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iii 1 Purpose 

1 Purpose  

The goal of the research presented in this report is to propose, develop and test an integrated reliability 
analysis to optimise the maintenance strategies of the railway industry. This integrated analysis applies 
traditional statistics theories as well as Bayesian statistics using Markov Chain Monte Carlo (MCMC) 
methodologies. Using the Bayesian inference leads to greater flexibility because such analysis can 
simultaneously accommodate the following:  

Small sample data; 
Incomplete data set, including censored or truncated data; 
Complex operational environments.  

In this report, an integrated procedure for Bayesian reliability inference using MCMC is applied to a 
number of case studies using locomotive wheel degradation data from Iron Ore Line (Malmbanan), 
Sweden. The research explores the impact of a locomotive wheel’s installed position on its service 
lifetime and attempts to predict its reliability characteristics by using parametric models, non-
parametric models, frailty factors, etc. 
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4 Abbreviations and Symbols 

CMMS Computerized Maintenance Management System 
MCMC Markov Chain Monte Carlo  
MC error Monte Carlo error 
CPH  Cox Proportional Hazard 
BOM Bill of Material 
RQ Research Question 
SD Standard Deviation 
HPD Highest Posterior Distribution Density 
MTTF Mean Time To failure 
BF Bayesian Factor 
BIC Bayesian Information Criterion 
DIC Deviance Information Criterion 
RCF Rolling Contact Fatigue 
KPI Key Performance Indicator 
LCC Life Cycle Cost 
i  Index 
n  the number of system/units 
x  covariate 

 the coefficient of the covariate
 the failure rate in exponential model 
 the rate parameter in Weibull model 
 the logarithmic mean in log-normal model 
)(R  Reliability function 

H  Inspection level 
t  lifetime 

)(t  Baseline hazard rate 
)(t  Cumulative hazard rate 

 Rate parameter in Gamma distribution 
 Frailty parameter 

b  Piecewise interval 
k  the number of the intervals in the piecewise constant model 
Rd Diameter of the wheel 
Sd Flange thickness 
Rr Radial runout 
Rx Axial runout 
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1 5 Introduction 

5 Introduction 

This section presents the introduction of this research. 

5.1 Background 

The railway industry needs a more flexible decision-making strategy for maintenance optimisation, 
one that will accommodate the following three weaknesses in current reliability studies:  

Small sample data for analysis. The foundation of any classical statistics method is the law 
of large numbers where the data sample is expected to contain an infinite number of data. 
However, in real world situations, the number of data samples may be limited, or the samples 
may be small. For instance, in the railway industry, the real running data are often very limited 
for decision making, especially for new infrastructure. Therefore, prior information, including 
data collected through different sources, should be considered. 
Incomplete data set, including censored or truncated data. For economic reasons, we are 
seldom able to run infrastructures to failure to get the required data; we only know when their 
lifetimes exceed certain time points. In addition, it is common in the railway industry to 
replace or repair infrastructure before or after its lifetime endings, making it difficult to get the 
exact lifetime from real running data.  Take the degradation data for locomotive wheels, for 
example. If the degradation data are less than the pre-specified diameter, the corresponding 
predicted lifetime is viewed as right-censored. Finally, the quality of the data obtained from 
Computerized Maintenance Management System (CMMS) may not be high, leaving the data 
set uncompleted. 
Complex operational environments. In the real world, systems run in different operational 
environments, which will significantly influence the system’s reliability and maintenance 
strategies. For instance, in the railway industry, when replacement strategies are considered, in 
addition to wear, the failure of a technical system is affected by maintainability issues and the 
implementation of preventive measures. Because of the severe winter conditions in the 
Norrbotten region of Sweden (the area studied in this report), the influence of the weather 
should be seriously considered as well.  

These factors, as well as the wear behaviour, should be considered as covariates for developing 
replacement or maintenance strategies. However, to date, no integrated reliability method considers all 
aspects simultaneously. 

The  recent proliferation of Markov Chain Monte Carlo (MCMC) approaches has led to the use of the 
Bayesian inference in a wide variety of fields, including behavioural science, finance, human health, 
process control, ecological risk assessment, and risk assessment of engineered systems (Kelly & 
Smith, 2009, and the references therein). Discussions of MCMC related methodologies and their 
applications in Bayesian Statistics now appear throughout the literature (Congdon, 2001; 2003). For 
the most part, studies in reliability analysis focus on the following topics and their cross-applications:  
1) hierarchical reliability models (Robinson, 2001; Johnson, et al., 2003; Wilson, 2008; Lin, et al., 
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2013a); 2) complex system reliability analysis (Tont, et al., 2010; Lin, 2008; Lin, et al. 2011); 3) faulty 
tree analysis (Hamada, et al., 2004; Graves, et al., 2007); 4) accelerated failure models (Kuo & 
Mallick, 1997; Walker & Mallick, 1999; Hanson & Johnson, 2004;  Ghosh & Ghosal, 2006; Komarek 
& Lesaffre, 2009); 5) reliability growth models (Li, et al., 2002; Tao, et al., 2004); 6) Masked system 
reliability (Kuo & Yang, 2000); 7) software reliability engineering (Ilkka, 2006; Tamura, et al. 2011); 
8) Reliability benchmark problems (Schueller & Pradlwarter, 2007; Au, et al., 2007). Most of the 
literature emphasises the model’s development; no studies offer a full framework to accommodate 
academic research and engineering applications seeking to implement modern computational-based 
Bayesian approaches, especially in the area of reliability.  

To fill the gap and to facilitate MCMC applications from a reliability perspective, this research 
proposes an integrated procedure for the Bayesian inference to consider the defects in the railway 
industry’s reliability studies. 

The service life of a train wheel can be significantly reduced due to failure or damage, leading to 
excessive cost and accelerated deterioration, a point which has received considerable attention in 
recent literature. In order to monitor the performance of wheels and make replacements in a timely 
fashion, the railway industry uses both preventive and predictive maintenance. By predicting the wear 
of train wheels (Johansson & Andersson, 2005; Braghin et al., 2006; Tassini et al., 2010), fatigue 
(Bernasconi et al., 2005; Liu, et al., 2008), tribological aspects (Clayton, 1996), and failures (Yang & 
Letourneau, 2005), the industry can design strategies for different types of preventative maintenance 
(re-profiling, lubrication, etc.) for various periods (days, months, seasons, running distance, etc.).  
Software dedicated to predicting wear rate has also been proposed (Pombo et al., 2010). Finally, 
condition monitoring data have been studied with a view to increasing the wheels’ lifetime (Skarlatos 
et al., 2004; Donato et al., 2006; Stratman et al., 2007; Palo, 2012).  

One common preventive maintenance strategy (used in the case study) is re-profiling wheels after they 
run a certain distance. Re-profiling affects the wheel’s diameter; once the diameter is reduced to a pre-
specified length, the wheel is replaced by a new one. Seeking to optimise this maintenance strategy, 
researchers have examined wheel degradation data to determine wheel reliability and failure 
distribution (Freitas et al., 2009, 2010; and the references therein). However, these studies cannot 
solve the combined problem of small data samples and incomplete datasets while simultaneously 
considering the influence of several covariates. For example, to avoid the potential influence of wheel 
location, Freitas et al. (2009, 2010) only consider those on the left side of specified axle and on certain 
specified cars, but point out that “the degradation of a given wheel might be associated with its 
position on a given car”. Yang and Letourneau (2005) suggest that certain attributes, including a 
wheel’s installed position (right or left), might influence its wear rate, but they do not provide case 
studies. Palo et al. (2012) conclude that “different wheel positions in a bogie show significantly 
different force signatures”.  In a recent seminar in Sweden (Kiruna, April 2012), experts from Norway 
illustrated their new findings that in a given topography, the wheels installed on the right and the left 
sides of a locomotive experience different force. Unfortunately, they did not include signal charts 
derived from condition monitoring tools, nor did they consider the influence of wheel position on 
degradation. 

To address the above issues, in this project, we explore the influence of locomotive wheels’ 
positioning on reliability using a proposed integrated Bayesian procedure with MCMC methods. The 
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research first considers parametric models, including the Bayesian Exponential Regression Model, 
Bayesian Weibull Regression Model and Bayesian Log-normal Regression Model. Second, since 
semi-parametric Bayesian methods offer a more general modelling strategy that contains fewer 
assumptions (Ibrahim et al., 2001), we adopt the piecewise constant hazard model to establish the 
distribution of the locomotive wheels’ lifetime. Most reliability studies are implemented under the 
assumption that individual lifetimes are independent identified distributed (i.i.d), but at times, Cox 
proportional hazard (CPH) models cannot be used because of the dependence of data within a group. 
Therefore, in this project we also considered frailty models, in which the data are conditionally 
independent. Through a gamma shared frailty, the dependence within subgroups can be considered an 
unknown and unobservable risk factor (or explanatory variable) of the hazard function, allowing us to 
determine reliability more flexibly for the wheel. A similar frailty model is studied later in this project 
with a Weibull frailty factor. To utilise both degradation data and the re-profiling performance of the 
wheels, statistics on the wheels are compared in the following categories: 1) degradation analysis 
using a Weibull frailty model; 2) work orders for re-profiling; 3) the performance of re-profiling 
parameter; and 4) wear rates. 

5.2 Description of Data 

In this project, all the case studies come from Sweden’s Iron Ore Line. The data focus on the heavy 
haul cargo trains’ locomotive wheels and were collected by LKAB\MTAB from October 2010 to 
January 2012. This section gives background information on the Iron Ore Line. It also introduces the 
degradation data and the re-profiling parameters for the locomotive wheels being studied. 

5.2.1 Iron Ore Line (Malmbanan) 

 
 

Fig.1 Geographical location of Iron Ore Line (Malmbanan) 

The Iron Ore Line (Malmbanan) is the only existing heavy haul line in Europe; it stretches 473 
kilometres and has been in operation since 1903. As Fig. 1 shows, it is mainly used to transport iron 
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ore and pellets from the mines in Kiruna (also Malmberget, close to Kiruna,  in Sweden) to Narvik 
Harbour (Norway) in the northwest and Luleå Harbour (Sweden) in the southeast. The track section on 
the Swedish side is owned by the Swedish government and managed by Trafikverket (Swedish 
Transport Administration), while the iron ore freight trains are owned and managed by the freight 
operator (a Swedish company). Each freight train consists of two IORE locomotives accompanied by 
68 wagons with a maximum length of 750 metres and a total train weight of 8500 metric tonnes. The 
trains operate in harsh conditions, including snow in the winter and extreme temperatures ranging 
from - 40 °C to + 25 °C. Because carrying iron ore results in high axle loads and there is a high 
demand for a constant flow of ore/pellets, the track and wagons must be monitored and maintained on 
a regular basis. The condition of the locomotive wheel profile is one of the most important aspects to 
consider. 

5.2.2 Degradation data and re-profiling parameters  

In this study, we use the degradation data from selected heavy haul cargo locomotives, collected from 
October 2010 to January 2012. For each locomotive, see Fig.2, there are two bogies (incl., Bogie I, 
Bogie II); and each bogie contains six wheels. The installed position of a wheel on a particular 
locomotive is specified by the bogie number (I, II-number of bogies on the locomotive), an axel 
number (1, 2, 3-number of axels for each bogie) and the position of the axle (right or left) where each 
wheel is mounted. 

 

 

 
    

  Fig.2 Wheel positions specified in this study 

The diameter of a new locomotive wheel in this study is about 1250 mm. Following the current 
maintenance strategy, a wheel’s diameter is measured after it runs a certain distance. If it is reduced to 
1150 mm, the wheel set is replaced by a new one. Otherwise, it is re-profiled (see Fig.3). Therefore, a 
threshold level for failure, denoted as 0y , is defined as 100 mm ( 0y = 1250 mm -1150 mm). The 
wheel’s failure condition is assumed to be reached if the diameter reaches 0y . The dataset  includes the 
diameters of all locomotive wheels at a given inspection time, the total running distances 
corresponding to their “mean time between re-profiling”, and the wheels’ bill of material (BOM) data, 
from which we can determine their positions.  
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Fig.3 Locomotive wheels on-site re-profiling  

During the re-profiling process, the re-profiling parameters include but are not limited to: 1) the 
diameters of the wheels; 2) the flange thickness; 3) the radial run-out; 4) the lateral run-out. 

5.3 Purpose and objectives 

Following the above discussion, the overall goal of the research presented in this report is to propose, 
develop and test an integrated reliability analysis to optimise the railway industry’s maintenance 
strategies. This integrated analysis applies both traditional statistics theories and Bayesian statistics 
using Markov Chain Monte Carlo (MCMC) methodologies. Using the Bayesian inference adds 
flexibility to the analysis as it can accommodate the following aspects simultaneously: 

Small sample data; 
Incomplete data set, including censored or truncated data; 
Complex operational environments.  

The research also explores the impact of a locomotive wheel’s installed position on its service lifetime 
and attempts to predict its reliability characteristics by using parametric models, non-parametric 
models, frailty factors, etc. 

5.4 Research questions and appended papers 

To fulfil the purpose and objectives of this project, we ask the following research questions:  

RQ1 What is the integrated procedure for Bayesian Reliability Inference using MCMC 
methodologies? 
RQ2 How can the Bayesian parametric models be applied to integrated reliability analysis and 
maintenance strategies optimisation? 
RQ3 How can the Bayesian non-parametric models be applied to integrated reliability 
analysis and maintenance strategies optimisation? 
RQ4 How can the frailty factors be applied to integrated reliability analysis and maintenance 
strategies optimisation? 
RQ5 How can the other analyses be applied to integrated reliability analysis? 

These research questions are answered by the five appended papers:  
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Lin J. An Integrated Procedure for Bayesian Reliability Inference using Markov Chain Monte 
Carlo Methods. Submitted to Journal. (Paper I) 
Lin J, Asplund M, Parida A. Reliability Analysis for Degradation of Locomotive Wheels using 
Parametric Bayesian Approach. Accepted by Quality and Reliability Engineering International. 
Will be published in 2013. DOI: 10.1002/qre.1518 (Paper II) 
Lin J, Asplund M. Bayesian Semi-parametric Analysis for Locomotive Wheel Degradation using 
Gamma Frailties. Submitted to Journal. Under Review. (Paper III) 
Lin J, Asplund M. A Comparison Study for Locomotive Wheels’ Reliability Assessment using the 
Weibull Frailty Model. Revised Manuscript has been submitted to Journal of Rail and Rapid and 
Transit, in April, 2013. (Paper IV) 
Lin J, Asplund M, Parida A. Bayesian Parametric Analysis for Reliability Study of Locomotive 
Wheels. Conference Proceedings. The 59th Annual Reliability and Maintainability Symposium 
(RAMS® 2013).  January 28-31, Orlando, FL, USA.  (Paper V)  

Each paper makes its own contribution to the research questions. Table 1 shows the relationship 
between the papers and the research questions. 

Table.1 Relationship between the appended papers and research questions 

Research questions RQ1 RQ2 RQ3 RQ4 RQ5 
Paper I +     
Paper II + +    
Paper III +  + +  
Paper IV +    + 
Paper V + +    

 

5.5 Scope and limitations 

The scope and limitations of this project include: 

The research is applicable to the reliability analysis of any other lifetime data. 
The proposed Bayesian reliability inference procedure has been applied to all case studies in 
this research. 
The data of the case studies focus on the heavy haul cargo trains’ locomotive wheels and were 
collected by LKAB from October 2010 to January 2012. 
Other assumptions in each study are discussed in the five appended papers, separately.  
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6 Results and discussions 

This section discusses the research findings for each question. 

6.1 An Integrated Procedure for Bayesian Reliability Inference using 
MCMC 

RQ1 What is the integrated procedure for Bayesian Reliability Inference using MCMC 
methodologies?

The first research question is answered in Paper I; findings are applied to Papers II, III, IV, and V.  

The recent proliferation of MCMC approaches has led to the use of the Bayesian inference in a wide 
variety of fields. To facilitate MCMC applications, this research has proposed an integrated procedure 
for Bayesian inference using MCMC methods, from a reliability perspective. The proposed procedure 
uses the Bayesian reliability inference to determine system (or unit) reliability and failure distribution, 
and to support the optimisation of maintenance strategies, etc.  

The general procedure begins with the collection of reliability data (see Fig.4.). These are the observed 
values of a physical process, such as various “lifetime data”. The data may be subject to uncertainties, 
such as imprecise measurement, censoring, truncated information, and interpretation errors. Reliability 
data are found in the “current data set”; they contain original data and include the evaluation, 
manipulation, and/or organisation of data samples. At a higher level in the collection of data, a wide 
variety of “historical information” can be obtained, including the results of inspecting and integrating 
this “information”, thereby adding to “prior knowledge”. The final level is reliability inference, which 
is the process of making a conclusion based on “posterior results”. 

Using the above definitions, we propose an integrated procedure which constructs a full framework for 
the standardised process of Bayesian reliability inference. As shown in Fig.4, the procedure is 
composed of a continuous improvement process including four stages (Plan, Do, Study, Action) and 
the following 11 sequential steps which are discussed in more detail in Paper I: 1) data preparation; 2) 
prior inspection and integration; 3) prior selection; 4) model selection; 5) posterior sampling; 6) 
MCMC convergence diagnostic; 7) Monte Carlo error diagnostic; 8) model improvement; 9) model 
comparison; 10) inference making; 11) data updating and inference improvement. 

Step 1: Data preparation. The original data sets for “history information” and “current data” 
related to reliability studies need to be acquired, evaluated, and merged. In this way, “history 
information” can be transferred to “prior knowledge”, and “current data” can become 
“reliability data” in later steps. 
Step 2: Prior inspection and integration. During this step, “prior knowledge” receives a second 
and more extensive treatment, including a reliability consistency check, a credence test, and a 
multi-source integration. This step improves prior reliability data. 
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Step 3: Prior selection. This step uses the results achieved in Step 2 to determine the model’s 
form and parameters, for instance, selecting informative or non-informative priors, or 
unknown parameters and their distributed forms. 
Step 4: Model selection. This step determines a reliability model (parametric or non-
parametric), selecting from n candidates for the studied system/units. It considers both 
“reliability data” and the inspection, integration, and selection of priors to implement the thi  
( nii ,1,1 ). 
Step 5: Posterior sampling. In this step, we determine a sampling method (for instance, Gibbs 
sampling, Metropolis-Hastings sampling, etc.) to implement MCMC simulation for the 
model’s posterior calculations. 
Step 6: MCMC convergence diagnostic. In this step, we check whether the Markov chains 
have reached convergence. If they have, we move on to the next step; if they have not, we 
return to Step 5 and re-determine the iteration times of posterior sampling or re-choose the 
sampling methods; if the results still cannot be satisfied,  we return to Steps 3 and 4  and re-
determine the prior selection and model selection. 
Step 7: Monte Carlo error diagnostic. We need to decide if the Monte Carlo error is small 
enough to be accepted in this step. As discussed in Step 6, if it is accepted, we go on to the 
next step; if it is not, we return to Step 5 and re-decide the iteration times of the posterior 
sampling or re-choose the sampling methods; if the results still cannot be accepted, we go 
back to Steps 3 and 4 and recalculate the prior selection and model selection.  
Step 8: Model improvement. Here, we choose the thi 1 candidate model and restart from Step 
4. 
Step 9: Model comparison. After implementing n candidate models, we need to: 1) compare 
the posterior results to determine the most suitable model; or 2) adopt the average posterior 
estimations (using the Bayesian model average or the MCMC model average) as the final 
results. 
Step 10: Inference making. After achieving the posterior results in Step 9, we can perform 
Bayesian reliability inference to determine system (or unit) reliability, find the failure 
distribution, and optimise maintenance strategies, etc.;  
Step 11: Data updating and inference improvement. Along with the passage of time, new 
“current data” can be obtained, relegating “previous” inference results to “historical data”. By 
updating “reliability data” and “prior knowledge”, and restarting at Step 1, we can improve the 
reliability inference.  

In summary, by using this step-by-step method, we can create a continuous improvement process for 
the Bayesian reliability inference.  

Note that Steps 1, 2, and 3 are assigned to the “Plan” stage when data for MCMC implementation are 
prepared. In addition, a part of Steps 1, 2, and 3 refers to the elicitation of prior knowledge. Steps 4 
and 5 are both assigned to the “Do” stage, where the MCMC sampling is carried out. Steps 6 to 9 are 
treated as the “Study” stage; in these steps, the sampling results are checked and compared; in 
addition, knowledge is accumulated and improved upon by implementing various candidate reliability 
models. The “Action” stage consists of Steps 10 and 11; at this point, a continuously improved loop 
can be obtained. In other words, by implementing the step-by-step procedure, we can accumulate and 



 

 
 
 

9 6.2 Bayesian Parametric Analysis for Locomotive Wheel Degradation 

gradually update prior knowledge. Equally, posterior results will be improved upon and become 
increasingly robust, thereby improving the accuracy of the inference results. 

Also note that Paper I has focused on six steps and their relationship to MCMC inference 
implementation: 1) prior elicitation; 2) model construction; 3) posterior sampling; 4) MCMC 
convergence diagnostic; 5) Monte Carlo error diagnostic; 6) model comparison. 

 

 
Fig.4 An Integrated Procedure for Bayesian Reliability Inference via MCMC 

 
 

6.2 Bayesian Parametric Analysis for Locomotive Wheel Degradation 

RQ2 How can the Bayesian parametric models be applied in integrated reliability analysis 
and maintenance strategies optimisation? 

The second research question is addressed in Paper II and Paper V.  

The service life of a railroad wheel can be significantly reduced due to failure or damage, leading to 
excessive cost and accelerated deterioration. Damage data show that a major proportion of wheel 
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damage stems from degradation. To monitor the performance of wheels and make replacements before 
adverse effects occur, the railway industry uses both preventive and predictive maintenance. In one 
common preventive maintenance policy in the Swedish railway company studied, a wheel’s diameter 
is measured after running a certain distance. If it is reduced to a pre-specified height, the wheel is 
replaced. Otherwise, it is re-profiled or other maintenance strategies are adopted. 

This study undertakes a reliability study using a Bayesian survival analysis framework (Ibrahim et al, 
2001; Congdon, 2001 & 2003; Jing, 2008) to explore the impact of the wheel’s installed position on its 
service lifetime and to predict its reliability characteristics. The Bayesian Exponential Regression 
Model, Bayesian Weibull Regression Model and Bayesian Log-normal Regression Model are used to 
analyse the lifetime of locomotive wheels using degradation data and taking into account the position 
of the wheel.  

In this study, the wheel position is described by three different discrete covariates: the bogie, the axle 
and the side of the locomotive where the wheel is mounted. By introducing the covariate ix ’s linear 
function x'

i , these three parameter models are constructed depending on the failure rate i in the 
exponential model, the log of the rate parameter )ln( i in the Weibull model and the logarithmic 
mean i in the log-normal models. Following the convergence diagnostics (i.e., checking dynamic 
traces in Markov chains, time series, and Gelman-Rubin-Statistics, and comparing the MC error with 
Standard Deviation (SD)), we consider the following posterior distribution summaries (shown in 
Tables 2, 3 and 4), for our models (Bayesian Exponential Regression Model, Bayesian Weibull 
Regression Model, and Bayesian Log-normal Regression Model), including the parameters’ posterior 
distribution mean, standard deviation, Monte Carlo error, and 95% HPD (highest posterior distribution 
density) interval.  

Table.2 Posterior Distribution Summaries for Exponential Regression Model 

Parameter Mean SD MC error 95 % HPD Interval 
0  -5.862 0.7355 0.02299 (-7.366,-4.452) 
1  -0.07207 0.3005 0.007269 (-0.6672,0.5104) 
2  -0.03219 0.1858 0.003797 (-0.3889,0.3325) 
3  -0.0124 0.2973 0.00726 (-0.5954,0.5787) 

Table.3 Posterior Distribution Summaries for Weibull Regression Model 

Parameter Mean SD MC error 95 % HPD Interval 

 10.08 0.9674 0.05559 (8.234,11.76) 
0  -60.47 5.977 0.3434 (-71.01,-49.16) 
1  -0.07775 0.306 0.008339 (-0.6845,0.5156) 
2  -0.146 0.2231 0.005801 (-0.5878,0.2856) 
3  -0.05026 0.2982 0.007143 (-0.6356,0.5324) 
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Table.4 Posterior Distribution Summaries for Log-normal Regression Model 

Parameter Mean SD MC error 95 % HPD Interval 
0  5.864 0.05341 0.001622 (5.76,5.97) 
1  0.06733 0.02174 5.042E-4 (0.02492,0.1103) 
2  0.02077 0.01373 2.765E-4 (-0.006291,0.04781) 
3  0.001102 0.02175 5.007E-4 (-0.0412,0.04444) 

 187.5 39.84 0.3067 (118.3,273.5) 
 
Accordingly, the locomotive wheels’ reliability functions can be written as: 

Bayesian Exponential Regression Model:  

)|( XitR = itxxx )012.0032.0072.0862.5exp(exp 321                                        

Bayesian Weibull Regression Model:  

)|( XitR = 08.10
321 )050.0146.0078.047.60exp(exp itxxx                               

Bayesian Log-normal Regression Model:  

)|( XitR = 1/2
321

)5.187(
)001.002.0067.0864.5()(ln1 xxxti                                          

Obviously, other reliability characteristics of lifetime distribution, including Mean Time to Failure 
(MTTF), can also be determined.  

Other findings on model comparison, maintenance predictions, and maintenance inspection levels are 
briefly discussed in the following subsections. 

