function (PDF) 

nt  The nth Failure time 

α  Scale parameter in power law model 

β  Shape parameter in power law model 

L  Likelihood function 

D Observed failure data 

),( 21
kkG  Gamma distribution with parameter  

1
k and 2k  

(...)U  Uniform distribution 
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(...)N  Normal distribution 

(...)π  Distribution in Bayesian inference 

k  Number of parameters in BIC 

PIM Proportional Intensity Model 
PHM Proportional Hazard Model 
PM Preventive Maintenance 

CO Corrective Operation 
HPP Homogeneous Poisson Process 
NHPP Non-Homogeneous Poisson Process 
MCMC Markov Chain Monte Carlo 
BIC Bayesian Information Criterion 
OPSK operator skill 
HOILQ hydraulic oil quality  
SCSK maintenance crew skill  
STEMP hydraulic system temperature  
ENDUS environmental conditions 

2.   Imperfect Repair Model with Covariates   

2.1 Virtual Age Model 

It is assumed that the system is rejuvenated after each repair. The effectiveness of each 
repair is represented by a reduction of the experienced age. Such imperfect repair models 
are called virtual age models in state-of-the-art research. The Kijima I and Kijima II 
models are two important representatives of such models [11].    
 
The Kijima I model is described as:  

nnn qxVV += −1                                                                  (1) 

where nx  denotes the inter-arrival time between nth and n-1th failure, nV  and 1−nV  

denotes virtual age at the respective nth and n-1th repair. q  is the important imperfect 

repair factor, which accommodates the degree of repair effectiveness. Usually, q  is 

bounded within a range [0,1].  
     The corresponding Kijima II model is 

 )( 1 nnn xVqV += −                                                            (2) 

In both Kijima models, 0=q  implies the system has been restored completely. The 

virtual age model is hence degenerated into a renewal process model. When 1=q , the 

virtual age model is degenerated into a NHPP model.     
 
For the sake of simplicity, we describe the Kijima models as a function:  

),( 1 nnn xVfV −=                                                             (3) 

2.2  Proportional Intensity Model with Covariates 

Assume the system is experiencing imperfect repair. Let the intensity function of this 

system under imperfect repair represented by );(0 qtλ , the corresponding PIM model 
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represented by );,( qztλ . Similar to the classical Proportional Hazard Model[3], we 

propose our PIM as follows:  

)...exp();();,( 3322110 bzzzqtqzt +++= γγγλλ                   (4) 

For simplicity, we rewrite Formula (4) as:  

)}(exp{);();,( 0 zfqtqzt λλ =                                          (5) 

where bzzzzf ...)( 332211 +++= γγγ .  

     In this paper, we assume the covariant between each failure are constant and the 
covariant vary from each failure inter-arrival time. Based on this assumption, the original 
intensity function, without imperfect repair and with constant operation condition, is 
shifted horizontally due to imperfect repair. Furthermore, due to the variability of 
operating conditions, the original intensity function would be shifted vertically. This 

scenario is illustrated in Figure 1, where the );,( qztλ  is shown not continuous. 

it

);,( qztλ

1+it jt  

Figure 1: Effect of Imperfect Repair and Operating Conditions 

The covariates can be some environmental factors such as temperature, humidity, dust etc. 
Moreover, as Ascher has claimed [2], the repair history can also influence the repair rate. 
Thus the covariates can be some factors regarding repair history. Percy et al. has 
developed a PIM that considers the repair history factor [12]. In their model, they consider 
repair history data such as: the time since the last PM, CO, the total number of PM actions 
and Cos, as covariates. In their paper, the factors regarding repair history are significant. 
Therefore, considering the influence of the repair history is necessary in some situation. 
Moreover, the covariates can incorporate some condition monitoring data.  

2.3 Cumulative Distribution Function of PIM 

Based on the previous failure occurrence, the conditional probability of the next failure 
can be obtained from [13]:  
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Substituting Formula (5) into (7), then 

∫−

−
−−=
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                                          (8) 

The corresponding Probability Density Function (PDF) is: 
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2.4  PIM under Power Law Process 

In this paper, we assume the original intensity function as NHPP. As mentioned before, 
the NHPP is widely used in modelling repairable systems. NHPP assumes that the 
successive failures of a system are independent of each other. In other words, the 
accumulative number of failures has independent increments.  
     The most popular of NHPP models are Power Law Process Models and Cox-Lewis 
model [14]. The Power Law Process Model defines the intensity function as a power 
function and the Cox-Lewis model defines it as a log-linear function. This paper uses the 
Power Law Process model as original intensity function.  
     The definition of the Power Law Process model is as follows [15, 16]:  

                                         
1)()( −= β

αα

β
λ

t
t                                                    (10) 

where α  is scale parameter, β is shape parameter. 

