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SUMMARY & CONCLUSIONS 

This paper proposes a new approach to study reliability of 
locomotive wheels with Bayesian framework, utilizing 
locomotive wheel degradation data sets that can be small or 
incomplete. In our study, a linear degradation path is assumed 
and locomotive wheels’ installation positions are considered 
as covariates. A Markov Chain Monte Carlo (MCMC) 
computational method is also implemented. In the case study, 
data were collected from a Swedish railway company. This 
data includes, the diameter measurements of the locomotive 
wheels, total distances corresponding to their “time to 
maintenance”, and the wheels’ bill of material (BOM) data. 
During this study, likelihood functions were constructed for 
Expontional regression models, Weibull regression models, 
and lognormal regression models. The results show that the 
locomotive wheels’ lifetimes are dependent on installation 
positions. For the studied locomotive wheels data, the 
Lognormal regression model is a better choice, because the 
model obtained the lowest Deviance Information Criterion 
(DIC) values. In addition, under current operation situation 
(e.g. topography) and current maintenance strategies (re-
profiled, lubrication, etc.), the locomotive wheels installed in 
the second bogie have longer lifetimes than those installed in 
the first bogie; the wheels installed on the “back” axle have 
longer lifetimes than those on the “front” axle; and the right 
side wheels’ lifetime is shorter than that for the left side under 
a given running situation. 

1 INTRODUCTION 

The service life of a railroad wheel can be significantly 
reduced due to failure or damage, leading to excessive cost 
and accelerated deterioration. Damage data show that a major 
proportion of wheel damage stems from degradation. 

 In order to monitor the performance of wheels and make 
replacement before adverse effects occur, the railway industry 
uses both preventive and predictive maintenance. [1-5] By 
predicting train wheel wear, fatigue, tribological aspects, and 
failures, the railway industry can formulate different 
preventive maintenance strategies under different time 
periods. [6] For predictive maintenance, wheel condition 
monitoring data have been studied to increase the lifetime by 

knowing the condition of the wheel profile. [7-9] A large 
number of related studies have been published in the last 
decade. 

One common preventive maintenance strategy (that is 
used in the case study) is wheel re-profiling after running a 
certain distance, with its diameter being measured; if it 
reduces to a pre-specified diameter, the wheel will be replaced 
by a new one. In order to optimize such maintenance 
strategies, some researchers started looking into wheel 
degradation utilization data to determine reliability and failure 
distribution. [10] However, these studies cannot solve the 
combined problem of small data samples and incomplete data 
sets while simultaneously considering the influence of several 
covariates. For example, to avoid the potential influence of the 
different locations of wheels, Freitas [10] only consider those 
on the left side of axle number and on certain specified cars. 
Yang and Letourneau [5] suggest that certain attributes, 
including a wheel’s installed position (right or left), might 
influence its wear rate, but they do not provide case studies.  

To address the above issues, this paper undertakes a 
reliability study using a Bayesian survival analysis framework 
to explore the impact of the wheel’s installed position on its 
service lifetime and to predict its reliability characteristics. 
[11] In section 2, the Expontional regression models, Weibull 
regression models, and lognormal regression models are used 
to establish the lifetime of locomotive wheels using 
degradation data and taking into account the position of the 
wheel. This position is described by three different discrete 
covariates: the bogie, the axel and the side of the locomotive 
where the wheel is mounted. In section 3, a linear degradation 
path is considered and the case study is performed using 
Markov Chain Monte Carlo methods. And finally, section 4 
offers conclusions and comments. 

2  BAYESIAN PARAMETRIC MODELS 

In reliability analysis, the lifetime data set is usually 
incomplete, which means only a portion of the subsystem 
failures (i.e. wheels) are known. For other subsystems, the 
lifetimes are only known to exceed certain values. Take the 
locomotive wheels’ degradation data for example. If the 
degradation data is less than the pre-specified diameter, the 
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corresponding predicted lifetime is viewed as right-censored. 
The reason is that under a linear degradation path assumption, 
we just know those wheels’ real lifetime will exceed the 
predicted lifetime.  