6.2.1 Model Comparison 

Traditional technologies for model comparison consider two main aspects: the model’s measure of fit 
and its complexity. Usually, improving the model’s complexity will improve its fit. For instance, by 
considering more unknown parameters, the SD and MC error of the model’s posterior can be reduced 
and the model’s measure of fit can be improved. However, the complexity of the model will be 
increased at the same time. Therefore, most model comparison studies focus on the balance between 
them. When comparing Bayesian models, both the Bayesian Factor (BF) and Bayesian Information 
Criterion (BIC) can be used, but for complex Bayesian hierarchical models, this becomes more 
difficult. Spiegelhalter et al. (2002) have proposed the Deviance Information Criterion (DIC), which 
utilises the model’s deviance to evaluate its measure of fit and the effective number of parameters to 
evaluate its complexity.  

We calculate the DIC values for the above three Bayesian parametric models separately, as shown in 
Table 6.2.1.  
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Table.5 DIC Summaries  

Model )(D  )(D dp  DIC 

Exponential Regression  648.98 645.03 3.95 652.93 
Weibull Regression 472.22 467.39 4.83 477.05 

Log-normal Regression 442.03 436.87 5.16 447.19 

 
Based on Celeux et al. (2006) and the related discussions above, we choose the model with the lowest 
DIC value. When DIC<5, the difference among models can be ignored. Our results show that the DIC 
for the Log-normal Regression Model is the lowest (447.19); following the arguments above, it is 
more suitable than the other two. Using the same model, when we analyse other locomotives’ wheels 
running under similar conditions, we reach similar conclusions. However, when we compare the DIC 
values for the Weibull Regression Model and the Exponential Regression Model, 477.05 and 652.93, 
respectively, we see that the performance of the Weibull Regression Model is close to the Log-normal 
Regression Model, making it a suitable choice in certain specified situations. 

6.2.2 Maintenance Predictions 

All Bayesian parameter models reach a common conclusion: the installation positions influence the 
wheels’ lifetimes. In addition, considering the covariates’ coefficients in our case study, we find the 
following: 1) the lifetime of the wheel installed in the second bogie is longer than that of the wheel 
installed in the first one; 2) the wheel installed in the third axel has a longer lifetime than that installed 
in the second axel, and the wheel in the second axel has a longer lifetime than the one in the first axel; 
3) the right side wheel’s lifetime is shorter than the left side. (Researchers from Norwegian National 
Rail Administration cited previously concur with this. Using condition monitoring methods on train 
wheels operating on the same route, they found that the wheel forces on the right and the left sides can 
be different, even for wheels in the same axel.). Possible causes for the differences include the 
influence of the topographical complexity, and the position of the locomotive’s centre of gravity. 

The three Bayesian parametric regression models presented here are all effective in their Markov chain 
convergence and other diagnostic tools; see, for example, Spiegelhalter et al. (2002) who compare the 
computation process, including checking Markov chains’ dynamic traces, time series and Gelman-
Rubin-Statistics, and comparing the MC error with Standard Deviation (SD). However, we prefer the 
Bayesian Lognormal Regression Model because of its DIC values. The prediction of the locomotive 
wheels’ MTTF, following this model, appears in Table.6. 

 It should be pointed out that the 95% HPD interval in the Bayesian Lognormal Regression Model for 

2 and 3  includes 0 (Table.4). This means that although the positioning does have an influence, in 
some instances, the impact on the wheel’s service lifetime is not significantly strong. In our case, the 
bogies have more impact on service lifetime than axels or sides. Given this knowledge, we can deal 
with such covariates better in our future research. 
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Table.6 MTTF statistics based on Bayesian Lognormal Regression Model 

Bogie  Axel Side i  MTTF( 310 km) 

I ( 1x =1) 

1 ( 2x =1) 
Right ( 3x =1) 5.9532 387.03 
Left   ( 3x =2) 5.9543 387.46 

2 ( 2x =2) 
Right ( 3x =1) 5.9740 395.16 
Left   ( 3x =2) 5.9751 395.60 

3 ( 2x =3) 
Right ( 3x =1) 5.9947 403.43 
Left   ( 3x =2) 5.9958 403.87 

II ( 1x =2) 

1 ( 2x =1) 
Right ( 3x =1) 6.0205 413.97 
Left   ( 3x =2) 6.0216 414.43 

2 ( 2x =2) 
Right ( 3x =1) 6.0413 422.67 
Left   ( 3x =2) 6.0424 423.14 

3 ( 2x =3) 
Right( 3x =1) 6.0621 431.56 
Left   ( 3x =2) 6.0632 432.03 

 

6.2.3 Maintenance Inspection Level 

According to the assumptions in Paper II, the maintenance inspection level 2H  (where 120 HH ) 
determines how many lifetime data are “right-censored”. Obviously, the higher the maintenance 
inspection level, the more data are considered “right-censored” and vice versa.  For instance, in Fig.5, 
we show a higher maintenance inspection level (80 mm) and a lower one (20 mm). We denote the area 
between 1H and 2H as Zone I, and the area between 2H and zero degradation level as Zone II. 
Therefore, based on the likelihood functions discussed Paper II, the MTTF statistics which are 
achieved from the higher 2H (the left picture in Fig.5, where 2H = 80 mm) will be higher than those 
obtained from the lower 2H (the right picture, where 2H =20 mm), because fewer degradation data are 
considered right-censored. In other words, the results achieved from the former are more “optimistic”, 
and the results obtained from the latter are more “pessimistic”. An extreme condition is to suppose 

2H =0 mm. 

For this reason, we can get an interval prediction between “optimistic” and “pessimistic” with 
different maintenance inspection levels which actually reflect the different risk confidence levels.  
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Fig.5 Maintenance Inspection Level with Zone I and Zone II 
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6.3 Bayesian Non-parametric Analysis for Locomotive Wheel Degradation 
using Frailties 

RQ3 How can the Bayesian non-parametric models be applied in integrated reliability 
analysis and maintenance strategies optimisation? 

RQ4 How can the frailty factors be applied in integrated reliability analysis and maintenance 
strategies optimisation? 

The third question is studied in Paper III; the fourth is studied in Papers III and IV. 

Since semi-parametric Bayesian methods offer a more general modelling strategy that contains fewer 
assumptions (Ibrahim et al., 2001), in Paper III, we adopt the piecewise constant hazard model to 
establish the distribution of the locomotive wheels’ lifetime. The applied hazard function is sometimes 
referred to as a piecewise exponential model; it is convenient because it can accommodate various 
shapes of the baseline hazard over the intervals. 

In addition, as mentioned in Paper III, most reliability studies are implemented under the assumption 
that individual lifetimes are independent identified distributed (i.i.d). However, sometimes CPH 
models cannot be used because of the dependence of data within a group. For instance, because they 
have the same operating conditions, the wheels mounted on a particular locomotive may be dependent. 
In a different context, some data may come from multiple records which actually belong to the wheels 
installed in the same position but on another locomotive. Modelling dependence in multivariate 
survival data has received considerable attention, especially in cases where the datasets may come 
from subjects of the same group which are related to each other (Sahu et al., 1997; Aslanidou et al., 
1998). A key development in modelling such data is to consider frailty models, in which the data are 
conditionally independent. When frailties are considered, the dependence within subgroups can be 
considered an unknown and unobservable risk factor (or explanatory variable) of the hazard function.  

In Paper III, we consider a gamma shared frailty, first discussed by Clayton (1978) and later developed 
by Sahu et al. (1997), to explore the unobserved covariates’ influence on the wheels on the same 
locomotive. In this study, the gamma shared frailties i are used to explore the influence of 
unobserved covariates within the same locomotive. By introducing covariate ix ’s linear function x'

i , 
the influence of the bogie in which a wheel is installed can be taken into account.  

The results of the case study suggest that the wheels’ lifetimes differ according to where they are 
installed on the locomotive. The wheel installed in the second bogie has a longer lifetime than the one 
in the first bogie. The differences could be influenced by the real running situation (e.g. topography), 
and the locomotive’s centre of gravity. The gamma frailties help with exploring the unobserved 
covariates and thus improve the model’s precision. Results also indicate a close positive relationship 
between the wheels mounted on the same locomotive; the heterogeneity between locomotives is 
significant as well. We can determine the wheel’s reliability characteristics, including the baseline 
hazard rate )(t , reliability )(tR , and cumulative hazard rate )(t , etc.  

The results indicate the existence of change points. As Fig.6, Fig.7 and Fig.8 show, wheel reliability 
declines sharply at the fourth piecewise interval, while at the fifth piecewise interval, the cumulative 
hazard increases dramatically. The results allow us to evaluate and optimise wheel replacement and 
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maintenance strategies (including the re-profiling interval, inspection interval, lubrication interval, 
depth and optimal sequence of re-profiling, and so on). Finally, the approach discussed in this study 
can be applied to cargo train wheels or to other technical problems (e.g. other industries, other 
components). 

Statistics summaries (Table.7) in this study include the parameters’ posterior distribution mean, SD, 
MC error, and the 95% HPD interval. In Table.7, 01 means that the wheels mounted in the first 
bogie (as 1x ) have a shorter lifetime than those in the second (as 2x ). However, the influence 
could possibly be reduced as more data are obtained in the future, because the 95% HPD interval 
includes 0 point. Because 5.0 , there is a positive relationship between the wheels mounted on the 
same locomotive; in addition, the heterogeneity among the locomotives is significant. Meanwhile, 

11  suggests that the predictive lifetimes for those wheels mounted on the first locomotive are 
longer than if the frailties are not considered; in fact, 12 indicates the opposite conclusion.  

Table.7 Posterior Distribution Summaries 

Parameter mean SD MC error 95% HPD Interval 
0  -10.39 2.888 0.2622 (-16.61, -4.79) 

1  0.3293 0.4927 0.02016 (-0.661, 1.271) 
 0.563 0.269 0.01038 (0.1879, 1.225) 

1  0.1441 0.1374 0.004822 (0.01192, 0.5258) 

2  1.866 1.016 0.03628 (0.3846, 4.308) 

1b  0.1361 1.595 0.1037 (-3.196, 3.364) 

2b  0.758 2.182 0.1672 (-3.7, 5.248) 

3b  1.94 2.514 0.2105 (-3.126, 7.342) 

4b   4.447 2.668 0.2389 (-0.5652, 10.48) 

5b  6.342 2.684 0.2415 (1.126, 12.29) 

6b  8.159 2.724 0.2417 (2.843, 14.15) 
 

Baseline hazard rate statistics based on the above results are shown in Table.8 and Fig.6. At the fourth 
piecewise interval, the wheels’ baseline hazard rate increases dramatically.  

Table.8 Baseline Hazard Rate Statistics 

Piecewise  
Intervals( 1000km) 

1 2 3 4 5 6 
(0, 60] (60, 120] (120, 180] (180, 240] (240, 300] (300, 360] 

k  1.15 2.13 6.96 85.37 567.93 3494.69 
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k

 
Fig.6 Plot of Baseline Hazard Rate 

By considering the random effects resulting from the natural variability (explained by covariates) and 
from the unobserved random effects within the same group (explained by frailties), we can determine 
other reliability characteristics of lifetime distribution. The statistics on reliability )(tR and cumulative 
hazard rate )(t for the two wheels mounted in different bogies are listed in Table.9, Fig.7 and Fig.8. 

Fig.6 and Fig.7 show frailties between Locomotive 1 and Locomotive 2. In addition, for these 
locomotives, the wheels mounted in the first bogie ( 1x ) have lower reliability and a higher 
cumulative hazard rate than those mounted in the second one ( 2x ).  

 Table.9 Reliability and Cumulative hazard statistics 

Distance 
(1000 km) 

Reliability )(tR  Cumulative hazard )(t  
Locomotive 1 Locomotive 2 Locomotive 1 Locomotive 2 

Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II 
60 0.999577 0.999412 0.994534 0.99241 0.000184 0.000256 0.00238 0.003309 

120 0.998425 0.997811 0.97979 0.97202 0.000685 0.000952 0.008867 0.012325 
180 0.992318 0.989338 0.90496 0.870393 0.003349 0.004655 0.04337 0.060285 
240 0.881485 0.839169 0.195241 0.103252 0.054785 0.076151 0.709428 0.986101 
300 0.350289 0.232678 1.26E-06 6.31E-09 0.455574 0.633245 5.899379 8.200106 
360 0.000433 2.11E-05 2.75E-44 2.82E-61 3.363977 4.67591 43.56128 60.54995 
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Fig.7 Plot of the reliabilities for Locomotive 1 and Locomotive 2 

   
 

Fig.8 Plot of the Cumulative hazard for Locomotive 1 and Locomotive 2 
 

Fig.7 and Fig.8 show change points in the wheels. For example, the reliability declines sharply at the 
fourth piecewise interval, and at the fifth piecewise interval, the cumulative hazard increases 
dramatically. 

In what follows, several other finds are briefly discussed. These include: lifetime prediction and 
replacement optimisation, preventative maintenance optimisation, and re-profiling optimisation. 

First, determining reliability characteristics distributed over the wheels’ lifetime could be used to 
optimise replacement strategies. The results could also support related predictions for spares 
inventory. 

Second, the change points (Fig.6, Fig.7, Fig.8) appearing in the fourth and fifth piecewise interval 
(from 180 000 to 300 000 kilometres) indicate that after running about 180 000 kilometres, the 
locomotive wheel has a high risk of failure. Rolling contact fatigue (RCF) problems could start at the 
fifth interval (after 240 000 kilometres). Therefore, special attention should be paid if the wheels have 
run longer than these change points. Finally, because re-profiling may leave cracks over time and 
reduce the wheel’s lifetime, cracks should be checked after re-profiling to improve the lifetime. 
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Third, the wheels installed in the first bogie should be given more attention during maintenance. 
Especially when the wheels are re-profiled, they should be checked starting with the first bogie to 
avoid duplication of effort. Note that in the studied company, the inspecting sequences are random; 
this means that the first checked wheel could belong in the second bogie. After the second checked 
wheel is lathed or re-profiled, if the diameter is less than predicted, the first checked wheel might need 
to be lathed or re-profiled again. Therefore, starting with the wheel installed in the first bogie could 
improve maintenance effectiveness. 

Last but not least, the frailties between locomotives could be caused by the different operating 
environments (e.g., climate, topography, and track geometry), configuration of the suspension, status 
of the bogies or spring systems, operation speeds and applied loads. Specific operating conditions 
should be considered when designing maintenance strategies because even if the locomotives and 
wheel types are the same, the lifetimes and operating performance could differ.  

Note that in section 3 of Paper IV, we consider a gamma frailty but in a Weibull frailty model. More 
details appear in Paper IV. The difference between the frailty models used in Papers III and IV is that 
the former is studied in a non-parametric formulate (the baseline hazard rate is piecewise), while the 
latter is studied in a parametric formulate (the baseline hazard rate is Weibull). 

6.4 Comparison Study of the Reliability Assessment of Locomotive Wheels  

RQ5 How the other analyses can be applied in integrated reliability analysis? 

The fifth research question is discusses in Paper IV. 

The service life of different railroad wheels can vary greatly. Take a Swedish railway company, for 
example. For the wheels of its 26 locomotives, statistics show that from 2010 to 2011, the longest 
mean time between re-profiling was around 59 000 kilometres and the shortest was about 31 000 
kilometres. The large difference can be attributed to the non-heterogeneous nature of the wheels; each 
differs according to its installed position, operating conditions, re-profiling characteristics, etc. 

In this study, we compare the wheels on two selected locomotives to explore some of these 
differences. We propose integrating reliability assessment data with both degradation data and re-
profiling performance data. Our case study compares: 1) degradation analysis using a Weibull frailty 
model; 2) work orders for re-profiling; 3) the performance of re-profiling parameter; and 4) wear rates.  

6.4.1 Results from comparing re-profiling work orders 

This section shows some results from comparing the work orders for wheel re-profiling by date 
(denoted as “by date” in Fig.9) and the corresponding bogies’ total number of kilometres in operation 
(denoted as “by kilometres” in Fig.10), separately. 

In Fig.9, the work order statistics for re-profiling are listed by date. The colour and the number of the 
bar represent the type of work order reported in the system. For instance, number 1 (blue) means the 
reason for re-profiling is a high flange; number 3 (red) represents the RCF problem; number 7 (purple) 
means the re-profiling is due to the dimension difference between wheels in a bogie; number 9 
(yellow) denotes a thick flange.  



 

 
 
 

19 6.4 Comparison Study of the Reliability Assessment of Locomotive Wheels 

The work orders have 14 categories for re-profiling: high flange, thin flange, RCF, unbalanced wheel, 
QR measurements, out-of-round wheel, dimension difference in between wheels in same bogie, 
vibrations, thick flange, cracks, remarks from measurement  of the wheel by Miniprof, other defects, 
to plant for re-profiling, and hollowware. These categories are determined by the operator and are 
listed in Appendix A of Paper IV. Take Fig.9 (a) for example. By April 2010, the wheels of 
Locomotive 1 have been re-profiled 12. Eight times it was related to category 3 (RCF problem), and 
four times it was in category 7 (the dimension difference between wheels in a bogie).   

 

 

 
 
                         (a)Work order numbers for Locomotive 1                                           (b) Work order numbers for Locomotive 2 

 

 
 

                          (c)Total re-profiling for Locomotive 1 /mm                         (d) Total re-profiling for Locomotive 2 /mm 
 

 

 
 
                    (e)Average re-profiling for Locomotive 1 /mm                     (f) Average re-profiling for Locomotive 2 /mm  
 

Fig.9 Work orders statistics on re-profiling by date 

In Fig. 9 and Fig.10, the figures on the left side provide the statistics for locomotive 1, while those on 
the right are for locomotive 2. Note that in Fig.10, the work order statistics on re-profiling are listed by 
the corresponding bogies’ total number of kilometres in operation on the reported date. In Fig.7 (b), 
the wheels have run 87721 kilometres and been re-profiled 16 times, 12 times due to category 1 (high 
flange) and 4 times due to category 9 (thick flange). 

It should be pointed out that since October 2010, new wheels have been mounted on both locomotives. 
However, the selected work orders are from the beginning of 2010; therefore, more re-profiling has 
been done on locomotive 1. 
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                         (a)Work order numbers for Locomotive 1                                           (b) Work order numbers for Locomotive 2 
 

 
 
                  (c)Total re-profiling for Locomotive 1                                  (d) Total re-profiling for Locomotive 2 
 

 
 
                  (e)Average re-profiling for Locomotive 1                           (f) Average re-profiling for Locomotive 2 
 

Fig.10 Work orders statistics on re-profiling by kilometres 

For locomotive 1, there are two failure modes: RCF and dimensional differences for wheels in the 
same bogie. The number of re-profiling work orders due to RCF is 64; the number due to dimensional 
differences for wheels in the same bogie is 8. Locomotive 2 shows three failure modes, high flange, 
RCF and thick flange. Again, the dominant failure mode is RCF with 38 re-profilings, followed by 
high flange with 12 re-profilings and thin flange with 4; see Fig.9 (b). Figs. 9 (c) and (d) show the 
amount of material removed at each re-profiling for all wheels. Even here, the RCF failure dominates 
with more material lost in re-profiling.  Figs. 9 (e) and (f) show the mean cut deep for each re-
profiling. The RCF failure mode has deeper cuts than other modes; the high flange failure mode has 
the smallest mean cut depth.   

Fig. 10 shows the same information but uses the global traveling distance in kilometres (km).  It 
should be pointed out that for Locomotive 1, Fig.10 has more bars on the left hand side because the 
axels have been changed and the recorded kilometres are different. 

Generally speaking, RCF is the main type of work order for both locomotives. What should also be 
pointed out is that in the work order statistics, natural wear and the amount of re-profiling are 
considered simultaneously. Yet the trends in the amount of re-profiling are different. For instance, for 
locomotive 1, there is a decreasing trend for new wheels, while locomotive 2 shows an increasing 
trend.   

During this investigation, we have discovered a number of problems in the work orders. For example, 
some reported data cannot be recognised (e.g., some wheels are apparently re-profiled twice on one 
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date; some reported wheel diameters after re-profiling are larger than before re-profiling).  We suggest 
applying related Key Performance Indicators (KPIs) to monitor the re-profiling work and the wheel 
performance in the future. 

6.4.2 Results from comparing re-profiling parameters 

This section provides some results from comparing the re-profiling parameters (the statistics before 
and after each re-profiling), including the diameter of the wheel (denoted as Rd), the flange thickness 
(denoted as Sd), the radial runout (denoted as Rr), and the axial runout (denoted as Rx).  

6.4.2.1 Assessment of re-profiling parameters (Rd) 

Starting in this section, we only include statistics by re-profiling date. In addition, due to the 
similarities of the wheels installed in the same bogie, we only list statistics for the chosen wheel within 
each bogie. The red line represents the statistics obtained before re-profiling; the blue line represents 
statistics after re-profiling. 

Fig.11 shows locomotive 1 on the left hand side and locomotive 2 on the right; for the graphs, the y-
axle is the wheel diameter and the x-axle is the re-profiling date.  For locomotive 1, the graphs start 
with the last re-profiling of an old wheel; step two is the first re-profiling with new wheels.  

 

 

 
                  
                (a)Rd statistics for Locomotive 1 (I1H)                                                         (b) Rd statistics for Locomotive 2 (I1H)                                        
 

 
 

(c)Rd statistics for Locomotive 1 (II1H)                                                         (d) Rd statistics for Locomotive 2 (II1H)                                        
 

Fig.11 Rd statistics by date (before and after re-profiling): one example (I1H & II1H) 
 

The wheels installed in the same bogie show similar trends in before and after re-profiling (denoted as 
 Rd).  Rd is decreasing for locomotive 1 and increasing for locomotive 2. 

6.4.2.2 Assessment of re-profiling parameter (Sd)  

Fig.12 shows some statistics of the Sd for the selected wheels. 
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Locomotive 1 is represented on the left hand side, with locomotive 2 on the rightt.  For both, the 
flange thickness increases during winter and decreases in summer; this phenomenon is especially 
pronounced for locomotive 1 and the first bogie and first axle; see the dotted lines in Fig.12a.  

 

 
 

(a)Sd statistics for Locomotive 1 (I1H)                                                         (b) Sd statistics for Locomotive 2 (I1H)      
 

 
 
 

(c)Sd statistics for Locomotive 1 (II1H)                                                         (d) Sd statistics for Locomotive 2 (II1H)                                        
                                  

Fig.12 Sd statistics by date (before and after re-profiling): one example (I1H & II1H) 
 

Like the Rd statistics, the Sd statistics for the wheels installed in the same bogie are quite similar. The 
“after” statistics (in blue) are stable. The “before” statistics (in red) are gradually becoming stable, 
which means the gap (denoted as  Sd) is decreasing. Note that if we check the before and after 
statistics in different seasons, we see that the red line is decreasing in the summer and increasing in the 
winter; see Fig.12 (a).   

6.4.2.3 Assessment of re-profiling parameter ( Rd, Sd, Rr, Rx) 

In this section, we simultaneously consider the gaps of the four parameters discussed above: Rd 
(blue), Sd (green), Rr (red), and Rx (yellow).  

 

 
 

(a) Gap statistics for Locomotive 1 (I1H)                                                         (b) Gap statistics for Locomotive 2 (I1H)      
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(c) Gap statistics for Locomotive 1 (II1H)                                                         (d) Gap statistics for Locomotive 2 (II1H)   
 

Fig.13 gap statistics by date (before and after re-profiling): one example (I1H & II1H)  

As discussed above, the statistics for the wheels installed in the same bogie are quite similar. Among 
these four parameters, the changing of Rd is the most obvious, with Sd coming second. The 
changing of Rr and Rx are random and the amount is quite small compared to the first two 
parameters. Therefore, we suggest applying the first two parameters to monitor the wheels’ re-
profiling performance in the future. 

6.4.3 Results from comparing wear rate 

This section shows some results from comparing the wheels’ wear rates (Tables.10 to 13). More 
details appear in Appendix B (Table B.1- B.20) of Paper IV.  

Table 10 shows locomotive 1, bogie 1 and the first axle on the right side; Table 11 shows locomotive 
1, bogie 2 and the first axle on the right side; see Fig. 2 for the position of the bogies and axles. The 
number of re-profiling work orders is different between bogies: bogie 1 has 4 and bogie 2 has 5. The 
reason for the difference may be that bogie 1 was changed after the fourth re-profiling. The re-
profiling at times 1 to 4 was done at the same time for both bogies, extending over 12 months.  

As for locomotive 1, Table 10 shows that it has been running for 123.351 km; the mean distance 
between re-profiling is 41.117 km. The distance after the last re-profiling for bogie 2 was only 17.930 
km, less than half of the average distance for re-profiling numbers 1 to 4; see Table 11. Tables 10 and 
11 also show the diameter of the wheel before and after re-profiling and the amount of material 
removed at each re-profiling. The mean amount of material removed during re-profiling for bogie 1 is 
16.193 mm and for bogie 2, 11.176 mm. Remarkably, the amount of re-profiling for bogie 2, step 2 is 
27.04 mm, much more than the others; as noted above, the mean is 16.193 mm. If we compare natural 
wear with artificial wear, the former is between 15 mm and 20% of the total wear. In addition, the total 
wear rate for locomotive 2, bogie 1, is 0.619 mm/1000 km; for bogie 2, it is 0.393 mm/1000km. 