     Based on Power Law Process, when the Kijima I model is used to accommodate the 

effectiveness of repair, the intensity function );,( qztλ  is described as:  

)...exp()();,( 332211

1

1

0 bzzz

xxq

qzx iii

i

i

l

l

i +++

+

= −

−

=

∑
γγγ

αα

β
λ β     (11) 

where we assume 00 =x . 

     When the Kijima II model is used to accommodate the effectiveness of repair, the 

intensity function );,( qztλ  is: 

)...exp()();,( 332211

11 bzzz
xV

qzx iii
ii

i +++
+

= −− γγγ
αα

β
λ β       (12) 

where 1−iV  is defined in Equation (2) and we assume 00 =V .  

3.  Parameter Estimation and Inference 

When the number of covariant considered is large, estimating their corresponding 

parameter iγ is also difficult. As there are no identical systems observed, the popular 

partial likelihood method cannot be applied [17]. In this section, we propose a Bayesian 
method to estimate parameter.   

3.1  Likelihood Function 

In this paper, the parameters of interest are iq γβα ,,,  (i=1,2,… ). Assume the failure 

time is nttt ,...,, 21 , the corresponding covariates are nzzz ,...,, 21 . The PDF based on the 

intensity function in Formula (11) is then: 
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The corresponding likelihood function is then rewritten into: 

∏
=

−=
n

i

nni ttfqL
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1)/(,...),,,( γβα                                  (14) 

When the Kijima I model is used, the corresponding Lln  is:  
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The corresponding Kijima II model is similar to above Formula (15), we omit the 
expression here. 

3.2  Bayesian Estimator 

When the number of parameters is larger, one can employ Bayesian inference to estimate 
parameters [19]. The Bayesian estimator considers the parameter as a variable instead of a 
constant. The Bayesian likelihood function is:  

∏
=

−∝
n

i

nn ttftL
1

1)/()(                                           (16) 

where )/( 1−nn ttf  is defined in the Formula (13) . 

Using the observed “time to failure” data D: nttt ,...,, 21 , the joint prior likelihood 

function is  

∏
=

−=
n

i

nn ttfqDL
1

1)/(),,,|( γβα                              (17) 

One import step to perform Bayesian inference is the selection of the prior distribution for 
each parameter. We use non-informative priors to estimate parameters in this paper. 
Similarly to the prior used by Hamada et al. [20], we employ a Gamma distribution as the 
prior distribution for the scale and shape parameters. For the imperfect repair factor q, we 
use the standard uniform distribution. The prior for the coefficient of the covariate is 
selected as normal distribution. In summary, the prior distributions are assumed to 

be: ),(~ 21 αα kkG
a

, ),(~ 21 βββ kkG , )1,0(~ Uq , ),(~ ∑ γγγ µγ N . 

),( 21 αkkG
a

 is the Gamma distribution with parameters 2,
1 αkk

a
 for scale parameter α . 

),( 21 ββ kkG  is that for shape parameter β  with parameters 21, ββ kk . ),( ∑ γγγ µN  

denotes multinomial Normal distribution of covariate coefficient with mean vector γµ  and 

covariate matrix ∑ γ .  
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The corresponding joint posterior distributions are 
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The posterior distribution is a complex compound. We employ an MCMC method with a 
slice sampler to compute the posterior distribution. One can refer [19] for the theoretical 
discussion of the MCMC method.    
     The result of the MCMC estimation will be series of traces. The estimated parameter 
values of interest are derived from these series of traces. One can refer [20] for the 
procedure of obtaining the mean, variance and confidence interval from the series of 
traces.  