Right-censored data are often called Type I censoring in 
the literature; the corresponding likelihood construction 
problem has been extensively studied. [12, 13]  Suppose there 
are n individuals whose lifetimes and censoring times are 
independent. The ith individual has life time iT and censoring 
time iL . The iT s are assumed to have probability density 
function )(tf and reliability function )(tR . The exact lifetime 

iT of an individual will be observed only if ii LT ≤ . The 
lifetime data involving right censoring can be conveniently 
represented by n pairs of random variables ),( iit υ , where 

( )iii LTt ,min=  and 1=iυ if ,ii LT ≤ and 0=iυ if ii LT > . 
That is, iυ  indicates whether the lifetime iT is censored or not. 
The likelihood function is deduced as [12, 13]   

        ∏
=

−=
n

i
ii ii tRtftL

1

1)()]([)( υυ                                                    (1) 

2.1 Exponential regression model 

Suppose the lifetimes ),( 1 ntt L=t  for n  wheels are 
independent and identically distributed (iid), and the 
distribution being exponential distribution with a failure 
rate λ , where 0>λ . Therefore, the probability density 
function (pdf) is )exp()( ii ttf λλλ −=  , the cumulative 
distribution function (cdf) is )exp(1)( ii ttF λλ −−=  and the 
reliability function is  )( λitR  )(1 λitR−= . The incomplete 
indicators are denoted '

21 ),,,( nυυυ L=υ and the observed 
data set for the current study is ),(0 υt,nD = . From equation 
(1), the likelihood function of λ  is 
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The 1×p  vector of covariates for the ith wheel is 
denoted '

1 ),( pii xx L=ix . Similarly, β  is a 1×p  vector of 
regression coefficients, which represents the degree of 
influences of covariates. Let )exp( βx'

ii =λ  and the observed 
data set for current study is denoted by ),( υX,t,nD = . The 
likelihood function for the regression coefficients is given by 
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The prior distributions should be realistic and computationally 
feasible. There are two common choices forβ ’s prior 
distributions. [11] One is uniform improper prior distribution, 
for example, 1)( ∝βπ  .The other is the normal distribution.  
As proved by Ibrahim [11], it’s a log-concave prior and such 
kind of choice will be convenient for posterior’s computation. 
To implement the MCMC simulation more easily, a 
multinomial prior ),(~ 00 Σμβ pN  with mean 0μ  and 
covariance matrix 0Σ  is assumed. Let )(⋅π  denote the prior or 
posterior distributions for the parameters. The posterior 
distribution, )( Dβπ , can be written as 
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It is not easy to get the exact integration results for )( Dβπ  due 
to its complexity. Therefore, we select the MCMC method, 
which has been widely applied to Bayesian statistics since 
1990s, to carry out the posterior inference. 

2.2 Weibull regression model 

Suppose, the lifetimes ),( 1 ntt L=t  for n  individuals are 
iid, and the distribution is Weibull, ),( γαW , where 0>α  and 

0>γ . The pdf is )exp(),( 1 αα γαγγα iii tttf −= −  while the cdf 
is )exp(1),( αγγα ii ttF −−= and the reliability function 

),( γαitR ),(1 γαitF−= . To facilitate the analysis, let 
)(ln γξ = , permitting the following representation: 

             
))(expexp(),( 1 αα ξξαξα iii tttf −= −                    (5) 

Similarly, we can get ),( ξαitF and ),( ξαitR  . 
From equation (1), the joint likelihood function for α and ξ is 
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To construct the Weibull Regression Model, covariates are 
introduced throughξ . With βx'

i=iξ , the likelihood function is 
given by 
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In this paper, it is assumed that α andξ  are independent. 
Furthermore, it is assumed that the prior distribution of α  is a 
gamma distribution, denoted by ),( 00 baG . The prior 
distribution can be written as )(exp),( 0

1
00 0 αααπ bba a −∝ − . 