As mentioned, locomotive 1 and locomotive 2 have the same operating conditions (see Fig. 10 for the 
comparison), but the figures in Tables 12 and 13 show different results. Table 12 shows locomotive 2, 
the first bogie, the first axle, and the right hand side wheel; Table 13 shows the second bogie, the first 
axle, and the right hand side wheel.   This locomotive has been re-profiled 4 times in 15 months; the 
mean distance between re-profiling is 56.990 km. The mean amount of material removed for re-
profiling for bogie 1 is 15.10 mm; for bogie 2 it is 16.51 mm. The last re-profiling for the first bogie 
removed 26.59 mm and for the second bogie 31.47 mm. Finally, the total wear rate for locomotive 2, 
bogie 1, is 0.452 mm/1000 km and for bogie 2, 0.484 mm/1000km 
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Table.10 Statistics for wear rate: an example (locomotive 1, I1H) 

Locomotive 1 Position I1H Total/Average
Number of re-profiling 1 2 3 4 4 times
Re-profiling date 201010 201103 201108 201110 12 months
Reported kilometres /1000km 720.254 759.032 815.661 843.605 / 
Absolute kilometres /1000km 0 38.778 56.629 27.944 123.351
Diameters (before)/mm 1252.72 1240.08 1207.11 1187.81 / 
Diameters (after)/mm 1243.93 1213.04 1189.64 1176.34 / 
Re-profiling Amount/mm 8.79 27.04 17.47 11.47 64.77
Natural Wear/mm 0 3.85 5.93 1.83 11.61
Total Wear/mm 8.79 30.89 23.4 13.3 76.38
Re-profiling Amount % 1 0.875 0.747 0.862 0.848
Natural Wear % 0 0.125 0.253 0.138 0.152
WearRate re-profiling / 0.697 0.308 0.41 0.525
WearRate Natural / 0.099 0.105 0.065 0.094
WearRate Total / 0.797 0.413 0.476 0.619

 

Table.11 Statistics for wear rate: an example (locomotive 1, II1H) 

Locomotive 1 Position II1H Total/Average
Number of re-profiling 1 2 3 4 5 5 times
Re-profiling date 201010 201103 201108 201110 201112 14 months
Reported kilometres 838.124 876.902 933.531 961.475 979.405 /
Absolute kilometres 0 38.778 56.629 27.944 17.93 141.281
Diameters (before)/mm 1251.01 1241.39 1226.34 1208.59 1182.66 /
Diameters (after)/mm 1244.72 1231.16 1211.09 1195.43 1171.71 /
Re-profiling Amount/mm 6.29 10.23 15.25 13.16 10.95 44.93
Natural Wear/mm 0 3.33 4.82 2.5 12.77 10.65
Total Wear/mm 6.29 13.56 20.07 15.66 23.72 55.58
Re-profiling Amount % 1 0.754 0.76 0.84 0.462 0.808
Natural Wear % 0 0.246 0.24 0.16 0.538 0.192
WearRate re-profiling / 0.264 0.269 0.471 0.611 0.318
WearRate Natural / 0.086 0.085 0.089 0.712 0.075
WearRate Total / 0.35 0.354 0.56 1.323 0.393

 

Table.12 Statistics for wear rate: an example (locomotive 2, I1H) 

Locomotive 2 Position 11H Total/Average
Number of re-profiling 1 2 3 4 4 times
Re-profiling date 201010 201102 201109 201201 15 months
Reported kilometres /1000km 33.366 87.721 161.346 204.349 /
Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983
Diameters (before)/mm 1251.97 1234.15 1217.22 1201.24 /
Diameters (after)/mm 1239.04 1225.41 1205.07 1174.65 /
Re-profiling Amount/mm 12.93 8.74 12.15 26.59 60.41
Natural Wear/mm 0 4.89 8.19 3.83 16.91
Total Wear/mm 12.93 13.63 20.34 30.42 77.32
Re-profiling Amount % 1 0.641 0.597 0.874 0.781
Natural Wear % 0 0.359 0.403 0.126 0.219
WearRate re-profiling / 0.161 0.165 0.618 0.353
WearRate Natural / 0.09 0.111 0.089 0.099
WearRate Total / 0.251 0.276 0.707 0.452
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Table.13 Statistics for wear rate: an example (locomotive 2, II1H) 

Locomotive 2 Position 21H Total/Average
Number 1 2 3 4 4 times
Date 201010 201102 201109 201201 15 months
Reported kilometres /1000km 33.366 87.721 161.346 204.349 /
Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983
Diameters (before)/mm 1252.09 1236.67 1213.58 1200.81 /
Diameters (after)/mm 1241.75 1221.98 1204.06 1169.34 /
re-profiling Amount/mm 10.34 14.69 9.52 31.47 66.02
Natural Wear/mm 0 5.08 8.4 3.25 16.73
Total Wear/mm 10.34 19.77 17.92 34.72 82.75
re-profiling Amount % 1 0.743 0.531 0.906 0.798
Natural Wear % 0 0.257 0.469 0.094 0.202
WearSpeed re-profiling / 0.27 0.129 0.732 0.386
WearSpeed Natural / 0.093 0.114 0.076 0.098
WearSpeed Total / 0.364 0.243 0.807 0.484
 
By comparing the interval of the re-profiling date, we can simply divide each re-profiling episode into 
seasons (for instance, the summer and warmer times, the winter and cooler times).  

In Table.14, we list the statistics for the WearRate_total of all the wheels for the two locomotives. The 
mean wear rates are 0.516 mm/1000km for locomotive 1 and 0.480 mm/1000km for locomotive 2; in 
other words, locomotive 1 has a 75% higher wear rate. Axles 1, 2 and 5 have 11.6 % higher wear rate 
than axles 3, 4 and 6. 

Table.14 Statistics for total wear rates 

WearRate total
11H 11V 12H 12V 13H 13V 21H 21V 22H 22V 23H 23V

Locomotive 1 0.619 0.607 0.614 0.605 0.542 0.533 0.393 0.404 0.467 0.467 0.467 0.472
Locomotive 2 0.452 0.439 0.448 0.448 0.449 0.448 0.484 0.482 0.568 0.575 0.487 0.476
 
By comparing the above parameters of the wheels installed in different positions on the locomotives, 
as well as the results shown in Appendix B (Table B.1 – B.20) of Paper IV, we reach the following 
additional conclusions:  

the average wear rate of the wheels on locomotive 1 is greater than for locomotive 2; 
the natural wear is about 10% ~ 25 % of the total wear; the re-profiling is about  75 %~ 90% 
of the total; 
the natural wear in winter time is slower than in summer; 
the re-profiling rate in winter is faster than in summer;  
the wheels installed on the second axel in the second bogie have an abnormally higher wear 
rate than the wheels installed in the same bogie but on the other axel; this requires more 
attention; 
The wheels installed in the same bogie perform similarly. 

Generally speaking, the results in this study show that for the two locomotives: 1) under the specified 
installation position and operating conditions, the Weibull frailty model is a useful tool to determine 
wheel reliability; 2) RCF is the principal reason for re-profiling work orders; 3) the re-profiling 
parameters can be applied to monitor both the wear rate and the re-profiling loss; 4) the total wear of 
the wheels can be investigated by considering natural wear and re-profiling loss separately, but natural 
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wear and re-profiling loss differ depending on the locomotive and the operating conditions; and 5) the 
bogie in which a wheel is installed influences wheel reliability. 
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7 Conclusions 

From the discussion of the research questions, we reach the following conclusions. 

First, the proposed integrated procedure for Bayesian reliability inference using MCMC methods has 
built a full framework for related academic research and engineering applications to implement 
modern computational-based Bayesian approaches, especially for reliability inference. The suggested 
procedure is a continuous improvement process with four stages (Plan, Do, Study, and Action) and 11 
sequential steps, which can deal with small and incomplete datasets and simultaneously consider the 
influence of different covariates.  

Second, the parametric Bayesian models (including Bayesian Exponential Regression Model, 
Bayesian Weibull Regression Model, and Log-normal Regression Model, etc.), non-parametric 
Bayesian models (piecewise constant hazard rate, etc.), frailty models (gamma frailty, etc), as well as 
the comparison study, are all useful tools for locomotive wheels’ reliability analysis using degradation 
data. Utilising the MCMC technique via the Gibbs sampler can facilitate the integration of high-
dimensional probability distributions to make inferences about model parameters and to make 
predictions.  

Third, the results of the case studies show that with the above models, we can determine the 
locomotive wheel’s reliability characteristics, including the baseline hazard rate )(t , reliability )(tR , 
and cumulative hazard rate )(t , etc. The results also allow us to evaluate and optimise wheel 
replacement and maintenance strategies (including the re-profiling interval, inspection interval, 
lubrication interval, depth and optimal sequence of re-profiling, and so on). 

Fourth, the case studies’ results also reveal that, the wheels’ lifetimes differ according to where they 
are installed on the locomotive. The differences could be influenced by the real running situation (e.g. 
topography), the locomotive’s centre of gravity, the braking forces and the curving forces should also 
be considered.  

Fifth, considering frailties can help with exploring the unobserved covariates and thus improve the 
model’s precision. Results indicate a close positive relationship between the wheels mounted on the 
same locomotive; the heterogeneity between locomotives is also significant. The results indicate the 
existence of change points which allow us to evaluate and optimise wheel replacement and 
maintenance strategies. 

Sixth, in the comparison study which takes an integrated data approach to reliability assessment by 
considering both degradation data and re-profiling data, we reach the following conclusion: 1) rolling 
contact fatigue (RCF) is the main type of re-profiling work order; 2) the re-profiling parameters can be 
applied to monitor both the wear rate and the re-profiling loss; 3) the total wear of the wheels can be 
determined by investigating natural wear and/or loss of wheel diameter through re-profiling loss, but 
these differ across locomotives and under different operating conditions; 4) the bogie in which a wheel 
is installed is a key factor in assessing the wheel’s reliability.  

Last but not least, the approach studied in this report can be applied to cargo train wheels or to other 
technical problems (e.g. other industries, other components). 
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8 Future research 

Based on the research conducted for this report, we suggest the following research: 

In this research, the case studies only focus on locomotive wheels. We should consider more 
applications, for instance, cargo train wheels, or other technical problems (e.g. other 
industries, other components). 
The results achieved by this study, could be extended to other train wheels research topics, 
e.g., Wheels’ “health diagnostic”. 
The covariates considered in this report are limited to locomotive wheels’ installed positions; 
more covariates must be considered. These include such factors as operating environment 
(e.g., climate, topography, track geometry, the braking forces and the curving forces), 
configuration of the suspension, status of the bogies and the spring systems, operation speeds 
and the applied loads, etc. 
We have chosen vague prior distributions for most of the case studies. Other prior 
distributions, including both informative and non-information prior distributions, should be 
studied. 
In subsequent research, we plan to consider using our results to optimise maintenance 
strategies and the related LCC (Life Cycle Cost) problem considering maintenance costs, 
particularly with respect to different maintenance inspection levels and inspection periods 
(long term, medium term and short term).  
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An Integrated Procedure for Bayesian Reliability 
Inference using Markov Chain Monte Carlo 
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Abstract:  
The recent proliferation of Markov Chain Monte Carlo (MCMC) approaches has led to the use of the Bayesian inference in 
a wide variety of fields. To facilitate MCMC applications, this paper proposes an integrated procedure for Bayesian 
inference using MCMC methods, from a reliability perspective. The goal is to build a framework for related academic 
research and engineering applications to implement modern computational-based Bayesian approaches, especially for 
reliability inferences. The procedure developed here is a continuous improvement process with four stages (Plan, Do, Study, 
and Action) and 11 steps, including: 1) data preparation; 2) prior inspection and integration; 3) prior selection; 4) model 
selection; 5) posterior sampling; 6) MCMC convergence diagnostic; 7) Monte Carlo error diagnostic; 8) model 
improvement; 9) model comparison; 10) inference making; 11) data updating and inference improvement. The paper 
illustrates the proposed procedure using a case study.

Keywords:  
Bayesian statistics, reliability analysis, Markov Chain Monte Carlo (MCMC), PDSA 

1 Introduction 

The  recent proliferation of Markov Chain Monte Carlo (MCMC) approaches has led to the use of the Bayesian 
inference in a wide variety of fields, including behavioural science, finance, human health, process control, 
ecological risk assessment, and risk assessment of engineered systems (Kelly & Smith, 2009, and the 
references therein). Discussions of MCMC related methodologies and their applications in Bayesian Statistics 
now appear throughout the literature (Congdon, 2001; 2003). For the most part, studies in reliability analysis 
focus on the following topics and their cross-applications:  1) hierarchical reliability models (Robinson, 2001; 
Johnson, et al., 2003; Wilson, 2008; Lin, et al., 2013a); 2) complex system reliability analysis (Tont, et al., 
2010; Lin, 2008; Lin, et al. 2011); 3) faulty tree analysis (Hamada, et al., 2004; Graves, et al., 2007); 4) 
accelerated failure models (Kuo & Mallick, 1997; Walker & Mallick, 1999; Hanson & Johnson, 2004;  Ghosh 
& Ghosal, 2006; Komarek & Lesaffre, 2009); 5) reliability growth models (Li, et al., 2002; Tao, et al., 2004); 
6) Masked system reliability (Kuo & Yang, 2000); 7) software reliability engineering (Ilkka, 2006; Tamura, et 
al. 2011); 8) Reliability benchmark problems (Schueller & Pradlwarter, 2007; Au, et al., 2007). However, most 
of the literature emphasizes the model’s development; no studies offer a full framework to accommodate 
academic research and engineering applications seeking to implement modern computational-based Bayesian 
approaches, especially in the area of reliability.  

To fill the gap and to facilitate MCMC applications from a reliability perspective, this paper proposes an 
integrated procedure for the Bayesian inference. The remainder of the paper is organized as follows. Section 2 
outlines the integrated procedure; this comprises a continuous improvement process including four stages and 
11 sequential steps. Sections 3 to 8 discuss the procedure, focusing on: 1) prior elicitation; 2) model 
construction; 3) posterior sampling; 4) MCMC convergence diagnostic; 5) Monte Carlo error diagnostic; 6) 
model comparison.  Section 9 gives examples and discusses how to use the procedure. Finally, Section 10 
offers conclusions.  
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2 Description of Procedure

The proposed procedure uses the Bayesian reliability inference to determine system (or unit) reliability and 
failure distribution, and to support the optimisation of maintenance strategies, etc.

The general procedure begins with the collection of reliability data (see Fig.1.). These are the observed values 
of a physical process, such as various “lifetime data”. The data may be subject to uncertainties, such as 
imprecise measurement, censoring, truncated information, and interpretation errors. Reliability data are found 
in the “current data set”; they contain original data and include the evaluation, manipulation, and/or 
organisation of data samples. At a higher level in the collection of data, a wide variety of “historical 
information” can be obtained, including the results of inspecting and integrating this “information”, thereby 
adding to “prior knowledge”. The final level is reliability inference, which is the process of making a 
conclusion based on “posterior results”. 

Fig.1. An Integrated Procedure for Bayesian Reliability Inference via MCMC 

Using the above definitions, we propose an integrated procedure which constructs a full framework for the 
standardized process of Bayesian reliability inference. As shown in Fig.1, the procedure is composed of a 
continuous improvement process including four stages (Plan, Do, Study, Action) which will be discussed later 
in this section and 11 sequential steps: 1) data preparation; 2) prior inspection and integration; 3) prior 
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selection; 4) model selection; 5) posterior sampling; 6) MCMC convergence diagnostic; 7) Monte Carlo error 
diagnostic; 8) model improvement; 9) model comparison; 10) inference making; 11) data updating and 
inference improvement. 

Step 1: Data preparation. The original data sets for “history information” and “current data” related to 
reliability studies need to be acquired, evaluated, and merged. In this way, “history information” can 
be transferred to “prior knowledge”, and “current data” can become “reliability data” in later steps. 

Step 2: Prior inspection and integration. During this step, “prior knowledge” receives a second and 
more extensive treatment, including a reliability consistency check, a credence test, and a multi-source 
integration. This step improves prior reliability data. 

Step 3: Prior selection. This step uses the results achieved in Step 2 to determine the model’s form and 
parameters, for instance, selecting informative or non-informative priors, or unknown parameters and 
their distributed forms. 

Step 4: Model selection. This step determines a reliability model (parametric or non-parametric), 
selecting from n candidates for the studied system/units. It considers both “reliability data” and the 
inspection, integration, and selection of priors to implement the thi  ( nii ,1,1 ).

Step 5: Posterior sampling. In this step, we determine a sampling method (for instance, Gibbs 
sampling, Metropolis-Hastings sampling, etc.) to implement MCMC simulation for the model’s 
posterior calculations. 

Step 6: MCMC convergence diagnostic. In this step, we check whether the Markov chains have 
reached convergence. If they have, we move on to the next step; if they have not, we return to Step 5 
and re-determine the iteration times of posterior sampling or re-choose the sampling methods; if the 
results still cannot be satisfied,  we return to Steps 3 and 4  and re-determine the prior selection and 
model selection. 

Step 7: Monte Carlo error diagnostic. We need to decide if the Monte Carlo error is small enough to 
be accepted in this step. As discussed in Step 6, if it is accepted, we go on to the next step; if it is not, 
we return to Step 5 and re-decide the iteration times of the posterior sampling or re-choose the 
sampling methods; if the results still cannot be accepted, we go back to Steps 3 and 4 and recalculate 
the prior selection and model selection.  

Step 8: Model improvement. Here, we choose the thi 1 candidate model, and restart from Step 4. 

Step 9: Model comparison. After implementing n candidate models, we need to: 1) compare the 
posterior results to determine the most suitable model; or 2) adopt the average posterior estimations 
(using the Bayesian model average or the MCMC model average) as the final results. 

Step 10: Inference making. After achieving the posterior results in Step 9, we can perform Bayesian 
reliability inference to determine system (or unit) reliability, find the failure distribution, and optimise 
maintenance strategies, etc.;

Step 11: Data updating and inference improvement. Along with the passage of time, new “current data” 
can be obtained, relegating “previous” inference results to “historical data”. By updating “reliability 
data” and “prior knowledge”, and restarting at Step 1, we can improve the reliability inference.  
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In summary, by using this step-by-step method, we can create a continuous improvement process for the 
Bayesian reliability inference.  

Note that Steps 1, 2, and 3 are assigned to the “Plan” stage when data for MCMC implementation are prepared. 
In addition, a part of Steps 1, 2, and 3 refer to the elicitation of prior knowledge. Steps 4 and 5 are both 
assigned to the “Do” stage, where the MCMC sampling is carried out. Steps 6 to 9 are treated as the “Study” 
stage; in these steps, the sampling results are checked and compared; in addition, knowledge is accumulated 
and improved upon by implementing various candidate reliability models. The “Action” stage consists of Steps 
10 and 11; at this point, a continuously improved loop can be obtained. In other words, by implementing the 
step-by-step procedure, we can accumulate and gradually update prior knowledge. Equally, posterior results 
will be improved upon and become increasingly robust, thereby improving the accuracy of the inference results. 

Also note that this paper will focus on six steps and their relationship to MCMC inference implementation: 1) 
prior elicitation; 2) model construction; 3) posterior sampling; 4) MCMC convergence diagnostic; 5) Monte 
Carlo error diagnostic; 6) model comparison. 

3 Elicitation of Prior Knowledge 

In the proposed procedure, the elicitation of prior knowledge plays a crucial role. It is related to Steps 1, 2, and 
3 and is part of the Plan Stage, as shown in Fig.1.  

In practice, prior information is derived from a variety of data sources and is also considered “historical data” 
(or “experience data”). Those data take various forms are require various processing methods. Although in the 
first step, “historical information” can be transferred to “prior knowledge”, this is not enough. Credible prior 
information and proper forms of these data are necessary to compute the model’s posterior probabilities, 
especially in the case of a small sample set. Meanwhile, either non-credible or improper prior data may cause 
instability in the estimation of the model’s probabilities or lead to convergence problems in MCMC 
implementation. This section will discuss some relevant prior elicitation problems in Bayesian reliability 
inference, namely, including acquiring priors, performing a consistency check and credence test, fusing multi-
source priors, and selecting which priors to use in MCMC implementation. 

3.1 Acquisition of Prior Knowledge 
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Fig.2. Data Source: Transfer from Historical to Prior Knowledge 

In Bayesian reliability analysis, prior knowledge comes from a wide range of historical information. As shown 
in Fig.2, data sources include: 1) engineering design data; 2) component test data; 3) system test data; 4) 
operational data from similar systems; 5) field data in various environments; 6) computer simulations; 7) 
related standards and operation manuals; 8) experience data from similar systems; 9) expert judgment and 
personal experience. Of these, the first seven yield objective prior data, and the last two provide subjective 
prior data.  

Prior data also take a variety of forms, including reliability data, the distribution of reliability parameters, 
moments, confidence intervals, quantiles, upper and lower limits, etc.

3.2 Inspection of Priors 

In Bayesian analysis, different prior information will lead to similar results when the data sample is sufficiently 
large. While the selection of priors and their form has little influence on posterior inferences, in practice, 
particularly with a small data sample, we know that some prior information is associated with the current 
observed reliability data. However, we are not sure whether the prior distributions are the same as the posterior 
distributions. In other words, we cannot confirm that all posterior distributions converge and are consistent (a 
consistency check issue). Even if they pass a consistency check, we can only say that they are consistent under 
a certain specified confidence interval. Therefore, an important prerequisite for applying any prior information 
is to confirm its credibility by performing a consistency check and credence test.  

As noted by Li (1999), the consistency check of prior and posterior distributions was first studied from a 
statistical viewpoint by Walker (1969). Under specified conditions, posterior distributions are not only 
consistent with those of the priors, but they have an asymptotic normality which could simplify their 
calculation. Li (1999) also notes that studies on the consistency check of priors have focused on checking the 
moments and confidence intervals of reliability parameters, as well as historical data. A number of checking 
methodologies have been developed, including Robustness analysis, Significance test, Smirov-test, Rank-Sum 
test, Mood test, etc. More studies have been reviewed by Ghosal (2000) and Choi and Ramamoorthi (2008).  

The credibility of prior information can be viewed as the probability that it and the collected data come from 
the same population. Li (1999) lists the following methods to perform a credence test: Frequency method, 
Bootstrap method, and Rank-Sum text, etc. However, in the case of a small sample or simulated data, the 
above methods are not suitable because even if data pass the credence test, selecting different priors will lead 
to different results. We therefore suggest a comprehensive use of the above methods to ensure the superiority 
of Bayesian inference. 

3.3 Fusion of Prior Information 

Due to the complexity of the system, not to mention the diversification of test equipment and methodologies, 
prior information can come from many sources. As all priors can pass a consistency check, an integrated fusion 
estimation based on the smoothness of credibility is sometimes necessary.  In such situations, a common 
choice is parallel fusion estimation or serial fusion estimation, achieved by determining the reliability 
parameters’ weighted credibility (Li, 1999). However, as the credibility computation can be difficult, other 
methods to fuse the priors may be called for. In the area of reliability, related research studies include the 
following: Alok et al. (1994) develop Bayes estimators for the true binomial survival probability when there 
are multiple sources of prior information; Ren et al. (2002) adopt Kullback information as the distance measure 
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between different prior information and fusion distributions, minimizing the sum to get the combined prior 
distribution; looking at aerospace propulsion as a case study, Liu et al. (2004a) discuss  a similar fusion 
problem in a complex system and suggest (Liu et al.; 2004b) a fusion approach based on expert experience 
with the Analytic Hierarchy Process (AHP); Fang (2006) proposes using multi-source information fusion 
techniques with Fuzzy-Bayesian for reliability assessment; Zhou et al. (2012) propose a Bayes fusion approach 
for assessment of spaceflight products, integrating degradation data and field lifetime data with Fisher 
information and the Weiner process. In general, the most important thing for multi-source integration is to 
determine the weights of the different priors. 

3.4 Selection of priors based on MCMC 

In Bayesian reliability inference, two kinds of priors are very useful: the conjugate prior and the non-
informative prior. To apply MCMC methods, however, the “log-concave prior” is recommended.  

The conjugate prior family is very popular, because it is convenient for mathematical calculation. The concept, 
along with the term "conjugate prior", was introduced by Howard and Robert (1961) in their work on Bayesian 
decision theory. If the posterior distributions are in the same family as the prior distributions, the prior and 
posterior distributions are called conjugate distributions, and the prior is called a conjugate prior. For instance, 
the Gaussian family is a conjugate of itself (or a self-conjugate) with respect to a Gaussian likelihood function: 
if the likelihood function is Gaussian, choosing a Gaussian prior distribution over the mean distribution will 
ensure that the posterior distribution is also Gaussian. This means that the Gaussian distribution is a conjugate 
prior for the likelihood function which is also Gaussian. Other examples include the following: the conjugate 
distribution of a Normal distribution is a Normal or inverse-Normal distribution; the Poisson and the 
Exponential distribution’s conjugate both have a Gamma distribution, while the Gamma distribution is a self-
conjugate; the Binomial and the negative Binomial distribution’s conjugate both have a Beta distribution; the 
Polynomial distribution’s conjugate is a Dirichlet distribution, etc.

Non-informative prior refers to a prior for which we only know certain parameters’ value ranges or their 
importance; for example, there may be a uniform distribution. A non-informative prior can also be called a 
vague prior, flat prior, diffuse prior, or ignorance prior, etc. There are many different ways to determine the 
distribution of a non-informative prior, including Bayes hypothesis, Jeffrey’s rule, reference prior, inverse 
reference prior, probability-matching prior, Maximum entropy prior, relative likelihood approach, cumulative 
distribution function, Monte Carlo method, bootstrap method, random weighting simulation method, Harr 
invariant measurement, Laplace prior, Lindley rule, generalized maximum entropy principle, and the use of 
marginal distributions. From another perspective, the types of prior distribution also include informative prior, 
hierarchical prior, Power prior and non-parameter prior processes. 