3.3 Model selection 

In Bayesian inference, model selection is a broad term. In this paper, the model selection 
covers the selection of a suitable baseline function and the removal of nuisance factors. 
Before we discuss the detailed procedure of model selection, we introduce a method for 
assessing the performance of the model. The Bayesian Factor is usually used to measure 
the goodness of models [19]. Yet the Bayesian Factor (BF) is difficult to be obtained 
practically. When the number of parameters is known, usually an approximate of the BF is 
used, namely the Bayesian Information Criterion (BIC). The definition of the BIC is as 
follows: 

nkDLBIC ln),..,(ln2 +−= βα                                     (19) 

where k is the number of parameters, n is the size of data sets. The models with a lower 
BIC are more preferable. 
     In this paper, we firstly employ the Bayesian MCMC method to estimate the 
parameters considering all covariates and then compute the confidence interval of the 

estimated parameters. All the covariates whose confidence interval of its iγ cover zero 

will be removed. After that, we re-estimate the parameters for the reduced covariates 
again. This procedure is performed iteratively until no covariate cover zero.  

4.  A Numerical Example 

In order to demonstrate the methodology proposed above, we introduce an example which 
has been discussed by Ghodrati and Kumar [21]. The hydraulic brake pump is a critical 
part of the hydraulic loader. It is known that the following factors can influence its 
reliability: the operator skill (OPSK), maintenance crew skill (SCSK), hydraulic oil 
quality (HOILQ), hydraulic system temperature (STEMP), and environmental conditions 
(ENDUS). Our paper uses the data in Table AI from their paper [21].  
     Several PIM models were applied to model the intensity function considering 
covariates. They differ at their baseline function: models based on the NHPP and the 
Weibull distribution, and the Kijima I and Kijima II models, which are imperfect repair 

models.  The Weibull distribution-based model essentially assumed that 0=q  and hence 

assumed that the repair effectiveness restored the system to an as-good-as-new state. The 
NHPP-based model assumed that the repair effectiveness restored the system to a same-
as-old state.  
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     The repair history was also taken into account in the model. The number of repairs 
experienced was used as a covariate for the PIM, which is abbreviated as CO. In 
summary, 5 covariates were considered initially. It was assumed that these covariates 
were independent of each other. We developed our model based on Equation (4). 

Thereafter we employ Bayesian method to estimate parameter iq γβα ,,, . The prior 

distribution was assumed to be: )2,3(~ Gα , )2,2(~ Gβ , )1,0(~ Uq , 

)100,0(~ Niγ .   

      Using MCMC method, after 2000 “burn-in” iterations, 3000 iterations were in a 
stationary state. The mean, standard deviation, and confidence interval for the parameters 
of interest were derived from the traces which are in stationary state. The parameters with 
a confidence interval covering zero were considered insignificant. After removing all the 
insignificant factors, we re-evaluated the parameter. All the confidence intervals of the 
remaining covariates excluded zero. The results using different models are tabulated in 
Table 1. 

Table 1: Results using Several Models 

Baseline Function Model Covariates BIC 

NHPP 

No covariate / 104 

Full covariates 
1γ 2γ 3γ

4γ 5γ 6γ
 

111 

Reduced covariates 
1γ 2γ 3γ 6γ

 
106.7 

Kijima I 

No covariate / 120 

Full covariates 
1γ 2γ 3γ

4γ 5γ 6γ
 

62 

Reduced covariates 
1γ 2γ 3γ

4γ 6γ
 

59.66 

Kijima II 

No covariate / 95.6 

Full covariates 
1γ 2γ 3γ

4γ 5γ 6γ
 

57 

Reduced covariates 1γ 2γ 4γ
 

54 

Weibull Distribution  

No covariate / 292 

Full covariates 
1γ 2γ 3γ

4γ 5γ 6γ
 

63.36 

Reduced covariates 
1γ 2γ 4γ 6γ

 
58.92 

 
From Table 1, it shows that the NHPP-based series of models and models without 
covariates are not suitable for the data, as the BICs are all high. Therefore, the assumption 
of restoration to a same-as-old state is not reasonable and some covariates should be 
incorporated into the model. The Kijima I and the Weibull distribution-based models 
exhibit a similar performance in this application. The reason behind is that, when the 

Kijima I model is used, q  is near zero. Therefore, the effectiveness of q can be 

considered as restoring the system to an as-good–as-new state.   