Then, the posterior distribution of α and β is:  
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2.3 Lognormal regression model 

Suppose the lifetimes ),( 1 ntt L=t  of n  wheels are iid, 
with )(ln t  being normally distributed according to ),( 2σμN . 
This implies that it  is lognormally distributed with parameters 
μ and 2σ , denoted by ),( 2σμLN . The pdf and reliability 
functions for ti are 
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From equation (1), the joint likelihood function for μ and 
σ given an incomplete data set is 
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To construct a lognormal regression model covariates that 
are realized through μ are introduced by defining βx'

i=iμ . By 
defining 2/1 στ = , the likelihood function is given can be 
written as 
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A typical prior distribution for τ is a gamma prior 
distribution. [11] In this paper, it is supposed 
that )2/,2/(~ 00 baGτ , β  has a multinormal prior 
distribution with p vector, denoted by ),( 1

00 Σμ −τpN .[11] 
Therefore, the posterior distribution for τ and β can be is 
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3 EXAMPLE 

This paper focuses on the wheels of the locomotive of a 
cargo train. While two types of locomotives with the same 
type of wheels are used in cargo trains, we consider only one. 

 

 

 

Fig.1 Locomotive wheels’ installation positions 

There are two bogies for each locomotive and three axels 
for each bogie (Fig.1). The installed position of the wheels on 
a particular locomotive is specified by a bogie number (I, II-
number of bogies on the locomotive), an axel number (1, 2, 3-
number of axels for each bogie) and the side of the wheel on 
the axle (right or left) where each wheel is mounted. 

The diameter of a new locomotive wheel in the studied 
railway company is 1250 mm. In the company’s current 
maintenance strategy, a wheel’s diameter is measured after 
running a certain distance. If it is reduced to 1150 mm, the 
wheel is replaced by a new one. Otherwise, it is re-profiled or 
other maintenance strategies are implemented. A threshold 
level for failure, is defined as 100 mm (= 1250 mm -1150 
mm). The wheel’s failure condition is assumed to be reached 
if the diameter reaches 100mm. 

The company’s complete database also includes the 
diameters of all locomotive wheels at a given observation 
time, the total running distances corresponding to their “time 
to be maintained”, and the wheels’ bill of material (BOM) 
data, from which we can determine their positions. 

Two assumptions are made: 1) for each censored datum it 
is supposed that the wheel is replaced; 2) degradation is linear. 
Only one locomotive is considered in this example to ensure 
that 1) all wheel’s maintenance strategies are the same; 2) the 
axle load and running speed are obviously constant; and 3) the 
operational environments including routes, climates and 
exposure are common for all wheels. 

The data set contains 46 datum points ( n =46) of a single 
locomotive throughout period November 2010 to January 
2012. We take the following steps to obtain locomotive 
wheels’ lifetime data (Fig.2):  

sL

1L

2L

1B
2B

1D 2D

 
Fig.2 Plot of the wheel degradation data: one example 

• Establish a threshold level sL , where sL =100 mm (1250 
mm – 1150 mm).  

• Transfer observed 90 records of wheel diameters at 
reported time t to degradation data; this equals to 
1250mm minus the corresponding observed diameter.  

• Assume a liner degradation path and construct a 
degradation line iL (e.g. 1L , 2L ) using the origin point 
and the degradation data (e.g. 1B , 2B ). 

• Set sL = iL , get the point of intersection and the 
corresponding lifetimes data (e.g. 1D , 2D ). 



For each reported datum, a wheel’s installation position is 
documented, and as mentioned above, positioning is used in 
this study as a covariate. As discussed in section 3, the wheel’s 
position (bogie, axel, and side) or covariate X  is denoted by 

1x (bogie I: 1x =1, bogie II: 1x =2), 2x  (axel 1: 2x =1, axel 2: 
2x =2, axel 3, 2x =3) and 3x (right: 3x =1, left: 3x =2). 

Correspondingly, the covariates’ coefficients are represented 
by 1β , 2β , and 3β . In addition, 0β is defined as random effect. 