At this point, there are no set rules for selecting prior distributions. Regardless of the manner used to determine 
a prior’s distribution, the selected prior should be both reasonable and convenient for calculation. Of the above, 
the conjugate prior is a common choice. To facilitate the calculation of MCMC, especially for adaptive 
rejection sampling and Gibbs sampling, a popular choice is log-concave prior distribution. Log-concave prior 
distribution refers to a prior distribution in which the natural logarithm is concave, i.e. the second derivative is 
non-positive. Common logarithmic concavity prior distributions include the normal distribution family, logistic 
distribution, student's t distribution, the exponential distribution family, the uniform distribution on a finite 
interval,  greater than the gamma distribution with a shape parameter greater than 1,  Beta distribution with a 
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value interval (0 , 1), etc. As logarithmic concavity prior distributions are very flexible, this paper recommends 
their use in reliability studies. 

4 Model Construction 

To apply MCMC methods, we divide the reliability models into four categories: parametric, semi-parametric, 
frailty, and other non-traditional reliability models.  

Parametric modelling offers straightforward modelling and analysis techniques. Common choices include 
Bayesian Exponential Model, Bayesian Weibull Model, Bayesian Extreme Value Model, Bayesian Log-
Normal Model, and Gamma Model. Lin et al. (2013b) present a reliability study using the Bayesian parametric 
framework to explore the impact of a railway train wheel’s installed position on its service lifetime and to 
predict its reliability characteristics. They apply a MCMC computational scheme to obtain the parameters’ 
posterior distributions. Besides the hierarchical reliability models mentioned above, other parametric models 
include Bayesian Accelerated Failure Models (AFM), Bayesian Reliability Growth models, Bayesian Faulty 
Tree Analysis (FTA), etc.

Semi-parametric reliability models have become quite common and are well accepted in practice, since they 
offer a more general modelling strategy with fewer assumptions. In these models, the failure rate is described 
in a semi-parametric form, or the priors are developed by a stochastic process. With respect to the semi-
parametric failure rate, Lin et al. (2013c) adopt the piecewise constant hazard model to analyze the distribution 
of the locomotive wheels’ lifetime. The applied hazard function is sometimes called a piecewise exponential 
model; it is convenient because it can accommodate various shapes of the baseline hazard over a number of 
intervals. In a study of the processes of priors, Ibrahim et al. (2001) examine the gamma process, beta process, 
correlated prior prior processes, and the Dirichlete process separately, using an MCMC computational scheme. 
By introducing the gamma process of the prior’s increment, Lin et al. (2007) propose its reliability when 
applied to the Gibbs sampling scheme. 

In reliability inference, most studies are implemented under the assumption that individual lifetimes are 
independent identified distributed (i.i.d). However, Cox proportional hazard (CPH) models can sometimes not 
be used because of the dependence of data within a group. Take train wheels as an example; because they have 
the same operating conditions, the wheels mounted on a particular locomotive may be dependent. In a different 
context, some data may come from multiple records of wheels installed in the same position but on other 
locomotives. Modelling dependence has received considerable attention, especially in cases where the datasets 
may come from related subjects of the same group (Sahu et al., 1998; Aslanidou et al., 1978). A key 
development in modelling such data is to build frailty models in which the data are conditionally independent. 
When frailties are considered, the dependence within subgroups can be considered an unknown and 
unobservable risk factor (or explanatory variable) of the hazard function. In a recent reliability study, Lin et al.
(2013c) consider a gamma shared frailty to explore the unobserved covariates’ influence on the wheels on the 
same locomotive. 

Some non-traditional Bayesian reliability models are both interesting and helpful.  For instance, Lin et al.
(2011) point out that in traditional methods of reliability analysis, a complex system is often considered to be 
composed of several subsystems in series. The failure of any subsystem is usually considered to lead to the 
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failure of the entire system. However, some subsystems’ lifetimes are long enough or they never fail during the 
life cycle of the entire system. In addition, such subsystems’ lifetimes will not be influenced equally under 
different circumstances. For example, the lifetimes of some screws will far exceed the lifetime of the compressor in 

which they are placed. However, the failure of the compressor’s gears may directly lead to its failure. In practice, 
such interferences will affect the model’s accuracy, but are seldom considered in traditional analysis. To 
address these shortcomings, Lin et al. (2011) present a new approach to reliability analysis for complex 
systems, in which a certain fraction of subsystems is defined as a “cure fraction” based on the consideration 
that such subsystems’ lifetimes are long enough or they never fail during the life cycle of the entire system; this 
is called the cure rate model.  

5 Posterior Sampling

To implement MCMC calculations, Markov chains require a stationary distribution. There are many ways to 
construct these chains. During the last decade, the following Monte Carlo (MC) based sampling methods for 
evaluating high-dimensional posterior integrals have been developed: MC importance sampling, Metropolis-
Hastings sampling, Gibbs sampling, and other hybrid algorithms. In this section, we introduce two common 
samplings: 1) Metropolis-Hastings sampling, the best known MCMC sampling algorithm, and 2) Gibbs 
sampling, the most popular MCMC sampling algorithm in the Bayesian computation literature, which is 
actually a special case of Metropolis-Hastings sampling. 

5.1 Metropolis-Hastings sampling 

Metropolis-Hastings sampling is a well-known MCMC sampling algorithm, which comes from importance 
sampling. It was first developed by Metropolis et al. (1953) and later generalized by Hastings (1970). Tierney 
(1994) gives a comprehensive theoretical exposition of the algorithm; Chib and Greenberg (1995) provide an 
excellent tutorial on it. 

Suppose we need to create a sample using the probability density function )(p . Let K be a regular constant; 
this is a complicated calculation (e.g., a regular factor in Bayesian analysis) and is normally an unknown 
parameter. Then, let Khp /)()( . Metropolis sampling from )(p can be described as follows: 

Step 1. Choose an arbitrary starting point 0 , and set 0)( 0h ;
Step 2. Generate a proposal distribution ),( 21q , which represents the probability for 2 to be the 
next transfer value as the current value is 1 . The distribution ),( 21q is named as the candidate 
generating distribution. This candidate generating distribution is symmetric, which means 

),(),( 1221 qq . Now based on the current , generate a candidate point *  from ),( 21q ;
Step 3. For the specified candidate point * ,  calculate the density ratio with * and the current 
value 1t-  as follows: 

)(
)(

)(
)(),(

1

*

1

*
*

1
tt

t h
h

p
p

The ratio refers to the probability to accept * , where the constant K can be neglected; 
Step 4. If * increases the probability density, so that 1 , then accept * and let *

t . Otherwise, 
if 1 , then let 1tt  and go to Step 2. 

The acceptance probability can be written as: 
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Following the above steps, generate a Markov chain with the sampling points ,,,, 10 k . The transfer 
probability from t to 1t is related to t , but not related to 110 ,,, t . After experiencing a sufficiently 
long burn-in period, the Markov chain reaches a steady state and the sampling points ntt ,,1  from )(p
are obtained. 

Metropolis-Hastings sampling was promoted by Hastings (1970). The candidate generating distribution can 
adopt any form and does not need to be symmetric. In Metropolis-Hastings sampling, the acceptance 
probability can be written as: 
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In the above equation, as ),(),( *
11

*
tt qq , and Metropolis-Hastings sampling becomes Metropolis 

sampling. The Markov transfer probability function can therefore be: 
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From another perspective, when using Metropolis-Hastings sampling, say we need to generate the candidate 
point * . In this case, generate an arbitrary  from a uniform distribution )1,0(U . Set *

t  if 
),( *

1t  and 1tt  otherwise.  

5.2 Gibbs sampling 

Metropolis-Hastings sampling is convenient for lower-dimensional numerical computation.  However, if  has 
a higher dimension, it is not easy to choose an appropriate candidate generating distribution. By using Gibbs 
sampling, we only need to know the full conditional distribution. Therefore, it is more advantageous in high-
dimensional numerical computation.  Gibbs sampling is essentially a special case of Metropolis-Hastings 
sampling, as the acceptance probability equals to one. It is currently the most popular MCMC sampling 
algorithm in the Bayesian reliability inference literature. Gibbs sampling is based on the ideas of Grenader 
(1983), but the formal term comes from Geman & Geman (1984) to analyze lattice in image processing. A 
landmark work for Gibbs sampling in problems of Bayesian inference is Gelfand & Smith (1990). Gibbs 
sampling is also called heat bath algorithm in statistical physics. A similar idea, data augmentation, is 
introduced by Tanner & Wong (1987). 

Gibbs sampling belongs to the Markov update mechanism and adopts the ideology of “divide and conquer”. It 
supposes all other parameters are fixed and known, inferring a set of parameters. Let i  be a random 
parameter or several parameters in the same group. For the j th group, the conditional distribution is )( jf . To 
carry out Gibbs sampling, the basic scheme is as follows:  

Step1. Choose an arbitrary starting point ),,( )0()0(
1

)0(
k ;

Step2. Generate )1(
1  from the conditional distribution ),,|( )0()0(

21 kf and generate )1(
2 from the 

conditional distribution ),,,|( )0()0(
3

)1(
12 kf …… 

Step3. Generate )1(
j from ,,|( )1(

1jf ),,, )0()0(
1

)1(
1 kjj …… 
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Step4. Generate )1(
k from ),,,|( )1(

1
)1(

2
)1(

1 kkf ;
As shown above, one step transitions from )0( to ),,( )1()1(

1
)1(

k , where )1( can be viewed as a 
one-time accomplishment of the Markov chain. 
Step5. Go back to Step2. 

After t iterations, ),,( )()(
1

)( t
k

tt can be obtained, and each component ,,, )3()2()1(  will be 
achieved. The Markov transition probability function is: 

),,|(),,|(),,|(),( *
1

*
13

*
1221

*
kkkk fffp

Starting from different )0( , as t , the marginal distribution of )(t  can be viewed as a stationary 
distribution based on the theory of the ergodic average. In this case, the Markov chain is seen as converging 
and the sampling points are seen as observations of the sample.    

For both methods, it is not necessary to choose the candidate generating distribution, but it is necessary to do 
sampling from the conditional distribution. There are many other way to do sampling from the conditional 
distribution, including sample-importance re-sampling, rejection sampling, Adaptive Rejection Sampling 
(ARS), etc.

6 Markov Chain Monte Carlo Convergence Diagnostic 

Because of the Markov chain’s ergodic property, all statistics inferences are implemented under the assumption 
that the Markov chain converges. Therefore, the Markov Chain Monte Carlo convergence diagnostic is very 
important. When applying MCMC for reliability inference, if the iteration times are too small, the Markov 
chain will not “forget” the influence of the initial values; if the iteration times are simply increased to a large 
number, there will be insufficient scientific evidence to support the results, causing a waste of resources.

Markov Chain Monte Carlo convergence diagnostic is a hot topic for Bayesian researchers. Efforts to 
determine MCMC convergence have been concentrated in two areas. The first is theoretical, and the second is 
practical. For the former, the Markov transition kernel of the chain is analyzed in an attempt to predetermine a 
number of iterations that will insure convergence in a total variation distance within a specified tolerance of the 
true stationary distribution. Related studies include Polson (1996), Roberts & Rosenthal (1997), Mengerson & 
Tweedie (1996), etc. While approaches like these are promising, they typically involve sophisticated 
mathematics, as well as laborious calculations that must be repeated for every model under consideration. As 
for practical studies, most research is focused on developing diagnostic tools, including Gelman & Rubin 
(1992), Raftery & Lewis (1992), Garren & Smith (1993), Roberts & Rosenthal (1998), etc. When these tools 
are used, sometimes the bounds obtained are quite loose; even so, they are considered both reasonable and 
feasible.

At this point, more than 15 MCMC convergence diagnostic tools have been developed. In addition to a basic 
tool which provides intuitive judgments by tracing a time series plot of the Markov chain, other examples 
include tools developed by Gelman & Rubin (1992), Raftery & Lewis (1992), Garren & Smith (1993), Brooks 
& Gelman (1998), Geweke (1992), Johnson (1994), Mykland, et al. (1995), Ritter & Tanner (1992), Roberts 
(1992), Yu (1994), Yu & Mykland (1995), Zellner & Min (1995), Heidelberger & Welch (1983), Liu et al.
(1992), etc.

We can divide diagnostic tools into categories depending on the following: 1) if the target distribution needs to 
be monitored; 2) if the target distribution needs to calculate a single Markov chain or multiple chains; 3) if the 



11

diagnostic results depend on the output of the Monte Carlo algorithm, not on other information from the target 
distribution.  

It is not wise to rely on one convergence diagnostic technique, and researchers suggest a more comprehensive 
use of different diagnostic techniques. Some suggestions include: 1) simultaneously diagnosing the 
convergence of a set of parallel Markov chains; 2) monitoring the parameters’ auto-correlations and cross-
correlations; 3) changing the parameters of the model or the sampling methods; 4) using different diagnostic 
methods and choosing the largest pre-iteration times as the formal iteration times; 5) combining the results 
obtained from the diagnostic indicators’ graphs.  

Six tools have been achieved by computer programs. The most widely used are the convergence diagnostic 
tools proposed by Gelman & Rubin (1992) and Raftery & Lewis (1992); the latter is an extension of the former. 
Both are based on the theory of Analysis of Variance (ANOVA); both use multiple Markov chains and both 
use the output to perform the diagnostic.   

6.1 Gelman-Rubin Diagnostic 

In traditional literature on iterative simulations, many researchers suggest that to guarantee the Markov chain’s 
diagnostic ability, multiple parallel chains should be used simultaneously to do the iterative simulation for one 
target distribution.  In this case, after running the simulation for a certain period, it is necessary to determine 
whether the chains have “forgotten” the initial value and if they converge. Gelman & Rubin (1992) point out 
that lack of convergence can sometimes be determined from multiple independent sequences but cannot be 
diagnosed using simulation output from any single sequence. They also find that more information can be 
obtained during one single Markov chain’s replication process than in multiple chains’ iterations. Moreover, if 
the initial values are more dispersed, the status of non-convergence is more easily found. Therefore, they 
propose a method using multiple replications of the chain to decide whether it becomes stationary in the second 
half of each sample path. The idea behind this is an implicit assumption that convergence will be achieved 
within the first half of each sample path; the validity of this assumption is tested by the Gelman-Rubin 
diagnostic or the variance ratio method. 

Based on normal theory approximations to exact Bayesian posterior inference, Gelman-Rubin diagnostic 
involves two steps. In step one, for a target scalar summary , select an over-dispersed starting point from its 
target distribution )( . Then, generate m Markov chains for )(  , where each chain has n2 times iterations. 
Delete the first n times iterations and use the second n times iterations for analysis. In Step 2, apply the 
between-sequence variance B/n and the within-sequence variance W  to compare the Corrected Scale 
Reduction Factor (CSRF).  CSFR is calculated by m Markov chains and the formed mn values in the 
sequences which stem from )( . By comparing the CSFR value, the convergence diagnostic can be 
implemented. In addition,

m

j
..j.mn

B

1

2)(
1

1 ,
n

t
jtj. n 1

1 ,
m

j
j... m 1

1 ,
m

j

n

t
j.jtnm

W
1 1

2)(
)1(

1                                   

where jt   denotes the t th of the n iterations of in chain j , and ,m,j 1 ,n,t 1 . Let be a random 
variable of )( , with mean and variance 2 under the target distribution. Suppose that has some unbiased 
estimator V̂ . To explain the variability between andV̂ , Gelman and Rubin construct a student- t distribution 
with a mean and varianceV̂ as follows: 
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where V̂ is a weighted average ofW and B . The above estimation will be unbiased if the starting points of the 
sequences are drawn from the target distribution. However, it will be over-estimated if the starting distribution 
is over-dispersed. Therefore, V̂ is also called a "conservative" estimate.  Meanwhile, because the iteration 
number n is limited, the within-sequence varianceW can be too low, leading to falsely diagnosing convergence. 
As n , both V̂ and W should be close to 2 .  In other words, the scale of current distribution of should 
be reducing as n is increasing. 

Denote 2VRs as the scale reduction factor (SRF). By applying W , WVRp becomes the 
potential scale reduction factor (PSRF). By applying a correct factor )2(dfdf  for PSRF, a correct scale 
reduction factor (CSRF) can be obtained as follows: 
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where df represents the degree of freedom in student- t distribution. Following Fisher (Lawless, 1982), 
)(2 V/VarVdf . The diagnostic based on CSRF can be implemented as follows: if 1cR , it indicates that the 

iteration number n is too small. When n  is increasing, V̂ will become smaller andW will become larger. If cR is
close to 1 (e.g. 1.2cR  ), we can conclude that each of the m sets of n simulated observations is close to the 
target distribution, and the Markov chain can be viewed as converging.    

6.2 Brooks-Gelman Diagnostic 

Although the Gelman-Rubin diagnostic is very popular, its theory has several defects. Therefore, Brooks & 
Gelman (1998) extend the method in the following way. 

First, in the above equation, )2(dfdf represents the ratio of the variance between the student- t distribution 
and the normal distribution. Brooks & Gelman (1998) point out some obvious defects in the equation. For 
instance, if the convergence speed is slow, or 2df , CSRF could be infinite and may even be negative. 
Therefore, they set up a new and correct factor for PSRF; the new CSRF becomes: 
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Second, Brooks & Gelman (1998) propose a new and more easily implemented way to calculate PSRF. The 
first step is similar to Gelman-Rubin’s diagnostic. Using m chains’ second n iterations, obtain an empirical 
interval %)1(100 after each chain’s second n iteration. Then, m  empirical intervals can be achieved within 
a sequence, denoted by l . In the second step, determine the total empirical intervals for sequences from mn
estimates of m chains, denoted by L . Finally, calculate the PSRF following 

L
lR*

p

The basic theory behind the Gelman-Rubin and Brooks-Gelman diagnostics is the same. The difference is that 
we compare the variance in the former and the interval length in the latter.  

Third, Brooks & Gelman (1998) point out that the value of CSRF being close to one is a necessary but not 
sufficient condition for MCMC convergence. Additional condition is that bothW and V̂ should stabilize as a 
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function of n . That is to say, if W andV̂ have not reached the steady state, CSRF could still be one. In other 
words, before convergence, VW and both should be close to one. Therefore, as an alternative, Brooks & 
Gelman (1998) propose a graphical approach to monitoring convergence. Divide the m sequences into batches 
of length b . Then calculate )(ˆ kV )(kW and )(kRc based upon the latter half of the observations of a sequence 
of length kb2 , for bn,,k 1 . Plot )(ˆ kV , )(kW and )(kRc  as a function of k  on the same plot. 
Approximate convergence is attained if )(kRc is close to one and at the same time, both )(ˆ kV and )(kW
stabilize at one. 

Fourth and finally, Brooks & Gelman (1998) discuss the multivariate situation. Let denote the parameter 
vector and calculate the following: 
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Let 1 be Maximum Characteristic Root of B/nW 1 ; then, the PSRF can be expressed as: 
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7 Monte Carlo Error Diagnostic 

When implementing the MCMC method, besides determining the Markov chains’ convergence diagnostic, we 
must check two uncertainties related to the Monte Carlo point estimation: statistical uncertainty and Monte 
Carlo uncertainty. 

Statistical uncertainty is determined by the sample data and the adopted model. Once the data are given and the 
models are selected, the statistical uncertainty is fixed. For Maximum Likelihood Estimation (MLE), statistical 
uncertainty can be calculated by the inverse square root of the Fisher information. For Bayesian inference, 
statistical uncertainty is measured by the parameters’ posterior standard deviation. 

Monte Carlo uncertainty stems from the approximation of the model’s characteristics, which can be measured 
by a suitable Standard Error (SE). Monte Carlo standard error of the mean, also called Monte Carlo error (MC 
error), is a well-known diagnostic tool. In this case, define MC error as the ratio of the sample’s standard 
deviation and the square root of the sample volume, which can be written as: 
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Obviously, as n becomes larger, MC error will be smaller. Meanwhile, the average of the sample data will be 
closer to the average of the population. 

As in the MCMC algorithm, we cannot guarantee that all the sampled points are independent identified 
distributed (i.i.d.), we must correct the sequence’s correlation. To this end, we introduce the auto-correlation 
function and Sample Size Inflation Factor (SSIF). 
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Following the sampling methods introduced in section 5, define a sampling sequence n,,1 with length n .
Suppose there are auto-correlations which exist among the adjacent sampling points; this means 0),( 1ii .
Furthermore, 0),( kii . Then, the auto-correlation coefficient k can be calculated by: 
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where
n

t
tn 1

1 . Following the above discussion, the MC error with consideration of auto-correlations in 

MCMC implementation can be written as: 

1
1)(

n
SDSE

                               

In the above equation, nSD represents the MC error shown in )]([ yISE . Meanwhile, )1()1(
represents the SSIF. nSD is helpful to determine whether the sample volume n is sufficient, and SSIF 
reveals the influence of the auto-correlations on the sample data’s standard deviation. Therefore, by following 
each parameter’s MC error, we can evaluate the accuracy of its posterior.  

The core idea of the Monte Carlo method is to view the integration of some function )(xf as an expectation of 
the random variable; therefore, the sampling methods implemented on the random variable are very important. 
If the sampling distribution is closer to )(xf , the MC error will be smaller. In other words, by increasing the 
sample volume or improving the adopted models, the statistical uncertainty could be reduced; the improved 
sampling methods could also reduce the Monte Carlo uncertainty. 

8 Model Comparison 

In Step 8, we might have several candidate models which could pass the MCMC convergence diagnostic and 
the MC error diagnostic. Thus, model comparison is a crucial part of reliability inference.  Broadly speaking, 
discussions of the comparison of Bayesian models focus on: Bayes factors, model diagnostic statistics, and 
measure of fit, etc. In a more narrow sense, the concept of model comparison refers to selecting a better model 
after comparing several candidate models. The purpose of doing model comparison is not to determine the 
model’s correctness. Rather, it is to find out why some models are better than others (e.g., which parametric 
model or non-parametric model; which prior distribution; which covariates; which family of parameters for 
application, etc.), or to obtain an average estimation based on the weighted estimate of the model parameters 
and stemming from the posterior probability of model comparison (e.g., model average). 

In Bayesian reliability inference, the model comparison methods can be divided into three categories:  

1) Separate estimation (Gelman et al. 2004; Kass & Raftery, 1995; Gelfand & Dey, 1994; Volinsky & 
Raftery, 2000; Kass & Wasserman, 1995; Spiegelhalter et al.2002; Geisser & Eddy, 1979; Gelfand et 
al.1992; Newton & Raftery, 1994; Lenk & Desarbo, 2000; Meng & Wong, 1996; Chib 1995; Chib & 
Jeliazhov, 2001; Lewis & Raftery, 1997): posterior predictive distribution, Bayes Factors (BF) and its
approximate estimation-Bayesian Information Criterion (BIC), Deviance Information Criterion (DIC), 
Pseuco Bayes Factor (PFB), Conditional Predictive Ordinate (CPO). It also includes some estimations 
based on the likelihood theory, using the same as BF but offering more flexibility, for instance, 
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harmonic mean estimator, importance sampling, reciprocal importance estimator, bridge sampling, 
candidate estimator, Laplace-Metropolis estimator, data augmentation estimator, etc.; 

2) Comparative estimation, including different distance measures (Sahu & Cheng, 2003; Mengersen & 
Robert, 1996; Ibrahim & Laud, 1994; Gelfand & Ghosh, 1998; Chen et al. 2004): entropy distance, 
Kullback-Leibler Divergence (KLD), L-measure, and weighted L-measure; 

3) Simultaneous estimation (Green, 1995; Robert & Casella, 2004; Stephens, 2000; Tatiana et al. 2003; 
Tanner & Wong, 1987; Gregory, 2012): Reversible Jump MCMC (RJMCMC), Birth and Death 
MCMC (BDMCMC), Fusion MCMC (FMCMC). 

Related reference reviews are given by Kass & Raftery (1995), Tatiana, et al.(2003), and Chen & Huang 
(2005) . 

This section introduces three popular comparison methods used in Bayesian reliability studies: BF, BIC and 
DIC. BF is the most traditional method, BIC is BF’s approximate estimation, and DIC improves BIC by 
dealing with the problem of the parameters’ degree of freedom. 

8.1 Bayes Factors (BF) 

Suppose M represents k models which need to be compared. The data set D stems from ),,1( kiMi , and 

kMM ,1 are called competing models.  Let ),(),( iiii MDLMDf denote the distribution of D , with 
consideration of the i th model and its unknown parameter vector of dimension ip , also called the likelihood 
function of D with a specified model. Under prior distribution )( ii M and 1(1 )M i

k
i i , the marginal 

distributions of D are found by integrating out the parameters as: 

i

(),()( iiiiii d)MMDfMDp

           
where i represents the parameter data set for the i th mode. As in the data likelihood function, the quantity

)()( ii MDLMDp  is called model likelihood. Suppose we have some preliminary knowledge about model 
probabilities )( iM ; after considering the given observed data set D , the posterior probability of i th model 
being the best model is determined as: 

k

j
jjjjjj

iiiiii

ii
i

d)MMDfM

d)MMDfM

Dp
MMDp

DMp

1
](),()([

(),()(

)(
)()(

)(

        

The integration part of the above equation is also called the prior predictive density or marginal likelihood, 
where )(Dp is a non-conditional marginal likelihood of D .