     The best model is the Kijima II based PIM model with the covariates 
1γ 2γ 4γ , 

corresponding to BIC=54. The detailed results for this model are tabulated in Table 2 
where SD is standard deviation.   
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Table 2: Evaluated parameter values 

Parameter Mean SD 
Lower bound 

(0.025) 
Upper bound 

(0.975) 

Scale Parameterα  3.7878 0.2833 3.2936 4.41 

Shape Parameter β  7.83 1.29 5.5 10.6 

Imperfect Repair Factor q  0.099 0.0394 0.0260 0.1838 

OPSK 1β  -2.584 0.6212 -3.81 -1.55 

SCSK 2β  -0.978 0.3722 -1.71 -0.27 

STEMP 4β  -1.51 0.4155 -2.3538 -0.6831 

In the optimal PIM model, the mean for q  is 0.099. In order to demonstrate the 

effectiveness of repair, we plot its intensity function against time with 0.099=q , as 

shown in Figure 2, where the intensity function is for the 14th to the 17th failure. We can 
see from this figure that repair is significantly effective as the system’s intensity function 
has almost been restored to zero after each repair.  

 
Figure 2:  Effectiveness of Repair 

Moreover, in the optimal PIM model, the remaining significant factors are: OPSK, SCSK 
and STEMP, which are all significant at level 0.05. To illustrate the effectiveness of these 
factors, we take the factor STEMP as an example. Figure 3 plots the 95% confidence 
interval of the intensity function, when STEMP is 1 and the other covariates are zero. 
Both the upper bound and the lower bound are under the “No Covariate” curve. It implies 
that under the higher STEMP, the system has higher reliability than the normal STEMP.    
     Additionally, in order to compare the effectiveness of all 3 factors on the system 
reliability, Figure 4 is plotted. In Figure 4, intensity function “OPSK” supposes the OPSK 
to be 1 and the other factors are 0. The other curves for factor STEMP, SCSK follow this. 
This figure shows the effectiveness of the 3 factors on reliability follows the order: 
OPSK> STEMP > SCSK. The factor OPSK influences the system reliability most 
significantly.  
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Figure 3: 95% Confidence Interval for Intensity Function 

 

 
     Figure 4: Sensitivity of Significant Factors  

CO, which represents the repair history in this example, is insignificant in this optimal 
PIM model. This does not mean that the repair history can be neglected. In some other 
situations, considering the repair history is still necessary.  
     Finally, it is necessary to mention that Liao has developed an imperfect repair model 
that considers the cumulative number of failures as a covariate [22]. He argues that his 
imperfect repair model can outperform any other imperfect repair model. Essentially, the 
imperfect repair PIM model proposed in our paper has generalized that presented in 
Liao’s paper. In our model, not only the cumulative number of failures, but also any 
factors relevant to failure can be accommodated as covariates.  

5.  Conclusions 

This paper has proposed a model that combines the imperfect repair model and the 
proportional intensity model. Using this proposed model, the effectiveness of repair and 
covariates are incorporated into the model. The paper essentially provides a framework 
for accommodating all possible factors into a model to analyze their effectiveness. These 
factors could be the operating conditions, the environmental fluctuation, and the repair or 
maintenance history etc. The introduction of a large number of factors into the model 
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complicates the estimation of parameters. In contrast to some PIMs considering several 
identical systems existing, where the partial likelihood estimator can be used, the paper 
employs a Bayesian inference method based on MCMC estimation. This parameter 
estimator does not require identical systems.  
     One limitation of the present research is the fact that the factors are assumed to be 
mutually independent. In practice, especially when the repair history factor is considered, 
some factors can be highly correlated. The interaction between factors should therefore be 
considered. Another limitation of this paper is the fact that the covariates are assumed to 
be time-independent. Further research will extend this proposed model to consider time-
dependent factors.      

References 

 
[1] Crow, L. H.  Reliability Analysis for Complex, Repairable Systems, ARMY MATERIAL 

SYSTEMS ANALYSIS ACTIVITY A692020, 1975. 
[2] Ascher, H. and H. Feingold, Repairable Systems Reliability : Modeling, Inference, 

Misconceptions and their Causes. M. Dekker, New York, 1984. 
[3] Cox, D. R. Regression Models and Life-tables, Journal of the Royal Statistical Society, 

1972;  34(2):187-220. 
[4] Kumar, D. and B. Klefsjo, Proportional Hazards Model-A Review, Reliability 

Engineering & System Safety, 1994; 44(2): 177-188. 
[5] Kumar, D., Proportional Hazards Modeling of Repairable Systems, Quality and 

Reliability Engineering International, 1995; 11(5): 361-369. 
[6] Lugtigheid, D. Banjevic and A.K.S. Jardin, Modeling Repairable System Reliability with 

Explanatory Variables and Repair and Maintenance Actions, IMA Journal of 
Management Mathematics, 2004; 15(2):89-110. 