The calculations are implemented with the software 
WinBUGS[14] . A burn-in of 10,001 samples is used, with an 
additional 10,000 Gibbs samples for each Markov chain. 
Vague prior distributions are adopted here as the following: 
For exponential regression: )0001.0,0(~ Nβ ; for Weibull 
regression: )2.0,2.0(~ Gα , )0001.0,0(~ Nβ ; for lognormal 
Regression: )01.0,1(~ Gτ , )0001.0,0(~ Nβ . 

Following the convergence diagnostics (including to 
check Markov chains’ dynamic trace, time series, Gelman-
Rubin-Statistics, as well as to compare the MC error with 
Standard Deviation (SD)), [14] we consider following 
posterior summaries of parameters as shown in tables 1, 2 and 
3 for our models with censored data, including the parameters’ 
posterior mean, standard deviation, Monte Carlo (MC) error, 
and 95% HPD (highest posterior distribution density) interval. 
In below tables, the mean values for β seem quite small, that 
is because the measurement unit to locomotive wheels lifetime 
is by thousands kilometers ( 310× km).  

Table.1 Posteriors Summaries - Exponential Regression 
Model 

Parameter Mean SD MC error 95 % HPD 

0β  -5.862 0.7355 0.02299 (-7.366,-4.452) 

1β  -0.07207 0.3005 0.007269 (-0.6672,0.5104) 

2β  -0.03219 0.1858 0.003797 (-0.3889,0.3325) 

3β  -0.0124 0.2973 0.00726 (-0.5954,0.5787) 

Table.2 Posteriors Summaries - Weibull Regression Model 

Parameter Mean SD MC error 95 % HPD  
α  10.08 0.9674 0.05559 (8.234,11.76) 

0β  -60.47 5.977 0.3434 (-71.01,-49.16) 

1β  -0.07775 0.306 0.008339 (-0.6845,0.5156) 

2β  -0.146 0.2231 0.005801 (-0.5878,0.2856) 

3β  -0.05026 0.2982 0.007143 (-0.6356,0.5324) 

Table.3 Posteriors Summaries - Log-normal Regression 
Model 

Parameter Mean SD MC error 95 % HPD  

0β  5.864 0.05341 0.001622 (5.76,5.97) 

1β  0.06733 0.02174 5.042E-4 (0.02492,0.1103) 

2β  0.02077 0.01373 2.765E-4 (-0.00629,0.0478) 

3β  0.001102 0.02175 5.007E-4 (-0.0412,0.04444) 

τ  187.5 39.84 0.3067 (118.3,273.5) 
 

 Accordingly, the locomotive wheels’ reliability functions 
are: 
• Exponential Regression Model:  

[ ]1 2 3

( | )
exp exp( 5.862 0.072 0.032 0.012 )
i

i

R t
x x x t= − − − − − ×

X
 

• Weibull Regression Model:   

10.08
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• Log-normal Regression Model:  
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1/2

( | )

ln( ) (5.864 0.067 0.02 0.001 )
1
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Obviously, other quantities regarding lifetime 
distribution, including MTTF can be determined. 

For model comparison, usually two main aspects are 
considered: the model’s measure of fit and its complexity. In 
this paper, we adopt the Deviance Information Criterion 
(DIC), which utilizes the model’s deviance to evaluate its 
measure of fit, and the effective number of parameters to 
evaluate its complexity. [14] 

Define a Bayesian model’s Bayesian deviance, denoted 
as )(θD , as ))((2log)( θθ DpD −= ; Define the effective 
number of parameters, denoted as dp , as:  

)))((2ln())((2ln)()( θθθθθ DpdDpDDpd −−−=−= ∫  

Then, dd pDpDDIC +=+= )(2)( θθ .  We calculate the DIC 
values for the above three Bayesian parametric models 
separately, as shown in Table 4. 