Suppose there are two models, 1M and 2M . Let 12BF denote the Bayes factors, equal to the ratio of the 
posterior odds of the models to the prior odds: 
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The above equation shows that, 12BF  equals to the ratio of the model likelihoods for the two models. Thus, it 
can be written as: 

)(
)(

)(
)(

)(
)(

2

1

2

1

2

1
M
M

MDp
MDp

DMp
DMp

                                

We can also say that 12BF shows the ratio of posterior odds of the model 1M and the prior odds of 1M .In this 
way, the collection of model likelihoods )( iMDp is equivalent to the model probabilities themselves (since 
the prior probabilities )( iM are known in advance) and, hence, could be considered as the key quantities 
needed for Bayesian model choice. 

Jeffreys (1961) recommends a scale of evidence for interpreting Bayes factors.  Kass & Raftery (1995) provide 
a similar scale, along with a complete review of Bayes factors, including their interpretation, computation or 
approximation, robustness to the model-specific prior distributions and applications in a variety of scientific 
problems.

8.2 Bayesian Information Criterion (BIC) 

Under some situations, it is difficult to calculate BF, especially for those models which consider different 
random effects, or adopt diffusion priors or a large number of unknown and informative priors. Therefore, we 
need to calculate BF’s approximate estimation. The Bayesian Information Criterion (BIC) is also called the 
Schwarz information criterion (SIC), and is the most important method to get BF’s approximate estimation. 
The key point of BIC is to obtain the approximate estimation of )( iMDp . It is proved by Volinsky & Raftery 
(2000) that 

)(ln
2

),(ln)(ln npMDfMDp i
iii

Then, we get SIC as follows: 
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As discussed above, considering two models, 1M and 2M , 12BIC represents the likelihood ratio test statistic 
with  model sample size n  and the  model’s complexity as penalty. It can be written as 
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where ip  is proportional to the model’s sample size and complexity.   

Kass & Raftery (1995) discuss BIC’s calculation program. Kass & Wasserman (1995) show how to decide n .
Volinsky & Raftery (2000) discuss the way to choose n  if the data are censored. If n is large enough,   BF’s 
approximate estimation can be written as 

)50exp( 1212 BIC.BF

Obviously, if the BIC is smaller, we should consider model 1M ; otherwise, 2M should be considered.                 
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8.3 Deviance Information Criterion (DIC)

Traditional methods for model comparison consider two main aspects: the model’s measure of fit and the 
model’s complexity. Normally, the model’s measure of fit can be increased by increasing the model’s 
complexity. For this reason, most model comparison methods are committed balancing both two points.  To 
utilize BIC,  the number p  of free parameters of the model must be calculated. However, for complex 
Bayesian hierarchical models, it is very difficult to get p ’s exact number. Therefore, Spiegelhalter et al. (2002) 
propose the Deviance Information Criterion (DIC) to compare Bayesian models. Celeux et al. (2006) discuss 
DIC issues for a censored data set; this paper and other researchers’ discussion of it are representative literature 
in the DIC field in recent years. 

DIC utilizes deviance to evaluate the model’s measure of fit, and it utilizes the number of parameters to 
evaluate its complexity. Note that it is consistent with the Akaike Infromation Criterion (AIC), which is used to 
compare classical models (Akaike, 1971). 

Let )(D denote the Bayesian deviance, and 
))((2log)( DpD

          
Let dp denote the model’s effective number of parameters, and 

)))((2ln())((2ln
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Select the model with a lower DIC value. As 5DIC , the difference between models can be ignored.

9 Discussions with a case study 

In this section, we discuss a case study for a locomotive wheel’s degradation data to illustrate the proposed 
procedure. The case was first discussed by Lin et al. (2013b). 

To explore the impact of a locomotive wheel’s installed position on its service lifetime and to predict its 
reliability characteristics, the Bayesian Exponential Regression Model, Bayesian Weibull Regression Model 
and Bayesian Log-normal Regression Model are used to establish the wheel’s lifetime using degradation data 
and taking into account the position of the wheel. The position is described by three different discrete 
covariates: the bogie, the axle and the side of the locomotive where the wheel is mounted. The goal is to 
determine reliability, failure distribution, and optimal maintenance strategies for the wheel. 

During the Plan Stage, we first collect the “current data,” including the diameter measurements of the 
locomotive wheel, total distances corresponding to the “time to maintenance” and the wheel’s bill of material 
(BOM) data. Then, we note the installed position and transfer the diameter into degradation data, which 
becomes “reliability data” during the “data preparation” process. We consider the non-informative prior for the 
constructed models and select the vague prior with log-concave form, which has been determined to be a 
suitable choice as a non-informative prior selection. 
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In the Do Stage, we set up the three models noted above for the degradation analysis, Bayesian Exponential 
Regression Model, Bayesian Weibull Regression Model and Bayesian Log-normal Regression Model. For our 
calculations, we implement Gibbs sampling.  

After checking the MCMC convergence diagnostic and accepting the Monte Carlo error diagnostic for all three 
models, in the Study Stage, we compare the model with the three DIC values. After comparing the DIC values, 
we select the Bayesian Log-normal Regression Model as the most suitable. 

With the chosen model’s posterior results, in the Action Stage, we make our maintenance predictions and apply 
them to the proposed maintenance inspection level. This, in turn, allows us to evaluate and optimise the 
wheel’s replacement and maintenance strategies (including the re-profiling interval, inspection interval, 
lubrication interval, and so on). 

As more data are collected in the future, the old “current data set” will be replaced by new “current data”; 
meanwhile, the results achieved in this case will become “history information”, which will be transferred to be 
“prior knowledge” and a new cycle will start. With this step-by-step method, we can create a continuous 
improvement process for the locomotive wheel’s reliability inference. 

10 Conclusions 

This paper has proposed an integrated procedure for Bayesian reliability inference using Markov Chain Monte 
Carlo Methods. The goal is to build a full framework for related academic research and engineering 
applications to implement modern computational-based Bayesian approaches, especially for reliability 
inference. The suggested procedure is a continuous improvement process with four stages (Plan, Do, Study, 
and Action) and 11 sequential steps including: 1) data preparation; 2) priors’ inspection and integration; 3) 
prior selection; 4) model selection; 5) posterior sampling; 6) MCMC convergence diagnostic; 7) Monte Carlo 
error diagnostic; 8) model improvement; 9) model comparison; 10) inference making; 11) data updating and 
inference improvement. The  paper illustrates the proposed procedure using a case study. It concludes that the 
procedure can be used to perform Bayesian reliability inference to determine system (or unit) reliability, failure 
distribution, and to support maintenance strategies optimization, etc.
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Abstract:  
This paper undertakes a reliability study using a Bayesian survival analysis framework to explore the impact of a 
locomotive wheel’s installed position on its service lifetime and to predict its reliability characteristics. The 
Bayesian Exponential Regression Model, Bayesian Weibull Regression Model and Bayesian Log-normal 
Regression Model are used to analyze the lifetime of locomotive wheels using degradation data and taking into 
account the position of the wheel. This position is described by three different discrete covariates: the bogie, the 
axle and the side of the locomotive where the wheel is mounted. The goal is to determine reliability, failure 
distribution, and optimal maintenance strategies for the wheel. The results show that: 1) under specified 
assumptions and a given topography, the position of the locomotive wheel could influence its reliability and 
lifetime; 2) the Bayesian Lognormal Regression Model is a useful tool. 

Keywords: 

Reliability; Bayesian survival analysis; Locomotive wheels; Deviance Information Criterion (DIC); Markov Chain 
Monte Carlo (MCMC).  

1 Introduction 

The service life of a railroad wheel can be significantly reduced due to failure or damage, leading to 
excessive cost and accelerated deterioration. Damage data show that a major proportion of wheel 
damage stems from degradation.  

In order to monitor the performance of wheels and make replacements before adverse effects occur, the 
railway industry uses both preventive and predictive maintenance. By predicting the wear of train 
wheels (Johansson & Andersson1; Braghin et al 2 ; Tassini et al 3 ), fatigue (Bernasconi et al 4 ; Liu, et 
al 5 ), tribological aspects (Clayton 6 ), and failures (Yang & Letourneau 7 ), the railway industry can 
design strategies for different types of preventative maintenance (re-profiled, lubrication, etc.) for 
various time periods (days, months, seasons, running distance, etc.).  Software dedicated to predicting 
wear rate has also been studied recently (Pombo et a 8 ). In addition, condition monitoring data have 
been studied to increase the wheels’ lifetime (Skarlatos D, Karakasis K & Trochidis A 9 ; Donato P et 
al10 ; Stratman et al 11; Palo 13,12 ). A large number of related studies examining both experimental and 
numerical aspects have been published in the last decade (see above references). 

In one common preventive maintenance policy in the Swedish railway company studied, a wheel’s 
diameter is measured after running a certain distance. If it is reduced to a pre-specified height, the 
wheel is replaced. Otherwise, it is re-profiled or other maintenance strategies are adopted. To optimize 
maintenance strategies for railway wheels, some researchers have used degradation data to determine 
reliability and failure distribution (Freitas et al 15,14 ; and the reference therein). However, these studies 
cannot solve the combined problem of small data samples and incomplete data sets while 
simultaneously considering the influence of several covariates. For example, to avoid the potential 
influence of the different locations of wheels, the researchers only consider those on the left side of 
axle number 1 and on certain specified cars.  

Other researchers have noted that the wheel’s position on the locomotive could influence degradation. 
For example, researchers from Canada (Yang & Letourneau 7 ) suggest that certain attributes, including 
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a wheel’s installed position (right or left), might influence its wear rate, but they do not provide case 
studies. Freitas and colleagues14 point out that “the degradation of a given wheel might be associated 
with its position on a given car”; Palo 13,12 conclude that “different wheel positions in a bogie show 
significantly different force signatures”.  In a recent seminar in Sweden (Kiruna, April 2012), experts 
from Norway illustrated their new findings that in a given topography the wheels installed on the right 
and the left sides experience different force. Unfortunately, they only illustrated the results with signal 
charts derived from condition monitoring tools. Nor did they consider the influence of wheel position 
on degradation.  

To address the above issues, this paper undertakes a reliability study using a Bayesian survival analysis 
framework (Ibrahim16 ; Congdon 18,17 ; Lin19 ) to explore the impact of the wheel’s installed position 
on its service lifetime and to predict its reliability characteristics. The Bayesian Exponential Regression 
Model, Bayesian Weibull Regression Model and Bayesian Log-normal Regression Model are used to 
analyze the lifetime of locomotive wheels using degradation data and taking into account the position 
of the wheel. This position is described by three different discrete covariates: the bogie, the axle and 
the side of the locomotive where the wheel is mounted. In particular, by introducing the covariate ix ’s
linear function x'

i , these three parameter models are constructed depending on the failure rate i in the 
exponential model, the log of the rate parameter )ln( i in the Weibull model and the logarithmic 
mean i in the log-normal models. The contribution of this work is to propose Bayesian survival 
models, which can solve the combined problem of small data samples and incomplete data sets while 
simultaneously considering the influence of several covariates. The goal is to determine reliability, 
failure distribution, and optimal maintenance strategies for the wheel. 

The organization of this paper is as follows. The introductory section defines the problem. Section 2 
describes the data. Section 3 presents three Bayesian survival models. In those models, some 
parameters depend on the above-mentioned covariates: the bogie, the axle and the side of the 
locomotive where the wheel is mounted. Section 4 provides the results for a real data set. This section 
adopts vague priors and a Markov Chain Monte Carlo (MCMC) computational scheme to obtain the 
parameters’ posterior distributions. Section 5 compares the proposed models with Deviance 
Information Criterion (DIC), MTTF predictions and discusses the effect on the results of setting 
maintenance inspection levels. Finally, Section 6 offers conclusions and comments. We also note our 
ongoing study in the JVTC (Järnvägstekniskt Centrum, Sweden) program. 
 
2 Data Description 

This paper focuses on the wheels of the locomotive of a cargo train. While two types of locomotives 
with the same type of wheels are used in cargo trains, we consider only one.  

2.1 Locomotive Wheels’ Degradation Data 

As shown in Fig.1, there are two bogies for each locomotive and three axels for each bogie. The 
installed position of the wheels on a particular locomotive is specified by a bogie number (I, II-number 
of bogies on the locomotive), an axel number (1, 2, 3-number of axels for each bogie) and the side of 
the wheel on the axle (right or left) where each wheel is mounted. 
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Fig. 1 Wheel positions specified in this study

The diameter of a new locomotive wheel in the studied railway company is 1250 mm. In the 
company’s current maintenance strategy, a wheel’s diameter is measured after running a certain 
distance. If it is reduced to 1150 mm, the wheel is replaced by a new one. Otherwise, it is re-profiled or 
other maintenance strategies are implemented. A threshold level for failure, denoted as 1H in this paper, 
is defined as 100 mm ( 1H = 1250 mm -1150 mm). The wheel’s failure condition is assumed to be 
reached if the diameter reaches 1H .

The company’s complete database also includes the diameters of all locomotive wheels at a given 
observation time, the total running distances corresponding to their “time to be maintained (be re-
profiled or replaced)”, and the wheels’ bill of material (BOM) data, from which we can determine their 
positions.  

2.2 Locomotive Wheels’ Lifetime Data

In reliability analyses using degradation data, Freitas et al 15,14 set up a threshold level as defined in 
section 2.1. The researchers used the degradation data as the wheels’ lifetime data. The censored 
lifetime data were defined if the degradation measurements had reached the threshold level when they 
were observed.  However, in our study, the way we obtain the wheels’ lifetime data and how we define 
censored data differ from theirs.  

We make the following assumptions. First, the wheel’s degradation follows a linear path (assumption 
1). Second, all maintenance activities are assumed to be effective (assumption 2). A specified special 
maintenance inspection level is denoted as 2H  and 120 HH . If effective maintenance activities 
are implemented before the degradation height reaches 2H , the wheel’s degradation speed will be 
lower; if effective maintenance activities are implemented when the degradation height exceeds 2H ,
the degradation speed will remain unchanged.  

With respect to assumption (1), Freitas et al 15,14 show that the linear degradation path is reasonable by 
plotting the historical records of wheel degradation.  In our studies, we calculate the squares of their 
correlation coefficient for a linear path, which are all larger than 0.9 and indicate that the linear 
degradation path is also a reasonable choice in our case. Assumption (2) is also logical, as the railway 
company’s maintenance activities are intended to prolong the service life of the wheels. However, if 
maintenance activities are implemented too late (for example, after the degradation height exceeds 2H ), 
the improvement effects are not significant; at most, they will prevent the degradation from speeding 
up. In addition, any maintenance activity could affect the wheel’s diameter, especially if it is re-
profiled.  

Based on the above assumptions, and as shown in Fig.2 we take the following steps: 



4

Fig.2 Plot of the wheel degradation data: one example 

Step 1: Establish threshold level 1H . As defined in section 2.1, in Fig.2, we use 1H =100 mm. 
In addition, according to assumption (2), we establish the specified maintenance inspection 
level 2H , where 120 HH . In Fig.2, we use 2H =50 mm. 

Step 2: Transfer the diameters of locomotive wheels at observation time t to degradation data; 
this equals to 1250 mm minus the corresponding observed diameter. 1B , 2B and 3B are three 
examples of degradation data shown  in Fig.2; 

Step 3: According to assumption (1), we assume a liner degradation path and construct a 
degradation line using the origin point and the degradation data.  

Step 4:  If the degradation data are not less than 1H =100 mm (for example: 1B ), the 
degradation line will intersect with 1H . Based on the point of intersection (for example, 1E )
and the wheel’s failure conditions (see section 2.1), the wheel’s lifetime can be determined 
(for example, 1D ). 

Step 5: If the degradation data are less than 1H =100 mm but more than 2H =50 mm (for 
example, 2B ), the extended degradation line will also intersect with 1H (for example, 2E ). 
Based on the intersection point and according to assumption (2) the wheel’s lifetime can be 
obtained (for example, 2D ). 

Step 6: If the degradation data are less than 2H , which equals to 50 mm in Fig.2 (for 
example, 3B ), the intersection point and the lifetime can be derived (for example, 3E and 3D  ) 
as discussed above. However, according to assumption (2), the slope of the extended 
degradation line could be lower and intersection point could be changed (for example, '

3E ).
Therefore, the lifetime could be longer than the original prediction (for example, '

3D ). In this 
case, the lifetime 3D is defined as right-censored. 

By following the above steps, we can obtain the locomotive wheels’ lifetime data and the right-
censored data.  

We consider the wheels of only one locomotive because for the same locomotive: 1) the wheels’ 
maintenance strategies are similar; 2) the axle load and running speed can be supposed to have no 
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obvious difference; 3) the operational environments including routes and climates are expected to be 
the same. Given these expectations, the installed positions become covariates. Ultimately, we can 
predict a wheel’s lifetime based on its positioning and other important characteristics, including mean 
time to failure (MTTF).  
 
3 Bayesian Survival Models  

3.1 Likelihood construction for right-censored data

In reliability analysis, the lifetime data are usually incomplete, and only a portion of the individual 
lifetimes are known. Take the locomotive wheels’ lifetime data for example. As discussed in section 
2.2, if the degradation data 3B is less than the specified maintenance inspection level 2H , the predicted 
lifetime 3D  is viewed as right-censored under assumption (2). Therefore, we believe maintenance 
activities will diminish degradation and the real lifetime '

3D  will exceed the predicted lifetime (see 
Fig.2). 

Right-censored data are often called Type I censoring in the literature; the corresponding likelihood 
construction problem has been extensively studied (Klein & Moeschberger 20 ; Lawless 21 ). Suppose 
there are n individuals whose lifetimes and censoring times are independent. The ith individual has life 
time iT and censoring time iL . The iT s are assumed to have probability density function )(tf and 
reliability function )(tR . The exact lifetime iT of an individual will be observed only if ii LT . The 
lifetime data involving right censoring can be conveniently represented by n pairs of random 
variables ),( iit , where iii LTt ,min  and 1i if ,ii LT and 0i if ii LT . That is, i  indicates 
whether the lifetime iT is censored or not. The likelihood function is deduced (Klein & 
Moeschberger 20 ; Lawless 21) as 

n

i
ii ii tRtftL

1

1)()]([)(                  (1) 

3.2 Bayesian Exponential regression model 

Suppose the lifetimes '
1 ),( nttt  for n  individuals are independent identically distributed (i.i.d.), 

and each corresponds to an exponential distribution with failure rate , where 0 . Therefore, the 
probability density function (p.d.f.) is )exp()( ii ttf . Correspondingly, the cumulative 
distribution function (c.d.f.) )( itF and the reliability function )( itR are )exp(1)( ii ttF

)(1 itR . Let '
21 ),,,( n  indicate whether the lifetime is censored or not, and let the 

observed data set for current study be denoted as 0D , where ),(0 t,nD ; following equation (1),  the 
likelihood function related to  is given by 

.)][exp()]exp([)( 1

1
0 ii ii

n

i
ttDL                                               (2) 

Suppose '
1 ),( piii xxx denotes the ith individual of the 1p  vector of covariates; X is the 

pn vector of covariates studied in reliability analysis, where p denotes the quantity of the considered 
covariates. Suppose  is a 1p  vector of regression coefficients, representing the degree of the 
covariates’ influence. Let )exp(x'

ii , and the data set for the current study be denoted by D ,
where ),( X,t,nD . Following equation (2), the joint likelihood function for the exponential 
regression model is given by 
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The prior distributions should be realistic and computationally feasible. There are two common choices 
for ’s prior distribution. One is uniform improper prior distribution, for example, 1)( ; the other 
is normal distribution. As proved by Ibrahim et al16 , the latter is a log-concave prior distribution and is 
convenient for the computation of the posterior distribution. In this paper, we assume a multinormal 
prior distribution ),(~ 00pN , with mean 0  and covariance matrix 0 . Let )(  denote the prior 
or posterior distributions for the parameters; then, the joint posterior distribution )( D can be written 
as
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Obviously, it is not easy to get the exact integration results for )( D  due to its complexity. Therefore, 
we select the MCMC method with the Gibbs sampler, which has been widely applied to Bayesian 
statistics since the 1990s, to carry out the posterior inference. Let )( j  denote some vector without the 
jth component. The jth full conditional distribution can be written as 

),(),(),( )()()(
00 ,j

j
j

j
j

j DLD .                                      (5) 

3.3 Bayesian Weibull regression model 

Suppose the lifetimes '
1 ),( nttt  for n  individuals are i.i.d., and each corresponds to a 2-parameter 

Weibull distribution ),(W , where 0 and 0 . The p.d.f. is )exp(),( 1
iii tttf  while 

the c.d.f. ),( itF and the reliability function ),( itR  are )exp(1),( ii ttF ),(1 itR .
To facilitate the analysis, let )(ln (note: it also can be viewed as an extreme value distribution). 
Then the reliability function becomes 

))(expexp(),( 1
iii tttf .                                                ( 6 ) 

Similarly, we can get ),( itF and ),( itR .

As discussed in section 3.2, the censoring indicators are denoted as '
21 ),,,( n and the observed 

data set is ),(0 t,nD , following equation (2); therefore, the likelihood function for and is

n

i
iii

n

i
i ttDL

n
i i

11
0 )exp()(ln)1(exp),( 1

 .                             (7) 

To construct the Weibull Regression Model, we introduce the covariates through . Denoting x'
ii

and following other definitions in section 3.2, the joint likelihood function for the Weibull regression 
model is given by 
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In this paper, we take and to be independent. Furthermore, we assume to be a gamma 
distribution denoted by ),( 00 baG  as its prior distribution, written as ),( 00 ba , which means 

)(exp),( 0
1

00 0 bba a  .                                                                                        (9) 

Assume  has a multinormal prior distribution ),( 00 with p vector, denoted by ),( 00pN .
Therefore, the joint posterior distribution can be obtained as 
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Then, the parameters’ full conditional distribution with Gibbs sampling can be written as 

)(exp)|,(),,|( 0
1)( 0 bDLD aj

j ;                                                (11) 

)()(
2
1exp)|,(),,|( ')(

0
1

00DLDj
j  .                                 (12) 

3.4 Bayesian Log-normal regression model 

Suppose the lifetimes '
1 ),( nttt  for n  individuals are i.i.d. and each )(ln t corresponds to a normal 

distribution ),( 2N . We can get it ’s log-normal distribution with parameters and 2 , denoted 
by ),( 2LN . Then the p.d.f. and reliability function are given by 

2
2

2 )(ln
2

1exp
2

1),( i
i

i t
t

tf  ;                                                                            (13) 

)(ln1),( 2 i
i

ttR .                                                                                        (14) 

The likelihood function related to and , considering the censoring indicators '
21 ),,,( n

and the observed data ),(0 t,nD , becomes 
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To construct a Log-Normal Regression Model, the covariates through are introduced with x'
ii .

Letting 2/1 , the joint likelihood function is given by 
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i  .       (16) 

As both and are assumed unknown, a typical choice for is a gamma prior distribution. In this 
paper, we suppose )2/,2/(~ 00 baG . Meanwhile, as x'

ii , we also suppose  has a multinormal 
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prior distribution with p vector, denoted by ),( 1
00pN . The joint posterior distribution for and

can be obtained as 
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Therefore, the parameters’ full conditional distribution with Gibbs sampling can be written as   

)2/(exp)|,(),,|( 0
12)/()( 0 bDLD aj

j ;                                                        (18) 

)()()(
2
1exp)|,(),,|( 1

0
')(

00DLDj
j .                                         (19) 

4 Case Study 

In this section, we present a case study to illustrate our models for locomotive wheels’ degradation 
analysis. The adopted data have been collected from a Swedish railway company’s cargo locomotives. 
The studied locomotive is relatively new compared to others owned by the same company. The 
degradation data are reported from November 2010 to January 2012. There are 46 records ( n =46); we 
obtained the locomotive wheels’ “lifetime” data in the manner described in section 2.2 and shown in 
Fig.3.  In this study, we define 2H =20 mm; therefore, 12 records are denoted as censored data. 

 
Fig.3 Plot of the wheel degradation data 

For each reported datum, a wheel’s installation position is documented, and as mentioned above, 
positioning is used in this study as a covariate. As discussed in section 3, the wheel’s position (bogie, 
axel, and side) or covariate X  is denoted by 1x (bogie I: 1x =1, bogie II: 1x =2), 2x  (axel 1: 2x =1, axel 
2: 2x =2, axel 3, 2x =3) and 3x (right: 3x =1, left: 3x =2). Correspondingly, the covariates’ coefficients 
are represented by 1 , 2 , and 3 . In addition, 0 is defined as a constant intercept. Other statistics on 
the wheel’s position and the data structure appear in Table 1. 
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The calculations are implemented with the software WinBUGS, version 1.4 (Spiegelhalter et al 22 ). A 
three-chain is constructed for each MCMC simulation. A burn-in of 10,001 samples is used, with an 
additional 10,000 Gibbs samples for each Markov chain. Vague prior distributions are adopted here as 
the following: 

In Bayesian Exponential Regression model: 

)0001.0,0(~0 N , )0001.0,0(~1 N , )0001.0,0(~2 N , )0001.0,0(~3 N .

In Bayesian Weibull Regression model: 

)2.0,2.0(~ G , )0001.0,0(~0 N , )0001.0,0(~1 N , )0001.0,0(~2 N , )0001.0,0(~3 N .