[7] Love, C. E. and R. Guo, Application of Weibull Proportional Hazards Modeling to Bad-

as-Old Failure Data, Quality and Reliability Engineering International, 1991; 7(3):149-
157. 

[8] Love, C. E. and R. Guo, Using Proportional Hazard Modeling in Plant Maintenance, 
Quality and Reliability Engineering International, 1991; 7(1):7-17. 

[9] Cox, D. R. and D. Oakes, Analysis of Survival Data. Chapman and Hall, New York, 1984. 
[10] Guo, R., H. ASCHER and E. Love et al., Generalized Models of Repairable Systems: A 

Survey via Stochastic Processes Formalism, ORiON, 2000; 16(2):87-128. 
[11] Kijima, M. and U. Sumita, A Useful Generalization of Renewal Theory: Counting 

Processes Governed by Non-Negative Markovian Increments, Journal of Applied 
Probability, 1986; 23(1):71-88. 

[12] Percy, D. F. and K. A. H. Kobbacy, Using Proportional-intensities Models to Schedule 

Preventive Maintenance Intervals, Journal of Mathematics Applied in Business & 
Industry, 1998; 9(3):289-302. 

[13] Kijima, M., Some Results for Repairable Systems with General Repair, Journal of Applied 
Probability, 1989; 26(1):89-102. 

[14] Coetzee, J. L., The Role of NHPP Models in the Practical Analysis of Maintenance 

Failure Data, Reliability Engineering & System Safety, 1997; 56(2): 161-168. 
[15] Klefsjo, B. and U. Kumar, Goodness-of-Fit Tests for the Power-Law Process Based on the 

Ttt-Plot,IEEE Transactions on Reliability, 1992; 41(4):593-598. 
[16] Rausand, M. and A. Høyland, System Reliability Theory : Models, Statistical Methods, 

and Applications, Wiley-Interscience,New York,  2004. 
[17] Cox, D. R., Partial Likelihood,Biometrika, 1975; 62(2):269-276. 
[18] Kalbfleisch, J. D. and R. L. Prentice, The Statistical Analysis of Failure Time Data. 

Wiley , New York, 1980. 
[19] Gelman, A., Bayesian Data Analysis, Chapman and Hall, London,  2004. 



174                                                     Yuan Fuqing and Uday Kumar 

 

 

[20] Hamada, M.S., A.G.Wilson, C.S.Reese and H.F. Martz, Bayesian Reliability,  Springer, 
2008. 

[21] Ghodrati, B. and U. Kumar, Reliability and Operating Environment-based Spare Parts 

Estimation Approach, Journal of Quality in Maintenance Engineering, 2005, 11(2): 169-
184. 

[22] Guo, H.R., H. Liao, W. Zhao and A. Mettas, A New Stochastic Model for Systems under 

General Repairs, IEEE Transactions on Reliability, 2007; 56(1): 40-49. 
 
 

Yuan Fuqing obtained his M.Tech. in System Engineering at Beijing University of 
Aeronautics and Astronautics, China, in the year 2007. He joined the Division of 
Operation and Maintenance Engineering, Luleå University of Technology, Sweden, in 
September 2007 to work for the degree of Ph.D. His area of research deals with reliability 
data analysis and statistical learning theory. 
 
 
Uday Kumar obtained his B.Tech. in India during the year 1979. After working for 6 
years in Indian mining companies, he joined the postgraduate programme of Luleå 
University of Technology, Luleå, Sweden, and obtained the degree of PhD in the field of 
Reliability and Maintenance during 1990. Presently, he is Professor of Operation and 
Maintenance Engineering at Luleå University of Technology, Luleå, Sweden.  His 
research interests are equipment maintenance, equipment selection, reliability and 
maintainability analysis, system analysis, etc. He has published more than 170 papers in 
international journals and conference proceedings.   
 