Table.4 DIC Summaries  

 Model )(θD  )(θD  dp  DIC 
Exponential 648.98 645.03 3.95 652.93 

Weibull  472.22 467.39 4.83 477.05 
Log-normal 442.03 436.87 5.16 447.19 

 
Our results show that the DIC for Log-normal Regression 

Model is the lowest (447.19), and it is a better choice.  The 
prediction of the locomotive wheels MTTF, following 
Bayesian Lognormal regression model, appears in Table.5. 

It should be pointed out that the 95% HPD interval in 
Bayesian Lognormal regression model for 2β and 3β  
includes 0 (Table.3). This means that, although the positioning 
does have an influence, in some instances, the impact on the 
wheel’s service lifetime is not significantly strong. In our case, 
the bogies have more impact on service lifetime than axels or 
sides. Given this conclusion, we can deal with such covariates 
better in our future research. Besides above, other conclusions 
include: 1) the lifetime of the wheel installed in the second 
bogie is longer than that of the wheel installed in the first one; 
2) the wheel installed in the third axel has a longer lifetime 
than that installed in the second axel, and the wheel in the 
second axel has a longer lifetime than the one in the first axel; 
3) the right side wheel’s lifetime is shorter than the left side. 



(Researchers from Norwegian National Rail Administration 
cited previously concur with this. Using condition monitoring 
methods on train wheels operating on the same route, they 
found that the wheel forces on the right and the left sides can 
be different, even for wheels in the same axel.). Possible 
causes include the influence of the earth's rotation, 
topographical complexity, and the position of the locomotive’s 
centre of gravity.  

Table.5 MTTF statistics based on Bayesian Lognormal 
Regression Model 

Bogie  Axel Side iμ  MTTF 
( 310× km) 

I  
( 1x =1) 

1 
( 2x =1) 

Right( 3x =1) 5.9532 387.03 
Left   ( 3x =2) 5.9543 387.46 

2 
( 2x =2) 

Right( 3x =1) 5.9740 395.16 
Left   ( 3x =2) 5.9751 395.60 

3 
( 2x =3) 

Right( 3x =1) 5.9947 403.43 
Left   ( 3x =2) 5.9958 403.87 

II  
( 1x =2) 

1 
( 2x =1) 

Right( 3x =1) 6.0205 413.97 
Left ( 3x =2) 6.0216 414.43 

2 
( 2x =2) 

Right( 3x =1) 6.0413 422.67 
Left   ( 3x =2) 6.0424 423.14 

3 
( 2x =3) 

Right( 3x =1) 6.0621 431.56 
Left   ( 3x =2) 6.0632 432.03 

4 CONCLUSIONS AND FUTURE RESEARCH 

This paper proposes three parametric Bayesian models for 
locomotive wheels’ reliability analysis using degradation data: 
Bayesian Exponential Regression Model, Bayesian Weibull 
Regression Model, and Log-normal Regression Model. By 
introducing the covariate ix ’s linear function βx'

i , these three 
parameter models are constructed depending on the failure 
rate iλ in the exponential model, the log of the rate parameter 

)ln( iγ in the Weibull model and the logarithmic mean iμ in the 
log-normal models. The proposed Bayesian survival models 
can deal with small and incomplete data sets and 
simultaneously consider the influence of several covariates. 
The MCMC technique via the Gibbs sampler is used here to 
achieve models’ posteriors estimations.  

The case study’s results suggest that the locomotive 
wheels’ lifetimes are different with different installed 
positions. In addition, the approach discussed in this paper can 
also be applied for analyzing cargo train wheels.The work 
presented also leads to the implementation of additional 
research:  
• The assumed liner degradation path was a simple one. For 

more complex path models, more degradation paths need 
to be studied, including considering different wear rates. 

• The covariates considered here are only limited to 
locomotive wheels’ installed positions, more covariates 
needs to be considered later, like: temperature, applied 
loading, train speed, etc. 

• We have chosen general prior distributions for the case 
study. As more information can be utilized, how to 
integrate different prior also need to be studied. Besides 
above limitations, in our later research, we also plan to 
consider utilization of utilization of our results to optimize 
maintenance strategies and related LCC (Life Cycle Cost) 
problems with consideration of maintenance cost.  
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