In Bayesian Log-normal Regression model: 

)01.0,1(~ G , )0001.0,0(~0 N , )0001.0,0(~1 N , )0001.0,0(~2 N , )0001.0,0(~3 N .

Table.1 Statistics on quantity and data structure 

1x : Bogie 2x : Axel 3x : Side 

position quantities position quantities position quantities 

n =46

I (1)* 24 

1 (1) 8 Right (1) 4 
Left (2) 4 

2 (2) 8 Right (1) 4 
Left (2) 4 

3 (3) 8 Right (1) 4 
Left (2) 4 

II (2) 22 

1 (1) 8 Right (1) 4 
Left (2) 4 

2 (2) 8 Right (1) 4 
Left (2) 4 

3 (3) 6 Right(1) 3 
Left (2) 3 

* The number in ( ) denotes the covariate’s indicator value as it was used in our models 

Following the convergence diagnostics (i.e., checking dynamic traces in Markov chains, time series, 
and Gelman-Rubin-Statistics, and comparing the MC error with Standard Deviation (SD)), we consider 
the following posterior distribution summaries (shown in Tables 2, 3 and 4), for our models (Bayesian 
Exponential Regression Model, Bayesian Weibull Regression Model, and Bayesian Log-normal 
Regression Model), including the parameters’ posterior distribution mean, standard deviation, Monte 
Carlo error, and 95% HPD (highest posterior distribution density) interval.  

Table.2 Posterior Distribution Summaries for Exponential Regression Model 

Parameter Mean SD MC error 95 % HPD Interval 

0 -5.862 0.7355 0.02299 (-7.366,-4.452) 

1 -0.07207 0.3005 0.007269 (-0.6672,0.5104) 

2 -0.03219 0.1858 0.003797 (-0.3889,0.3325) 

3 -0.0124 0.2973 0.00726 (-0.5954,0.5787) 

 
Table.3 Posterior Distribution Summaries for Weibull Regression Model 

Parameter Mean SD MC error 95 % HPD Interval 

10.08 0.9674 0.05559 (8.234,11.76) 

0 -60.47 5.977 0.3434 (-71.01,-49.16) 

1 -0.07775 0.306 0.008339 (-0.6845,0.5156) 
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2 -0.146 0.2231 0.005801 (-0.5878,0.2856) 

3 -0.05026 0.2982 0.007143 (-0.6356,0.5324) 

 
Table.4 Posterior Distribution Summaries for Log-normal Regression Model 

Parameter Mean SD MC error 95 % HPD Interval

0 5.864 0.05341 0.001622 (5.76,5.97) 

1 0.06733 0.02174 5.042E-4 (0.02492,0.1103) 

2 0.02077 0.01373 2.765E-4 (-0.006291,0.04781) 

3 0.001102 0.02175 5.007E-4 (-0.0412,0.04444) 

187.5 39.84 0.3067 (118.3,273.5) 

Accordingly, the locomotive wheels’ reliability functions can be written as: 

Bayesian Exponential Regression Model:  

)|( XitR = itxxx )012.0032.0072.0862.5exp(exp 321                                       (20) 

Bayesian Weibull Regression Model:  

)|( XitR = 08.10
321 )050.0146.0078.047.60exp(exp itxxx                                 (21) 

Bayesian Log-normal Regression Model:  

)|( XitR = 1/2
321

)5.187(
)001.002.0067.0864.5()(ln1 xxxti                                           (22) 

Obviously, other reliability characteristics of lifetime distribution, including MTTF, can also be 
determined.  

5 Discussion 
 
5.1 Model Comparison 

Traditional technologies for model comparison consider two main aspects: the model’s measure of fit 
and its complexity. Usually, improving the model’s complexity can simultaneously improve its fit. For 
instance, by considering more unknown parameters, the SD and MC error of the model’s posterior 
could be reduced and the model’s measure of fit could be improved. However, the complexity of the 
model will be increased simultaneously. Therefore, most model comparison studies focus on the 
balance between them. When comparing Bayesian models, both Bayesian Factor (BF) and Bayesian 
Information Criterion (BIC) can be used. However, for complex Bayesian hierarchical models, it 
becomes more difficult. Spiegelhalter et al 23  have proposed Deviance Information Criterion (DIC), 
which utilizes the model’s deviance to evaluate its measure of fit, and the effective number of 
parameters to evaluate its complexity.  

Define a Bayesian model’s Bayesian deviance, denoted as )(D , as:

))((2log)( DpD .                                                                                                   (23) 

Define the effective number of parameters, denoted as dp , as: 

)))((2ln())((2ln)()( DpdDpDDpd   .                                                   (24)     
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Then, 

dd pDpDDIC )(2)( .                                                                                      (25) 

We calculate the DIC values for the above three Bayesian parametric models separately, as shown in 
Table 5.  

Table.5 DIC Summaries  

Model )(D  )(D  dp  DIC 

Exponential Regression 648.98 645.03 3.95 652.93 

Weibull Regression 472.22 467.39 4.83 477.05 

Log-normal Regression 442.03 436.87 5.16 447.19 

Based on Celeux et al 24 and related discussions of their paper, we choose the model with the lowest 
DIC value. When DIC<5, the difference among models can be neglected. Our results show that the 
DIC for Log-normal Regression Model is the lowest (447.19), and following the arguments above, it is 
more suitable than the other two. In addition, we analyse other locomotives’ wheels with the same 
model, which are running under similar situations. The results show that similar conclusions can be 
achieved. However, comparing the DIC values for Weibull Regression Model and for Exponential 
Regression model, which is 477.05 and 652.93, separately, they indicate that the performance of 
Weibull Regression Model is close to the Log-normal Regression Model, which might also be a 
suitable choice under specified situations. 

5.2 Maintenance Predictions 

Although there is a little difference among the different Bayesian parameter models, all results achieve 
consistent common conclusion: the installation positions influence the wheels’ lifetimes. In addition, 
considering the character of the covariates’ coefficients in our case study, we find the following: 1) the 
lifetime of the wheel installed in the second bogie is longer than that of the wheel installed in the first 
one; 2) the wheel installed in the third axel has a longer lifetime than that installed in the second axel, 
and the wheel in the second axel has a longer lifetime than the one in the first axel; 3) the right side 
wheel’s lifetime is shorter than the left side. (Researchers from Norwegian National Rail 
Administration cited previously concur with this. Using condition monitoring methods on train wheels 
operating on the same route, they found that the wheel forces on the right and the left sides can be 
different, even for wheels in the same axel.). Possible causes include the influence of the earth's 
rotation, topographical complexity, and the position of the locomotive’s centre of gravity.

The three Bayesian parametric regression models presented here are all effective according to Markov 
chain convergence and other diagnostic tools; see, for example, Spiegelhalter et al 23 who compare the 
computation process, including checking Markov chains’ dynamic traces, time series and Gelman-
Rubin-Statistics, and comparing the MC error with Standard Deviation (SD). However, we prefer 
Bayesian Lognormal regression model because of its DIC values. The prediction of the locomotive 
wheels MTTF, following Bayesian Lognormal regression model, appears in Table.6. 

Table.6 MTTF statistics based on Bayesian Lognormal Regression Model 

Bogie  Axel Side i  MTTF( 310 km) 

I ( 1x =1) 1 ( 2x =1) Right ( 3x =1) 5.9532 387.03 
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Left   ( 3x =2) 5.9543 387.46 

2 ( 2x =2) 
Right ( 3x =1) 5.9740 395.16 

Left   ( 3x =2) 5.9751 395.60 

3 ( 2x =3) 
Right ( 3x =1) 5.9947 403.43 

Left   ( 3x =2) 5.9958 403.87 

II ( 1x =2) 

1 ( 2x =1) 
Right ( 3x =1) 6.0205 413.97 

Left   ( 3x =2) 6.0216 414.43 

2 ( 2x =2) 
Right ( 3x =1) 6.0413 422.67 

Left   ( 3x =2) 6.0424 423.14 

3 ( 2x =3) 
Right( 3x =1) 6.0621 431.56 

Left   ( 3x =2) 6.0632 432.03 

It should be pointed out that the 95% HPD interval in Bayesian Lognormal regression model for 

2 and 3  includes 0 (Table.4). This means that, although the positioning does have an influence, in 
some instances, the impact on the wheel’s service lifetime is not significantly strong. In our case, the 
bogies have more impact on service lifetime than axels or sides. Given this conclusion, we can deal 
with such covariates better in our future research. 

5.3 Maintenance Inspection Level 

According to the assumptions in section 2.2, the maintenance inspection level 2H  (where 120 HH )
determines how many lifetime data are “right-censored”. Obviously, the higher the maintenance 
inspection level, the more data are considered “right-censored” and vice versa.  For instance, in Fig.4, 
we show a higher maintenance inspection level (80 mm) and a lower one (20 mm). We denote the area 
between 1H and 2H as Zone I, and the area between 2H and zero degradation level as Zone II. 
Therefore, based on the likelihood functions discussed in section 3, the MTTF statistics which are 
achieved from the higher 2H (the left picture in Fig.4, where 2H = 80 mm) will be higher than those 
obtained from the lower 2H (the right picture, where 2H =20 mm), because fewer degradation data are 
considered right-censored. In other words, the results achieved from the former are more “optimistic”, 
and the results obtained from the latter are more “pessimistic”. An extreme condition is to suppose 

2H =0 mm. 

For this reason, we can get an interval prediction between “optimistic” and “pessimistic” with different 
maintenance inspection levels, which actually reflect the different risk confidence levels. This will be 
studied in another research paper.

100

80

0

B1

B2

B3

H1

H2

100

20

0

B1

B2

B3

H1

H2

Zone I

Zone I

Zone II Zone II

Fig.4 Maintenance Inspection Level with Zone I and Zone II 
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6 Conclusions 

This paper proposes three parametric Bayesian models for locomotive wheels’ reliability analysis using 
degradation data: Bayesian Exponential Regression Model, Bayesian Weibull Regression Model (as 
discussed in section 3.3.1, it can easily be transferred to an Extreme-Value Regression Model), and 
Log-normal Regression Model. The Bayesian survival models can deal with small and incomplete data 
sets and simultaneously consider the influence of several covariates.  

The case study’s results suggest that the wheels’ lifetimes differ according to where they are installed 
on the locomotive. The wheel installed in the second bogie has a longer lifetime than the one installed 
in the first bogie; the one installed in the “back” axel has a longer lifetime than the “front” one; the 
right and left side wheels also differ. The differences between the latter two could be influenced by 
many aspects, for instance, the locomotives’ heterogeneities, the real running situation (e.g. topography, 
temperature, moisture, applied loading, train speed, etc.) and the locomotive’s centre of gravity. But the 
bogies have the strongest influence on wheel lifetime. We can determine the wheel’s MTTF using the 
prediction results obtained from equation (20) ~ (22); this, in turn, allows us to evaluate and optimise 
the wheel’s replacement  and maintenance strategies (including the re-profiling interval, inspection 
interval, lubrication interval, and so on). In addition, by defining different maintenance inspection 
levels, we can obtain an interval prediction between “optimistic” and “pessimistic” with different risk 
confidence levels. 

Finally, the approach discussed in this paper can be applied to cargo train wheels or to other technical 
problems (e.g. other industries, other components). 

The study suggests the following additional research:  

The assumed liner degradation path is a simple one. For more complex path models, more 
degradation paths should be studied.  

The covariates considered in this paper are limited to locomotive wheels’ installed positions; 
more covariates must be considered.  

We have chosen vague prior distributions for the case study. Other prior distributions, 
including both informative and non-information prior distributions, should be studied. 

Acknowledgements  

The authors would like to thank Luleå Railway Research Centre (Järnvägstekniskt Centrum, Sweden) 
for initiating the research study and Trafiverket for providing financial support. Also, the authors 
would like to thank Thomas Nordmark, Ove Salmonsson and Hans-Erik Fredriksson at LKAB for 
support and discussions about the locomotive wheels. And we would like to thank the editor and 
anonymous referees for their constructive comments. 
 
 
References 

1. Johansson A, Andersson C. Out-of-round Railway Wheels- a Study of Wheel Polygonalization through 
Simulation of Three-dimensional Wheel-Rail Interaction and Wear. Journal of Vehicle System Dynamics. 
2005, 43(8):539-559. DOI:  10.1080/00423110500184649 

2. Braghin F, et al. A Mathematical Model to Predict Railway Wheel Profile Evolution Due to Wear. 
Journal of Wear. 2006. 261: 1253-1264. DOI: 10.1016/j.wear.2006.03.025 



14

3. Tassini N, et al. A Numerical Model of Twin Disc Test Arrangement for the Evaluation of Railway 
Wheel Wear Prediction Methods.  Journal of Wear. 2010. 268: 660-667. DOI: 
10.1016/j.wear.2009.11.003 

4. Bernasconi A, et al. An Integrated Approach to Rolling Contact Sub-surface Fatigue assessment of 
Railway Wheels. Journal of Wear. 2005. 258: 973-980. DOI: 10.1016/j.wear.2004.03.044 

5. Liu Y M, et al. Multiaxial Fatigue Reliability Analysis of Railroad Wheels. Journal of Reliability 
Engineering and System Safety. 2008. 93:456-467. DOI: 10.1016/j.ress.2006.12.021 

6. Clayton P. Tribological Aspects of Wheel-Rail Contact: A Review of Recent Experimental Research. 
Journal of Wear. 1996. 191: 170-183. DOI: 10.1016/0043-1648(95)06651-9 

7. Yang C, Letourneau S. Learning to Predict Train Wheel Failures. Conference Proceedings. The 11th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2005). 
Chicago, Illinois, USA. 

8. Pombo J, Ambrosio J, Pereira M. A Railway Wheel Wear Prediction Tool based on A Multibody 
Software. Journal of Theoretical and Applied Mechanics. 2010. 48, 3:751-770 

Skarlatos D, Karakasis K, Trochidis A. Railway Wheel Fault Diagnosis Using A Fuzzy-logic Method. 

Journal of Applied Acoustics. 2004. 65:951-966. DOI: 10.1016/j.apacoust.2004.04.003

10. Donato P, et al. Design and Signal Processing of A Magnetic Sensor Array for Train Wheel Detection.  
Journal of Senors and Actuators A. 2006. 132: 516-525. DOI: 10.1016/j.sna.2006.02.043 

11. Stratman B, Liu Y, Mahadevan S. Structural Health Monitoring of Railroad Wheels Using Wheel Impact 
Load Detectors. Journal of Failure Analysis and Prevention. 2007. 7(3):218-225. DOI: 10.1007/s11668-
007-9043-3

12. Palo M, et al. Rolling stock condition monitoring using wheel/rail forces. Journal of Insight - Non-
Destructive Testing and Condition Monitoring. 2012. 54 (8): 451-455. DOI: 10.1784/insi.2012.54.8.451 

13. Palo M. Condition Monitoring of Railway Vehicles: A Study on Wheel Condition for Heavy Haul 
Rolling Stock. Licentiate Thesis. Luleå University of Technology, Sweden. 2012;37. 

14. Freitas M A, et al. Using Degradation Data to Assess Reliability: A Case Study on Train Wheel 
Degradation. Journal of Quality and Reliability Engineering International. 2009, 25: 607-629. DOI: 
10.1002/qre.995 

15. Freitas M A, et al. Reliability assessment using degradation models: Bayesian and classical approaches. 
Pesquisa Operacional. 2010,30 (1):195-219 

16. Ibrahim J G, Chen M H, Sinha D. Bayesian Survival Analysis. New York: Berlin Heidelberg, 2001 

17. Congdon P. Applied Bayesian Modelling. England: John Wiley and Sons.2003 

18. Congdon P. Bayesian Statistical Modelling. England: John Wiley and Sons.2001 

19. Lin J. Two-Stage Failure Model for Bayesian Change Point Analysis. Journal of IEEE Transactions on 
Reliability. 2008, 57(2): 388-393. DOI: 10.1109/TR.2008.923484 

20. Klein J P, Moeschberger M L. Survival Analysis: Techniques for Censored and Truncated Data. 
Springer-Verlag: New York, Inc.1997; 55. 

21. Lawless. Statistical Models and Methods for Lifetime Data. John Wiley and Sons.1982;31. 

22. Spiegelhalter D, et al. WinBUGS User Manual (Version 1.4). January, 2003. http:// www.mrc-
bsu.cam.ac.uk/bugs  [11 September 2012 ] 

23. Spiegelhalter D J, et al. Bayesian measures of model complexity and fit. Journal of Royal Statist. Society 
Series B.2002, 64(3):583-639. DOI: 10.1111/1467-9868.00353 

24. Celeux G, et al. Deviance Information Criteria for Missing Data Models. Journal of Bayesian Analysis.

2006, 1(4):651--674 



Paper III 

Bayesian Semi-parametric Analysis for Locomotive Wheel 
Degradation using Gamma Frailties 

Lin Jing, Asplund Matthias.
Submitted to Journal.
Under Review.  
2013, March. 





1

 Bayesian Semi-parametric Analysis for Locomotive Wheel 
Degradation using Gamma Frailties 

 
Jing Lin, Matthias Asplund 

Division of Operation and Maintenance Engineering, Luleå University of Technology, 97187, Luleå, Sweden 
 
Abstract: This paper undertakes a reliability study using a Bayesian semi-parametric framework to explore the impact of a 
locomotive wheel’s position on its service lifetime and to predict its other reliability characteristics. A piecewise constant 
hazard regression model is used to establish the lifetime of locomotive wheels using degradation data and taking into account 
the wheel’s bogie. The gamma frailties are included in this study to explore unobserved covariates within the same group. 
The goal is to flexibly determine reliability for the wheel. The case study is performed using Markov Chain Monte Carlo 
(MCMC) methods; the results show that: 1) a polynomial degradation path is a better choice for the studied locomotive 
wheels; 2) under given operation conditions, the position of the locomotive wheel, i.e., in which bogie it is mounted, could 
influence its reliability; 3) the piecewise constant hazard regression model is a useful tool since it contains fewer assumptions;
4) considering gamma frailties is helpful for exploring unobserved covariates’ influence and for improving the model’s 
precision; 5) some change points exist after the wheels run a certain distance, a finding which could be applied maintenance 
review and optimisation. 

Keywords: reliability; Bayesian survival analysis; locomotive wheels; frailty; piecewise constant hazard rate; Markov Chain 
Monte Carlo (MCMC). 
 
1 Introduction 

The service life of a train wheel can be significantly reduced due to failure or damage, leading to excessive cost 
and accelerated deterioration, a point which has received considerable attention in recent literature. In order to 
monitor the performance of wheels and make replacements in a timely fashion, the railway industry uses both 
preventive and predictive maintenance. By predicting the wear of train wheels (Johansson & Andersson, 2005; 
Braghin et al., 2006; Tassini et al., 2010), fatigue (Bernasconi et al., 2005; Liu, et al., 2008), tribological aspects 
(Clayton, 1996), and failures (Yang & Letourneau, 2005), the industry can design strategies for different types of 
preventative maintenance (re-profiling, lubrication, etc.) for various periods (days, months, seasons, running 
distance, etc.).  Software dedicated to predicting wear rate has also been proposed (Pombo et al., 2010). Finally, 
condition monitoring data have been studied with a view to increasing the wheels’ lifetime (Skarlatos et al., 2004; 
Donato et al., 2006; Stratman et Al., 2007; Palo, 2012).  

One common preventive maintenance strategy (used in the case study) is re-profiling wheels after they run a 
certain distance. Re-profiling affects the wheel’s diameter; once the diameter is reduced to a pre-specified length, 
the wheel is replaced by a new one. Seeking to optimise this maintenance strategy, researchers have examined 
wheel degradation data to determine wheel reliability and failure distribution (Freitas et al., 2009, 2010; and the 
references therein). However, these studies cannot solve the combined problem of small data samples and 
incomplete datasets while simultaneously considering the influence of several covariates. For example, to avoid 
the potential influence of wheel location, Freitas et al. (2009, 2010) only consider those on the left side of 
specified axle and on certain specified cars, but point out that “the degradation of a given wheel might be 
associated with its position on a given car”. Yang and Letourneau (2005) suggest that certain attributes, 
including a wheel’s installed position (right or left), might influence its wear rate, but they do not provide case 
studies. Palo et al. (2012) concludes that “different wheel positions in a bogie show significantly different force 
signatures”.  In a recent seminar in Sweden (Kiruna, April 2012), experts from Norway illustrated their new 
findings that in a given topography, the wheels installed on the right and the left sides of a locomotive 
experience different force. Unfortunately, they did not illustrate the results with signal charts derived from 
condition monitoring tools, nor did they consider the influence of wheel position on degradation. To address the 
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above issues, Lin et al. (2013) have explored the influence of locomotive wheels’ positioning on reliability. 
Their results indicate that the particular bogie in which the wheel is mounted has more influence on its lifetime 
than does the axel or which side it is on. Therefore, in this paper, we only use the bogie as a covariate. 

Most reliability studies are implemented under the assumption that individual lifetimes are independent 
identified distributed (i.i.d). However, sometimes Cox proportional hazard (CPH) models cannot be used 
because of the dependence of data within a group. For instance, because they have the same operating conditions, 
the wheels mounted on a particular locomotive may be dependent. In a different context, some data may come 
from multiple records which actually belong to the wheels installed in the same position but on another 
locomotive. Modelling dependence in multivariate survival data has received considerable attention, in cases 
where the datasets may come from subjects of the same group which are related to each other (Sahu et al., 1997; 
Aslanidou et al., 1998). A key development in modelling such data is to consider frailty models, in which the 
data are conditionally independent. When frailties are considered, the dependence within subgroups can be 
considered an unknown and unobservable risk factor (or explanatory variable) of the hazard function. In this 
paper, we consider a gamma shared frailty, first discussed by Clayton (1978) and Oakes (1982) and later 
developed by Sahu et al. (1997), to explore the unobserved covariates’ influence on the wheels on the same 
locomotive. 

In addition, since semi-parametric Bayesian methods offer a more general modelling strategy that contains fewer 
assumptions (Ibrahim et al., 2001), we adopt the piecewise constant hazard model to establish the distribution of 
the locomotive wheels’ lifetime. The applied hazard function is sometimes referred to as a piecewise exponential 
model; it is convenient because it can accommodate various shapes of the baseline hazard over the intervals.

This paper explores the impact of a locomotive wheel’s installed position on its service lifetime and predicts its 
other reliability characteristics by using a Bayesian semi-parametric framework. The remainder of the paper is 
organised as follows. Section 2 presents the piecewise constant hazard regression model with gamma frailties. In 
the proposed model, a discrete-time martingale process is considered as a prior process for the baseline hazard 
rate. Section 3 describes a real case study using the dataset for the wheels of two locomotives in a heavy haul 
cargo train. Using polynomial degradation, it considers the bogies as covariates and uses a gamma frailty for 
each locomotive. It adopts a Markov Chain Monte Carlo (MCMC) computational scheme (Congdon 2001, 2003) 
and discusses maintenance strategies for optimisation. Section 4 offers conclusions and comments for future 
study.  

2 Models 

In this section, we propose a Bayesian semi-parametric framework, incorporating the piecewise constant hazard 
regression model, a gamma shared frailty model, the discrete-dime martingale process for the baseline hazard 
rate, and a MCMC computation scheme. 

2.1 Piecewise Constant Hazard Regression Model 

The piecewise constant hazard model is one of the most convenient and popular semi-parametric models in 
survival analysis. Begin by denoting the thj individual in the thi group as having lifetime ijt , where ni ,,1  and

imj ,,1 . Divide the time axis into intervals ksss 210 , where ijk ts , thereby obtaining k
intervals ],,0( 1s ],,( 21 ss ],( 1 kk ss . Suppose the thj individual in the thi group has a constant baseline hazard 

kijth )(0 as in the thk interval, where kij It ],( 1 kk ss . Then, the hazard rate function for the piecewise 
constant hazard model can be written as 
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kijkij Itth ,)(0                                                    (1) 

Equation (1) is sometimes referred to as a piecewise exponential model; it can accommodate various shapes of 
the baseline hazard over the intervals.  

Studies of how to divide the time axis into k intervals include the following. Kalbfleisch & Prentice (1973) 
suggest that the selection of intervals should be made independently of the data; this has been adopted in the 
construction the traditional lifetime table. Breslow (1974) suggests using distinct failure times as end points of 
each interval. Sahu et al. (1997), Aslanidou et al. (1998), and Ibrahim et al. (2001) discuss the robustness of 
choosing different k  separately. In this paper, we discuss the choice of k  in the case study.

Suppose '
1 ),( piii xxx denotes the covariate vector for the individuals in the thi group, and  is the regression 

parameter. Therefore, the regression model with the piecewise constant hazard rate can be written as 
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Correspondingly, its probability density function )( ijtf , cumulative distribution function )( ijtF , reliability 
function )( ijtR , together with the cumulative hazard rate )( ijt   can be achieved (Ibrahim et al., 2001).  

2.2 Gamma Shared Frailty Model  

Frailty models are first considered by Clayton (1978) to handle multivariate survival data. In their models, the 
event times are conditionally independent according to a given frailty factor, which is an individual random 
effect. As discussed by Sahu et al. (1997), the models formulate different variabilities and come from two 
distinct sources. The first source is natural variability, which is explained by the hazard function; the second is 
variability common to individuals of the same group or variability common to several events of an individual, 
which is explained by the frailty.  

Assume the hazard function for the thj individual in the thi group is 

)exp()()( 0 x'
ijiij thth                                                                                                                                      (3) 

In equation (3), i represents the frailty parameter for the thi group. By denoting )exp( ii , the equation can 
be written as 

)exp()()( 0 x'
ijiij thth                                                                                                (4) 

Equation (3) is an additive frailty model, and equation (4) is a multiplicative frailty model. In both equations, i

and i  are shared by the individuals in the same group, and they are thus referred to as shared-frailty models 
and actually are extensions of the CPH model. 

To this point, discussions of frailty models have focused on the choices of: 1) the form of the baseline hazard 
function; 2) the form of the frailty’s distribution. Representative studies related to the former include the gamma 
process for the accumulated hazard function (Clayton, 1991; Sinha, 1993), Weibull baseline hazard rate (Sahu et 
al., 1995), and the piecewise constant hazard rate (Aslanidou et al., 1998) which is adopted in this paper due to 
its flexibility. Some researchers have examined finite mean frailty distributions, including gamma distribution 
(Clayton et al., 1978; Clayton & Cuzick, 1985), lognormal distribution (McGilchrist, 1991),  and the like; others 
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have studied non-parameter methods, including the inverse Gaussion frailty distribution (Hougaard, 1986), the 
power variance function for frailty (Crowder, 1989), the positive stable frailty distribution (Hougaard, 1995; 
Qiou et al.,1999), the Dirichlet process frailty model (Pennell & Dunson, 2006) and the Levy process frailty 
model (Hakon et al., 2003). In this paper, we consider the gamma shared frailty model, the most popular model 
for frailty. 

From equation (4), suppose the frailty parameters i are independent and identically distributed (i.i.d) for each 
group, and follow a gamma distribution, denoted by ),( 11Ga . Therefore, the probability density function 
can be written as 

)exp(
)(

)()( 11
1

1 1
1

iiif                                          (5)

In equation (5), the mean value of i  is one, where is the unknown variance of i s. Greater values of 
signify a closer positive relationship between the subjects of the same group as well as greater heterogeneity 
among groups. Furthermore, as i >1, the failures for the individuals in the corresponding group will appear 
earlier than if i =1; in other words, as i <1, their predicted lifetimes will be greater than those found in the 
independent models.  

Suppose '
21 ),,,( n ; then  

)exp()( 1

1

11

i

n

i
i                                            (6)

2.3 Discrete-time Martingale Process for Baseline Hazard Rate 

Based on the above discussions (equation (2), (4), and (5)), the piecewise constant hazard model with gamma 
shared frailties can be written as: 
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                      (7)

In equation (7), i ~ ),( 11Ga .

To analysis the baseline hazard rate k , a common choice is to construct an independent incremental process, 
e.g., the Gamma process, the Beta process, or the Dirichlet process. However, as pointed out by Ibrahim et al.
(2001), in many applications, prior information is often available on the smoothness of the hazard rather than the 
actual baseline hazard itself. In addition, given the same covariates, the ratio of marginal hazards at the nearby 
time-points is approximately equal to the ratio of the baseline hazards at these points. In such situations, 
correlated prior processes for the baseline hazard can be more suitable. Such models, for instance, the discrete-
time martingale process for the baseline hazard rate k , are discussed by Sahu et al. (1997) and Aslanidou et al. 
(1998).  

Given ( 121 ,,, k ), we specify that 

),(~,,,
1

121
k

k
kkk Ga

                                                                                                                          (8)  
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Let 10 .  In equation (8), the parameter k represents the smoothness for the prior information. If 0k , then

k and 1k are independent. As k , the baseline hazard is the same in the nearby intervals. In addition, the 
Martingale k ’s expected value at any time point is the same, and 

1121 ),,,( kkkE                                                                                                                               9

Equation (9) shows that given specified historical information ( 121 ,,, k ), the expected value of k is

fixed.  

2.4 Bayesian Semi-parametric Model using MCMC  

In reliability analysis, the lifetime data are usually incomplete, and only a portion of the individual lifetimes are 
known. Right-censored data are often called Type I censoring, and the corresponding likelihood construction 
problem has been extensively studied in the literature (Lawless, 1982; Klein & Moeschberger, 1997). Suppose 
the thj individual in the thi group has lifetime ijT and censoring time ijL . The observed lifetime ),min( ijijij LTt ;
therefore, the exact lifetime ijT will be observed only if ijij LT . In addition, the lifetime data involving right 
censoring can be represented by n pairs of random variables ),( ijijt , where 1ij if ijij LT and 0ij if

ijij LT . This means that ij  indicates whether lifetime ijT is censored or not. The likelihood function is 
deduced as 

n

i

m

j
ijij

i
ijij tRtftL

1 1

1)()]([)(                                                                                                                         (10) 

In the above piecewise constant hazard model, we denote ijg as 11),(
ijijij gggij Isst and the model’s dataset 

as )( X,t,,D . Following equation (7) ~ (10), the complete likelihood function )( DL ,  for the individuals 
for the thi group in k  intervals can be written as 
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Let )(  denote the prior or posterior distributions for the parameters. Following equation (6) and (11), the joint 
posterior distribution )( Di ,, for gamma frailties i can be written as  
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Equation (12) shows that the full conditional density of each i  is a gamma distribution. Similarly, the full 
conditional density of 1 and can be given by 
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Let });,{( kijk stjiR denote the risk set at ks and kkk RRD 1 ; let kd denote the failure individuals in the 
interval kI . Let )( )( k

k denote the conditional prior distribution for ( ,1 ,2 J, ) without k . We 
therefore derive ),,( 1 Dk ,  as  

)(])()([)exp(exp )(
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3 Case Study 

In this section, we present a case study to illustrate the use of the proposed Bayesian semi-parametric models for 
the degradation analysis of locomotive wheels.  

3.1 Degradation Data 

The data were collected by a Swedish railway company from November 2010 to January 2012. We use the 
degradation data from two heavy haul cargo trains’ locomotives (denoted as locomotive 1 and locomotive 2). 
Correspondingly, there are two studied groups, and 2n . For each locomotive, see Fig.1, there are two bogies 
(incl., Bogie I, Bogie II), and for each bogie, there are six wheels. The installed positions of the wheels on a 
particular locomotive are specified by the bogie number and are defined as covariates x . The covariates’ 
coefficients are represented by . More specifically, 1x represents the wheel mounted in Bogie I, while 2x
represents the wheel mounted in Bogie II. 1 is the coefficient and 0 is defined as natural variability. 

Fig.1 Wheel positions specified in this study 

The diameter of a new locomotive wheel is 1250 mm. In the company’s current maintenance strategy, a wheel’s 
diameter is measured after running a certain distance. If it is reduced to 1150 mm, the wheel is replaced by a new 
one. Otherwise, it is re-profiled or other maintenance strategies are implemented. Therefore, a threshold level for 
failure, denoted as 0y , is defined as 100 mm ( 0y = 1250 mm -1150 mm). The wheel’s failure condition is 
assumed to be reached if the diameter reaches 0y . The company’s complete dataset  includes the diameters of all 
locomotive wheels at a given inspection time, the total running distances corresponding to their “time to be 
maintained (re-profiled or replaced)”, and the wheels’ bill of material (BOM) data, from which we can determine 
their positions.

3.2 Degradation Path and Lifetime Data 

From the dataset, we can obtain 5 to 6 measurements of the diameter of each wheel during its lifetime. By 
connecting these measurements, we can determine a degradation trend (e.g., in Fig.2, the blue line). In their 
analyses of train wheels, most studies (Freitas et al. 2009, 2010) assume a linear degradation path (see the black 
dotted line in Fig.2). However, in our study, the results show that a better choice is a polynomial degradation 
path (see Fig.2, the purple dotted line). We plot the degradation data for one locomotive wheel in Fig.2. The 
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squares of their correlation coefficients (denoted as 2R  ) are 0.9973 for a polynomial path and 0.9271 for a linear 
path, indicating that a polynomial degradation path is better than a linear degradation path for the wheels studied. 

Fig.2 Plot of the wheel degradation data: an example

Take locomotive 1 for example; for all wheels installed on this locomotive, the assumptions of the polynomial 
function are supported by the statistics shown in Table.1. In particular, the average value for 2R  with a 
polynomial path is around 0.9943; for the linear path, it is around 0.8922. This supports the assumption of a 
multinomial degradation path. 

Table.1 Statistics on degradation path and lifetime data: locomotive 1 

Number Positions Polynomial path R²-polynomial Linear path R²-linear Lifetime ( 1000 km) 
1 Bogie I y = 6E-10x2 + 8E-05x 0.9973 y = 0.0002x 0.9271 347 
2 Bogie I y = 6E-10x2 + 8E-05x 0.9974 y = 0.0002x 0.9274 347 
3 Bogie I y = 7E-10x2 + 6E-05x 0.9981 y = 0.0002x 0.9109 338 
4 Bogie I y = 7E-10x2 + 6E-05x 0.9982 y = 0.0002x 0.9102 338 
5 Bogie I y = 7E-10x2 + 7E-05x 0.9986 y = 0.0002x 0.9211 354 
6 Bogie I y = 7E-10x2 + 7E-05x 0.9986 y = 0.0002x 0.9215 354 
7 Bogie II y = 1E-09x2 + 4E-06x 0.9960 y = 0.0002x 0.8485 *314 
8 Bogie II y = 1E-09x2 + 4E-06x 0.9960 y = 0.0002x 0.8485 *314 
9 Bogie II y = 1E-09x2 - 4E-06x 0.9964 y = 0.0002x 0.8419 *314 

10 Bogie II y = 1E-09x2 - 3E-06x 0.9963 y = 0.0002x   0.8430 *315 
11 Bogie II y = 7E-10x2 + 7E-05x 0.9792 y = 0.0002x 0.9039 331 
12 Bogie II y = 7E-10x2 + 7E-05x 0.9805 y = 0.0003x 0.9027 331 

Average / 0.9943 / 0.8922 / 
                       * Right-censored data

Note: some lifetime data are right-censored (denoted by asterisk in Table.1). However, we know the real 
lifetimes will exceed the predicted lifetimes. 

Table.2 shows the results of the same test for the wheels on locomotive 2. Again, a polynomial degradation path 
is a better choice. 

Following the above discussion, a wheel’s failure condition is assumed to be reached if the diameter reaches 0y .
We adopt the polynomial path for all wheels and set 0y = y . The lifetimes for these wheels are now easily 
determined and are shown in the last columns of Table1 and Table 2.  
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Table.2 Statistics on degradation path and lifetime data: locomotive 2 

Number Positions Polynomial path R²-polynomial Linear path R²-linear Lifetime ( 1000 km) 
1 Bogie I y = 8E-10x2 + 0.0002x 0.9807 y = 0.0003x 0.9579 250 
2 Bogie I y = 8E-10x2 + 0.0002x 0.9817 y = 0.0003x 0.9597 250 
3 Bogie I y = 8E-10x2 + 0.0002x 0.9805 y = 0.0003x 0.9590 250 
4 Bogie I y = 8E-10x2 + 0.0002x 0.9798 y = 0.0003x 0.9589 250 
5 Bogie I y = 7E-10x2 + 0.0002x 0.9790 y = 0.0003x 0.9624 261 
6 Bogie I y = 7E-10x2 + 0.0002x 0.9792 y = 0.0003x 0.9624 261 
7 Bogie II y = 9E-10x2 + 0.0002x 0.9751 y = 0.0003x 0.9491 240 
8 Bogie II y = 1E-09x2 + 0.0002x 0.9750 y = 0.0003x 0.9484 232 
9 Bogie II y = 1E-09x2 + 0.0002x 0.9709 y = 0.0003x 0.9420 232 

10 Bogie II y = 1E-09x2 + 0.0002x 0.9689 y = 0.0003x 0.9415 232 
11 Bogie II y = 9E-10x2 + 0.0002x 0.9727 y = 0.0003x 0.9498 240 
12 Bogie II y = 9E-10x2 + 0.0002x 0.9726 y = 0.0003x 0.9495 240 

Average / 0.9763 / 0.9534 /

3.3 Parameter Configuration 

It is clear that a very small k will make the model nonparametric. However, if k  is too small, estimates of the 
baseline hazard rate will be unstable, and if k is too large, a poor model fit could result (Ibrahim et al., 2001). In 
our study, determining the degradation path requires us to make 5 to 6 measurements for each locomotive wheel; 
in other words, the lifetime data are based on the data acquired at 5 to 6 different inspections. Following the 
reasoning above, we divide the time axis into 6 sections piecewise. In our case study, no predicted lifetime 
exceeds 360,000 kilometres. Therefore, k =6, and each interval is equal to 60,000km. We get 6 intervals (0, 60 
000], (60 000, 120 00]… (300 000, 360 000].  

For convenience, we let )exp( kk b , and vague prior distributions are adopted here as the following: 

Gamma frailty prior: ),(~ 11Gai

Normal prior distribution: ),(~ 1kk bNb

Normal prior distribution: ),0(~1 Nb

Gamma prior distribution: ~ Ga  (0.0001, 0.0001); 
Normal prior distribution: 0  ~ N (0.0, 0.001); 
Normal prior distribution:  1 ~ N (0.0, 0.001). 

At this point, the MCMC calculations are implemented with the software WinBUGS (Spiegelhalter et al., 2003). 
A burn-in of 10,001 samples is used, with an additional 10,000 Gibbs samples.  

3.4 Results 

Following the convergence diagnostics (incl., checking dynamic traces in Markov chains, time series, and 
comparing the Monte Carlo (MC) error with Standard Deviation (SD); see Spiegelhalter et al., 2003), we 
consider the following posterior distribution summaries (Table.3). Statistics summaries include the parameters’ 
posterior distribution mean, SD, MC error, and the 95% highest posterior distribution density (HPD) interval.  

In Table.3, 01 means that the wheels mounted in the first bogie (as 1x ) have a shorter lifetime than those in 
the second (as 2x ). However, the influence could possibly be reduced as more data are obtained in the future, 
because the 95% HPD interval includes 0 point. Because 5.0 , there is a positive relationship between the 
wheels mounted on the same locomotive; in addition, the heterogeneity among the locomotives is significant. 
Meanwhile, 11  suggests that the predictive lifetimes for those wheels mounted on the first locomotive are 
longer than if the frailties are not considered; in fact, 12 indicates the opposite conclusion.  



9

Table.3 Posterior Distribution Summaries

Parameter mean SD MC error 95% HPD Interval 

0  -10.39 2.888 0.2622 (-16.61, -4.79) 

1  0.3293 0.4927 0.02016 (-0.661, 1.271) 
 0.563 0.269 0.01038 (0.1879, 1.225) 

1  0.1441 0.1374 0.004822 (0.01192, 0.5258) 

2  1.866 1.016 0.03628 (0.3846, 4.308) 

1b  0.1361 1.595 0.1037 (-3.196, 3.364) 

2b  0.758 2.182 0.1672 (-3.7, 5.248) 

3b  1.94 2.514 0.2105 (-3.126, 7.342) 

4b  4.447 2.668 0.2389 (-0.5652, 10.48) 

5b  6.342 2.684 0.2415 (1.126, 12.29) 

6b  8.159 2.724 0.2417 (2.843, 14.15) 

Baseline hazard rate statistics based on the above results are shown in Table.4 and Fig.3. At the fourth piecewise 
interval, the wheels’ baseline hazard rate increases dramatically.  

Table.4 Baseline Hazard Rate Statistics 

Piecewise  
Intervals( 1000km) 

1 2 3 4 5 6 
(0, 60] (60, 120] (120, 180] (180, 240] (240, 300] (300, 360] 

k  1.15 2.13 6.96 85.37 567.93 3494.69 

k

Fig.3 Plot of Baseline Hazard Rate

By considering the random effects resulting from the natural variability (explained by covariates) and from the 
unobserved random effects within the same group (explained by frailties), we can determine other reliability 
characteristics of lifetime distribution. The statistics on reliability )(tR and cumulative hazard rate )(t for the 
two wheels mounted in different bogies are listed in Table.4, Fig.4 and Fig.5. 

Table.4 Reliability and Cumulative hazard statistics

Distance 
(1000 km) 

Reliability )(tR  Cumulative hazard )(t  
Locomotive 1 Locomotive 2 Locomotive 1 Locomotive 2 

Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II 
60 0.999577 0.999412 0.994534 0.99241 0.000184 0.000256 0.00238 0.003309 

120 0.998425 0.997811 0.97979 0.97202 0.000685 0.000952 0.008867 0.012325 
180 0.992318 0.989338 0.90496 0.870393 0.003349 0.004655 0.04337 0.060285 
240 0.881485 0.839169 0.195241 0.103252 0.054785 0.076151 0.709428 0.986101 
300 0.350289 0.232678 1.26E-06 6.31E-09 0.455574 0.633245 5.899379 8.200106 
360 0.000433 2.11E-05 2.75E-44 2.82E-61 3.363977 4.67591 43.56128 60.54995 
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Fig.4 and Fig.5 show frailties between Locomotive 1 and Locomotive 2. In addition, for these locomotives, the 
wheels mounted in the first bogie ( 1x ) have lower reliability and a higher cumulative hazard rate than those 
mounted in the second one ( 2x ).  

Fig.4 Plot of the reliabilities for Locomotive 1 and Locomotive 2 

 
Fig.5 Plot of the Cumulative hazard for Locomotive 1 and Locomotive 2

In addition, Fig.4 and Fig.5 show change points in the wheels. For example, the reliability declines sharply at the 
fourth piecewise interval, and at the fifth piecewise interval, the cumulative hazard increases dramatically. 

3.5 Discussions 

The above results can be applied to maintenance optimisation, including lifetime prediction and replacement 
optimisation, preventative maintenance optimisation, and re-profiling optimisation.  

First, determining reliability characteristics distributed over the wheels’ lifetime could be used to optimise 
replacement strategies. The results could also support related predictions for spares inventory. 

Second, the change points (Fig.3, Fig.4, Fig.5) appearing in the fourth and fifth piecewise interval (from 180 000 
to 300 000 kilometres) indicate that after running about 180 000 kilometres, the locomotive wheel has a high-
risk of failure. Rolling contact fatigue (RCF) problems could start at the fifth interval (after 240 000 kilometres). 
Therefore, special attention should be paid if the wheels have run longer than these change points. In addition, 
because re-profiling may leave cracks over time and reduce the wheel’s lifetime, cracks should be checked after 
re-profiling to improve the lifetime. 
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Third, the wheels installed in the first bogie should be given more attention during maintenance. Especially when 
the wheels are re-profiled, they should be checked starting with the first bogie to avoid duplication of efforts. 
Note that in the studied company, the wheels’ inspecting sequences are random; this means that the first checked 
wheel could belong in the second bogie. After the second checked wheel is lathed or re-profiled, if the diameter 
is shorter than predicted, the first checked wheel might need to be lathed or re-profiled again. Therefore, starting 
with the wheel installed in the first bogie could improve maintenance effectiveness. 

Last but not least, the frailties between locomotives could be caused by the different operating environments 
(e.g., climate, topography, and track geometry), configuration of the suspension, status of the bogies or spring 
systems, operation speeds and the applied loads. Specific operating conditions should be considered when 
designing maintenance strategies because even if the locomotives and wheel types are the same, the lifetimes and 
operating performance could differ.  
 
5 Conclusions 

This paper proposes a Bayesian semi-parametric framework to analyse a locomotive wheel’s reliability using 
degradation data. The piecewise constant hazard rate is used to establish the distribution of the wheels’ lifetime.  
The gamma shared frailties i are used to explore the influence of unobserved covariates within the same 
locomotive. By introducing covariate ix ’s linear function x'

i , the influence of the bogie in which a wheel is 
installed can be taken into account. The proposed framework can deal with small and incomplete datasets and 
simultaneously consider the influence of different covariates. The MCMC technique is used to integrate high-
dimensional probability distributions to make inferences and predictions about model parameters.

The results of the case study suggest that a polynomial degradation path for the wheels is better than a liner 
degradation path. The wheels’ lifetimes differ according to where they are installed (in which bogie they are 
mounted) on the locomotive. The wheel installed in the second bogie has a longer lifetime than the one in the 
first bogie. The differences could be influenced by the real running situation (e.g. topography), and the 
locomotive’s centre of gravity. The gamma frailties help with exploring the unobserved covariates and thus 
improve the model’s precision. Results also indicate a close positive relationship between the wheels mounted 
on the same locomotive; the heterogeneity between locomotives is also significant. We can determine the 
wheel’s reliability characteristics, including the baseline hazard rate )(t , reliability )(tR , and cumulative hazard 
rate )(t , etc. The results also indicate the existence of change points. As Fig.3, Fig.4 and Fig.5 show, wheel 
reliability declines sharply at the fourth piecewise interval, while at the fifth piecewise interval, the cumulative 
hazard increases dramatically. The results allow us to evaluate and optimise wheel replacement and maintenance 
strategies (including the re-profiling interval, inspection interval, lubrication interval, depth and optimal 
sequence of re-profiling, and so on). 

Finally, the approach discussed in this paper can be applied to cargo train wheels or to other technical problems 
(e.g. other industries, other components). 

We suggest the following additional research:  

The covariates considered in this paper are limited to locomotive wheels’ installed positions; more 
covariates must be considered. To this end, we will study such factors as operating environment (e.g., 
climate, topography, and track geometry), configuration of the suspension, status of the bogies and the 
spring systems, operation speeds and the applied loads, etc.
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We have chosen vague prior distributions for the case study. Other prior distributions, including both 
informative and non-information prior distributions, should be studied. 

In subsequent research, we plan to consider using our results to optimize maintenance strategies and the 
related LCC (Life Cycle Cost) problem considering maintenance costs, particularly with respect to 
different maintenance inspection levels and inspection periods (long term, medium term and short term). 
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Abstract: The service life of railroad wheels can differ significantly depending on their installed position, operating 
conditions, re-profiling characteristics, etc. This paper compares the wheels on two selected locomotives on the Iron Ore Line 
in northern Sweden to explore some of these differences. It proposes integrating reliability assessment data with both 
degradation data and re-profiling performance data. Its case study compares: 1) degradation analysis using a Weibull frailty 
model; 2) work orders for re-profiling; 3) the performance of re-profiling parameter; and 4) wear rates. The results show that 
for the two locomotives: 1) under the specified installation position and operation conditions, the Weibull frailty model is a 
useful tool to determine wheel reliability; 2) rolling contact fatigue (RCF) is the principal reason for re-profiling work orders; 
3) the re-profiling parameters can be applied to monitor both the wear rate and the re-profiling loss; 4) the total wear of the 
wheels can be investigated by considering natural wear and re-profiling loss separately, but natural wear and re-profiling loss 
differ depending on the locomotive and the operating conditions; and 5) the bogie in which a wheel is installed influences 
wheel reliability. 

Keywords: reliability analysis; locomotive wheels; frailty; re-profiling; wear; Markov Chain Monte Carlo  

 
1 Introduction 

The service life of different railroad wheels can vary greatly. Take a Swedish railway company, for example. For 
the wheels of its 26 locomotives, statistics show that from 2010 to 2011, the longest mean time between re-
profiling was around 59 000 kilometres and the shortest was about 31 000 kilometres. The large difference can 
be attributed to the non-heterogeneous nature of the wheels; each differs according to its installed position, 
operating conditions, re-profiling characteristics, etc. [1-5].  

One common preventive maintenance strategy (used in our study) is re-profiling wheels after they run a certain 
distance. Re-profiling reduces the wheel’s diameter; once the diameter is reduced to a pre-specified length, the 
wheel is replaced by a new one. Seeking to optimise this maintenance strategy, researchers have examined wheel 
degradation data to determine wheel reliability and failure distribution [1-3]. However, most studies cannot solve 
the combined problem of small data samples and incomplete datasets while simultaneously considering the 
influence of several covariates [5]. 

In addition, most reliability studies are implemented under the assumption that individual lifetimes are 
independent and identically distributed (i.i.d). In reality, sometimes Cox proportional hazard (CPH) models 
cannot be used because of the dependence of data within a group. For instance, because they have the same 
operating conditions, the wheels mounted on a particular bogie may be dependent. Modelling dependence in 
multivariate survival data has received considerable attention, especially in cases where the datasets comprise 
inter-related subjects of the same group [6, 7]. A key development in modelling such data is to consider frailty 
models, in which the data are conditionally independent. When frailties are considered, the dependence within 
subgroups can be considered an unknown and unobservable risk factor (or explanatory variable) of the hazard 
function. In this paper, we consider a gamma shared frailty, first discussed by Clayton [8] and Oakes [9] and 
later developed by Sahu et al. [6], to explore the unobserved covariates’ influence on the wheels on the same 
bogie. We also adopt the Weibull hazard model to determine the distribution of the wheels’ lifetime; the validity 
of this model has been established by Lin et al. [5]. 
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Besides the degradation analysis, re-profiling information is a key source of data to evaluate the wheels’ 
performance. As Fröhling and Hettasch [10] note, the “loss of material during re-profiling because of hollow or 
flange wear” is a significant element in the integrated data processing of the wheel-rail interface management. 
Even so, related studies remain limited. 

To fill this gap in the literature, this paper compares the wheels on two selected locomotives on the Iron Ore Line 
in northern Sweden, taking an integrated data approach to reliability assessment by considering both degradation 
data and re-profiling data.  

The remainder of the paper is organised as follows. Section 2 describes the background of the comparison study, 
by introducing the Iron Ore Line, as well as the degradation data and re-profiling parameters for the locomotive 
wheels being studied, along with their operating conditions. Section 3 presents the degradation analysis using a 
Weibull frailty model; the analysis considers the wheels’ location in the bogies and their operating conditions as 
covariates and uses Markov Chain Monte Carlo (MCMC) methods. Sections 4 to 6 comprise the comparison 
study; the three sections compare the re-profiling work orders, the specified re-profiling parameters (the wheel 
diameters, the flange thickness,  the radial run-out, and the lateral run-out), and the wear rate of the wheels, 
respectively. Each section is accompanied by a discussion. Section 7 offers conclusions and makes suggestions 
for future study. 
 

2 Study Background 

This section gives background information on the Iron Ore Line. It also introduces the degradation data and the 
re-profiling parameters for the locomotive wheels being studied, along with their operating conditions.   
 

2.1 Iron Ore Line (Malmbanan) 

 

 
 

Fig. 1 Geographical location of Iron Ore Line (Malmbanan) 
 

The Iron Ore Line (Malmbanan) is the only existing heavy haul line in Europe; it stretches 473 kilometres and 
has been in operation since 1903. As Fig. 1 shows, it is mainly used to transport iron ore and pellets from the 
mines in Kiruna (also Malmberget, close to Kiruna,  in Sweden) to Narvik Harbour (Norway) in the northwest 
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and Luleå Harbour (Sweden) in the southeast. The track section on the Swedish side is owned by the Swedish 
government and managed by Trafikverket (Swedish Transport Administration), while the iron ore freight trains 
are owned and managed by the freight operator (a Swedish company). Each freight train consists of two IORE 
locomotives accompanied by 68 wagons with a maximum length of 750 metres and a total train weight of 8500 
metric tonnes with axel loads of 30 tonnes. The trains operate in harsh conditions, including snow in the winter 
and extreme temperatures ranging from - 40 °C to + 25 °C. Because carrying iron ore results in high axle loads 
and there is a high demand for a constant flow of ore/pellets, the track and wagons must be monitored and 
maintained on a regular basis. The condition of the locomotive wheel profile is one of the most important aspects 
to consider. 
 

2.2 Degradation data and re-profiling parameters  

We use the degradation data from two selected heavy haul cargo locomotives (denoted as locomotive 1 and 
locomotive 2), collected from October 2010 to January 2012. The selection criteria are discussed in Section 2.3. 
Each locomotive is studied separately, and 2n . For each locomotive, see Fig.2, there are two bogies (incl., 
Bogie I, Bogie II); and each bogie contains six wheels. The installed position of a wheel on a particular 
locomotive is specified by the bogie number (I, II-number of bogies on the locomotive), an axel number (1, 2, 3-
number of axels for each bogie) and the position of the axle (right or left) where each wheel is mounted. 

 
Fig. 2 Wheel positions specified in this study 

The diameter of a new locomotive wheel in this study is about 1250 mm. Following the current maintenance 
strategy, a wheel’s diameter is measured after it runs a certain distance. If it is reduced to 1150 mm, the wheel 
set is replaced by a new one. Otherwise, it is re-profiled (see Fig.3). Therefore, a threshold level for failure, 
denoted as 0y , is defined as 100 mm ( 0y = 1250 mm -1150 mm). The wheel’s failure condition is assumed to be 
reached if the diameter reaches 0y . The dataset  includes the diameters of all locomotive wheels at a given 
inspection time, the total running distances corresponding to their “mean time between re-profiling”, and the 
wheels’ bill of material (BOM) data, from which we can determine their positions.

 
 

Fig. 3 Locomotive wheels on-site re-profiling  
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During the re-profiling process, the re-profiling parameters include but are not limited to: 1) the diameters of the 
wheels; 2) the flange thickness; 3) the radial run-out; 4) the lateral run-out. 

 
2.3 Comparison of the operating conditions  

In this study, both locomotive 1 and locomotive 2 are operating on the Iron Ore Line (Malmbanan). In Fig.4, the 
horizontal axis represents the different working intervals; “Nrv-Kmb” represents the route from Narvik to Kiruna, 
while “Kmb-Nrv” represents the route from Kiruna to Narvik. Those intervals make up the whole Iron Ore Line 
(Malmbanan). The longitudinal axis of Fig. 4 (a) represents the percentage of workloads in each working interval; 
the longitudinal axis of Fig. 4 (b) represents the running distances in those intervals.  
 

                                       
     

(a) workloads in different working intervals        (b)  running distances for different working intervals 
 

Fig. 4 Comparison of the operating conditions for locomotive 1 and locomotive 2 

As seen in Fig.4, during the period in question (from October 2010 to January 2012), the total running distance 
for locomotive 1 is 101035 kilometres and for locomotive 2, 81302 kilometres. About 70% of the locomotives’ 
workload is between Narvik and Kiruna. There is no substantial difference between the running routes, but it 
seems that locomotive 1 works harder than locomotive 2, because the former runs 24% farther. As there is not a 
big difference between the topographies, we assume that the only difference in operating conditions is the total 
running distance. 
 
3 Degradation analyses with the Weibull frailty model 

In this section, we propose the Weibull frailty model for analysing the wheels’ degradation data, using a MCMC 
computation scheme. 

Before continuing, it should be pointed that Lin et al. [5] have used the Bayesian Exponential Regression Model, 
Bayesian Weibull Regression Model (easily transferred to an Extreme-Value Regression Model) and Bayesian 
Lognormal Regression Model, separately, to analyze the lifetime of locomotive wheels using degradation data 
and taking into account the position of the wheel. Their results show that “the performance of the Weibull 
Regression Model is close to the Log-normal Regression Model, which could also be a suitable choice under 
specified situations.” As the Weibull Regression Model is more acceptable to engineers and the differences 
between the Weibull Regression and Lognormal Regression Models are quite small, we choose the former model 
in this comparative study. 
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3.1 Weibull frailty model  

Most reliability studies are implemented under the assumption that individual lifetimes are independent and 
identically distributed (i.i.d). In reality, at times, Cox proportional hazard (CPH) models cannot be used because 
of the dependence of data within a group. For instance, because they have the same operating conditions, the 
wheels mounted on a particular bogie may be dependent. Modelling dependence in multivariate survival data has 
received considerable attention, especially in cases where the datasets comprise inter-related subjects of the same 
group [6, 7]. A key development in modelling such data is to consider frailty models, in which the data are 
conditionally independent.  

Frailty models were first considered by Clayton [8] and Oakes [9] to handle multivariate survival data. In their 
models, the event times are conditionally independent according to a given frailty factor, which is an individual 
random effect. As discussed by Sahu et al.[6], the models formulate different variabilities and come from two 
distinct sources. The first source is natural variability, which is explained by the hazard function; the second is 
variability common to individuals of the same group or variability common to several events of an individual, 
which is explained by the frailty factor.  

Assume the hazard function for the thj individual in the thi group is 

)exp()()( 0 x'
ijiij thth .                                                                                                                                   (1) 

In equation (1), i represents the frailty parameter for the thi group. If )exp( ii , the equation can also be 
written as 

)exp()()( 0 x'
ijiij thth .

                                                                                                                                      (2) 

Equation (1) is an additive frailty model, and equation (2) is a multiplicative frailty model. In both equations, i

and i  are shared by the individuals in the same group, and they are thus referred to as shared-frailty models 
and actually are extensions of the CPH model. 

To this point, discussions of frailty models have focused on the forms of 1) the baseline hazard function and 2) 
the frailty’s distribution. Representative studies related to the former include the gamma process for the 
accumulated hazard function [11, 12], Weibull baseline hazard rate [6], and the piecewise constant hazard rate [7] 
which is adopted in this paper due to its flexibility. Some researchers have examined finite mean frailty 
distributions, including gamma distribution [8, 13], lognormal distribution [14],  and the like; others have studied 
non-parameter methods, including the inverse Gaussion frailty distribution [15], the power variance function for 
frailty [16], the positive stable frailty distribution [17, 18], the Dirichlet process frailty model [19] and the Levy 
process frailty model [20]. In this paper, we consider the gamma shared frailty model, the most popular model 
for frailty. 

From equation (2), suppose the frailty parameters i are independent and identically distributed (i.i.d) for each 
group and follow a gamma distribution, denoted by ),( 11Ga . Therefore, the probability density function 
can be written as 

)exp(
)(

)()( 11
1

1 1
1

iiif .                                          ( 3 ) 
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In equation (3), the mean value of i  is 1, where is the unknown variance of i s. Greater values of signify 
a closer positive relationship between the subjects of the same group as well as greater heterogeneity among 
groups. Furthermore, as i >1, the failures for the individuals in the corresponding group will appear earlier 
than if i =1; in other words, as i <1, the predicted lifetimes will be greater than those found in the 
independent models.  

Suppose '
21 ),,,( n ; then  

 
)exp()( 1

1

11

i
n

i
i .                                            ( 4 ) 

Denote the thj individual in the thi group as having lifetime )',,,(
i1211 nmtttijt , where ni ,,1  and

imj ,,1 . Suppose the thj individual in the thi group has a 2-parameter Weibull distribution ),(W , where
0 and 0 . Then, the p.d.f. is )exp(),( 1

ijijij tttf , and the c.d.f. ),( ijtF  and the reliability 
function ),( ijtR are ),(1)exp(1),( ijijij tRttF .  Meanwhile, the hazard rate function can be 
written as 

 
1

0 ),( ijij tth .                                                  ( 5 ) 

Based on the above discussions (equation (2), (3), and (5)), the Weibull frailty model with gamma shared 
frailties can be written as 

 

)exp(),( 1 xx '
ijij ijiiij tth .                                                 ( 6 ) 

In equation (6), i ~ ),( 11Ga . 

In reliability analyses, the lifetime data are usually incomplete, and only a portion of the individual lifetimes are 
known. Right-censored data are often called Type I censoring, and the corresponding likelihood construction 
problem has been extensively studied in the literature [21, 22]. Suppose the thj individual in the thi group has 
lifetime ijT and censoring time ijL . The observed lifetime ),min( ijijij LTt ; therefore, the exact lifetime ijT will 
be observed only if ijij LT . In addition, the lifetime data involving right censoring can be represented by n pairs 
of random variables ),( ijijt , where 1ij if ijij LT and 0ij if ijij LT . This means that ij  indicates 
whether lifetime ijT is censored or not. The likelihood function is deduced as 

n

i

m

j
ijij

i
ijij tRtftL

1 1

1)()]([)( .                                                                                                                          (7) 

If we denote )loglogexp( iij x'
ij , equation (6) becomes 1),( ijijijij tth , the Weibull 

regression model with a gamma frailty ),( ijW . 

 If we denote the model’s dataset as ),,( X,t,nD , following equation (7), the complete likelihood function 
),,( DL  for the individuals in the thi group can be written as 
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                                                     (8) 

Let )(  denote the prior or posterior distributions for the parameters. Then, the joint posterior distribution 
),( Di ,, for gamma frailties i can be written as  
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}))exp((exp{

)exp())exp(exp())exp((
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       (9) 

Equation (9) shows that the full conditional density of each i  is a gamma distribution.  

Before continuing, we should discuss the selection of priors based on MCMC in our study. In Bayesian 
reliability inference, two kinds of priors are very useful: the conjugate prior and the non-informative prior. To 
apply MCMC methods, however, the “log-concave prior” is recommended.  

The conjugate prior family is very popular, because it is convenient for mathematical calculation. If the posterior 
distributions are in the same family as the prior distributions, the prior and posterior distributions are called 
conjugate distributions, and the prior is called a conjugate prior. The Gaussian family is a conjugate of itself (or a 
self-conjugate) with respect to a Gaussian likelihood function: if the likelihood function is Gaussian, choosing a 
Gaussian prior distribution over the mean distribution will ensure that the posterior distribution is also Gaussian. 
This means that the Gaussian distribution is a conjugate prior for the likelihood function which is also Gaussian. 
Other examples include the following: the conjugate distribution of a Normal distribution is a Normal or inverse-
Normal distribution; the Poisson and the Exponential distributions’ conjugates both have a Gamma distribution, 
while the Gamma distribution is a self-conjugate; the Binomial and the negative Binomial distributions’ 
conjugates both have a Beta distribution; the Polynomial distribution’s conjugate is a Dirichlet distribution, etc. 
Non-informative prior refers to a prior for which we only know certain parameters’ value ranges or their 
importance; for example, there may be a uniform distribution. A non-informative prior can also be called a vague 
prior, flat prior, diffuse prior, or ignorance prior, etc. There are many different ways to determine the distribution 
of a non-informative prior, including Bayes hypothesis, Jeffrey’s rule, reference prior, inverse reference prior, 
probability-matching prior, Maximum entropy prior, relative likelihood approach, cumulative distribution 
function, Monte Carlo method, bootstrap method, random weighting simulation method, Harr invariant 
measurement, Laplace prior, Lindley rule, generalized maximum entropy principle, and the use of marginal 
distributions. From another perspective, the types of prior distribution also include informative prior, hierarchical 
prior, Power prior and non-parameter prior processes.  

At this point, there are no set rules for selecting prior distributions. Regardless of the manner used to determine a 
prior’s distribution, the selected prior should be both reasonable and convenient for calculation. Of the above, the 
conjugate prior is a common choice. To facilitate the calculation of MCMC, especially for adaptive rejection 
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sampling and Gibbs sampling, a popular choice, as noted above, is log-concave prior distribution. Log-concave 
prior distribution refers to a prior distribution in which the natural logarithm is concave, i.e. the second 
derivative is non-positive. Common logarithmic concavity prior distributions include the normal distribution 
family, logistic distribution, student's t distribution, the exponential distribution family, the uniform distribution 
on a finite interval,  greater than the gamma distribution with a shape parameter greater than 1,  Beta distribution 
with a value interval (0 , 1), etc. As logarithmic concavity prior distributions are very flexible, this paper 
recommends their use in reliability studies. 

Suppose has a gamma prior distribution, denoted by ),(~ 21Ga . The full conditional density of is 
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Equation (10) also shows that the full conditional density of  is a gamma distribution. The full conditional 
density of  and  can be given by 

)(})exp(exp{),,,(
1 11 1

' x'
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3.2 Comparison study of degradation analyses 

3.2.1 Degradation path and lifetime data 

From the dataset, we obtain 5 to 6 measurements of the diameter of each wheel during its lifetime (in the period 
October 2010 to January 2012). By connecting these measurements, we can determine a degradation trend. In 
their analyses of train wheels, most studies (e.g., [2], [3], [5]) assume a linear degradation path. In this study, we 
apply a linear degradation path for each locomotive wheel. In Figure 1 we plot the degradation data for one 
locomotive wheel (I1H) in Fig.5 as an example. And in Table.1, the squares of their correlation coefficients 
(denoted as 2R ) indicate that the linear assumption is a reasonable choice. Finally, the corresponding running 
distance (kilometres) is recognized as the lifetime.  Note that the degradation path could be non-linear for other 
cases. We suggest comparing the R-square results in each case. 
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Fig.5 Plot of the wheel degradation data: an example (I1H) 

Table.1 Statistics on degradation path and lifetime data 

 Locomotive 1 Locomotive 2 
Positions Linear path R² Lifetime**  Linear path R² Lifetime** 

Bogie I 
 

y = 0.5283x + 10.452 0.9758 * 169.50 y = 0.3195x + 16.67 0.9020 260.81 
y = 0.5174x + 10.867 0.9707 * 172.27 y = 0.319x + 16.717 0.9050 261.08 
y = 0.5293x + 10.306 0.9756 * 169.46 y = 0.3185x + 16.554 0.9039 262.00 
y = 0.528x + 10.327 0.9755 * 169.84 y = 0.318x + 16.673 0.9028 262.03 
y = 0.5581x + 10.528 0.9658 160.32 y = 0.3165x + 16.953 0.9073 262.39 
y = 0.5637x + 10.447 0.9701 158.87 y = 0.3168x + 16.901 0.9076 262.31 

Bogie II 
 

y = 0.4736x + 1.5766 0.9401 207.82 y = 0.3502x + 16.292 0.8972 239.03 
y = 0.4735x + 1.605 0.9424 207.80 y = 0.3511x + 16.198 0.8967 238.68 
y = 0.4994x + 1.5624 0.9537 197.11 y = 0.3861x + 11.828 0.8096 228.37 
y = 0.5002x + 1.5388 0.9553 196.84 y = 0.3831x + 12.323 0.8030 228.86 
y = 0.4979x + 4.0938 0.9702 192.62 y = 0.3425x + 17.353 0.8890 241.31 
y = 0.4926x + 3.8123 0.9738 195.27 y = 0.3427x + 17.34 0.8887 241.20 

                       * Right-censored data; ** 310 kilometres 
 

Note: some lifetime data are right-censored (denoted by the asterisk in Table.1). However, we know the real 
lifetimes will exceed the predicted lifetimes. 

Following the above discussion, a wheel’s failure condition is assumed to be reached if the diameter reaches 0y . 
We adopt the linear path for all wheels and set 0y = y . The lifetimes for these wheels are now easily determined 
and are shown in the “Lifetime” columns of Table1. These lifetimes are the input of the Weibull frailty model, as 
discussed in Section 3. 

 

3.2.2 Parameter Configuration 

Following the discussion in 3.2.1, vague prior distributions are adopted in this paper as: 

Gamma frailty prior: Gai ~ (0.1, 0.1); 
Normal prior distribution: 0  ~ N (0.0, 0.001); 
Normal prior distribution:  1 ~ N (0.0, 0.001); 
Gamma prior distribution: Ga~ (0.1, 0.1); 
Gamma prior distribution: Ga~ (0.1, 0.1). 
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At this point, the MCMC calculations are implemented using the software WinBUGS [13]. We use a burn-in of 
10,001 samples, along with an additional 10,000 Gibbs samples.  
 

3.2.3 Results 

Following the convergence diagnostics (incl., checking dynamic traces in Markov chains, time series, and 
comparing the Monte Carlo (MC) error with Standard Deviation (SD); see [23]), we consider the following 
posterior distribution summaries (see Table.3):  the parameters’ posterior distribution mean, SD, MC error, and 
the 95% highest posterior distribution density (HPD) interval.  

In Table.3, 01 means that the wheels mounted in the first bogie (as 1x ) have a shorter lifetime than those 
in the second (as 2x ). However, the influence could possibly be reduced as more data are obtained in the 
future, because the 95% HPD interval includes a 0 point. In addition, the heterogeneity of the wheels on the two 
locomotives is significant. Nevertheless, 11  suggests that the predictive lifetimes for the wheels mounted on 
the first locomotive are shorter when the frailties are considered; however, 12 indicates the opposite 
conclusion.  

Table.3 Posterior distribution summaries

Parameter mean SD MC error 95% HPD Interval 

0  -0.2826 31.36 0.3438 (-60.69,61.4) 

1  -0.1613 31.62 0.3152 (-63.2,62.71) 
 1.035 3.329 0.03348 (2.449E-16,10.36) 
 0.9726 3.101 0.02904 (1.683E-15,9.277) 

1  0.9709 2.999 0.02819 (1.738E-16,9.442) 

2  1.029 3.261 0.03392 (9.718E-16,10.21) 
 

By considering the random effects resulting from the natural variability (explained by covariates) and the 
unobserved random effects within the same group (explained by frailties), we can determine other reliability 
characteristics of lifetime distribution. The statistics on reliability )(tR  for the two wheels mounted in different 
bogies are: 

))1613.0(2826.0exp(9709.0035.197.0)( 035.0
11 xtth  

))1613.0(2826.0exp(029.1035.197.0)( 035.0
22 xtth  

3.3 Discussion 

The above results can be applied to maintenance optimisation, including lifetime prediction and replacement, 
preventative maintenance, and re-profiling. More specifically, determining reliability characteristics distributed 
over the wheels’ lifetime could be used to optimise replacement strategies and to support related predictions for 
spares inventory. With respect to preventative maintenance, the wheels installed in different bogies should be 
given more attention during maintenance. Especially when the wheels are re-profiled, they should be checked 
starting with the bogies to avoid duplication of efforts. Last but not least, as the operating environments are 
similar for the two locomotives considered here, the frailties between bogies could be caused by the locomotives 
themselves, the status of the bogies or spring systems, and human influences (including maintenance policies and 
the lathe operator).  
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4 Comparison study on re-profiling work orders 

This section compares the work orders for wheel re-profiling by date (denoted as “by date” in Fig.6) and the 
corresponding bogies’ total number of kilometres in operation (denoted as “by kilometres” in Fig.7), separately. 

In Fig.6, the work order statistics for re-profiling are listed by date. The colour and the number of the bar 
represent the type of work order reported in the system. For instance, number 1 (blue) means the reason for re-
profiling is a high flange; number 3 (red) represents the RCF problem; number 7 (purple) means the re-profiling 
is due to the dimension difference between wheels in a bogie; number 9 (yellow) denotes a thick flange. The 
work orders have 14 categories for re-profiling: high flange, thin flange, RCF, unbalanced wheel, QR 
measurements, out-of-round wheel, dimension difference in between wheels in same bogie, vibrations, thick 
flange, cracks, remarks from measurement  of the wheel by Miniprof, other defects, to plant for re-profiling, and 
hollowware. These categories are determined by the operator and are listed in Appendix A. Take Fig.6 (a) for 
example. By April 2010, the wheels of Locomotive 1 have been re-profiled 12. Eight times it was related to 
category 3 (RCF problem), and four times it was in category 7 (the dimension difference between wheels in a 
bogie).   

In Fig. 6 and Fig.7, the figures on the left side provide the statistics for locomotive 1, while those on the right are 
for locomotive 2. Note that in Fig.7, the work order statistics on re-profiling are listed by the corresponding 
bogies’ total number of kilometres in operation on the reported date. In Fig.7 (b), the wheels have run 87721 
kilometres and been re-profiled 16 times, 12 times due to category 1 (high flange) and 4 times due to category 9 
(thick flange). 
 

 
 
                         (a)Work order numbers for Locomotive 1                                           (b) Work order numbers for Locomotive 2 

 

 
 

                          (c)Total re-profiling for Locomotive 1 /mm                         (d) Total re-profiling for Locomotive 2 /mm 
 

 

 
 
                    (e)Average re-profiling for Locomotive 1 /mm                     (f) Average re-profiling for Locomotive 2 /mm  
 

Fig.6 Work order statistics on re-profiling by date 
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It should be pointed out that since October 2010, new wheels have been mounted on both locomotives. However, 
the selected work orders are from the beginning of 2010; therefore, more re-profiling has been done on 
locomotive 1. 

 

 
 
                         (a)Work order numbers for Locomotive 1                                           (b) Work order numbers for Locomotive 2 
 

 
 
                  (c)Total re-profiling for Locomotive 1                                                  (d) Total re-profiling for Locomotive 2 
 

 
 
                  (e)Average re-profiling for Locomotive 1                                             (f) Average re-profiling for Locomotive 2 
 

Fig.7 Work order statistics on re-profiling by kilometre 
 

For locomotive 1, there are two failure modes: RCF and dimensional differences for wheels in the same bogie. 
The number of re-profiling work orders due to RCF is 64; the number due to dimensional differences for wheels 
in the same bogie is 8. Locomotive 2 shows three failure modes, high flange, RCF and thick flange. Again, the 
dominant failure mode is RCF with 38 re-profilings, followed by high flange with 12 re-profilings and thin 
flange with 4; see Fig.6 (b). Figs. 6 (c) and (d) show the amount of material removed at each re-profiling for all 
wheels. Even here, the RCF failure dominates with more material lost in re-profiling.  Figs. 6 (e) and (f) show 
the mean cut deep for each re-profiling. The RCF failure mode has deeper cuts than other modes; the high flange 
failure mode has the smallest mean cut depth.   

Fig. 7 shows the same information but uses the global traveling distance in kilometres (km).  It should be pointed 
out that for Locomotive 1, Fig.7 has more bars on the left hand side because the axels have been changed and the 
recorded kilometres are different. 

Generally speaking, RCF is the main type of work order for both locomotives. What should also be pointed out 
is that in the work order statistics, natural wear and the amount of re-profiling are considered simultaneously. 
Yet the trends in the amount of re-profiling are different. For instance, for locomotive 1, there is a decreasing 
trend for new wheels, while locomotive 2 shows an increasing trend.   
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During this investigation, we discovered a number of problems in the work orders. For example, some reported 
data cannot be recognised (e.g., some wheels are apparently re-profiled twice on one date; some reported wheel 
diameters after re-profiling are even larger than before re-profiling).  

We suggest applying related KPIs to monitor the re-profiling work and the wheel performance in the future. 
 

5 Comparison study on re-profiling parameters 

In this section, we compare the re-profiling parameters (the statistics before and after each re-profiling), 
including the diameter of the wheel (denoted as Rd), the flange thickness (denoted as Sd), the radial runout 
(denoted as Rr), and the axial runout (denoted as Rx).  
 

5.1 Assessment of re-profiling parameters (Rd) 

Starting in this section, we only include statistics by re-profiling date. In addition, due to the similarities of the 
wheels installed in the same bogie, we only list statistics for the chosen wheel within each bogie. The red line 
represents the statistics obtained before re-profiling; the blue line represents statistics after re-profiling. Fig.8 
shows locomotive 1 on the left hand side and locomotive 2 on the right; for the graphs, the y-axle is the wheel 
diameter and the x-axle is the re-profiling date.  For locomotive 1, the graphs start with the last re-profiling of an 
old wheel; step two is the first re-profiling with new wheels.  

 

 
                  
                (a)Rd statistics for Locomotive 1 (I1H)                                                         (b) Rd statistics for Locomotive 2 (I1H)                                        
 

 
 

(c)Rd statistics for Locomotive 1 (II1H)                                                         (d) Rd statistics for Locomotive 2 (II1H)                                        
 

Fig.8 Rd statistics by date (before and after re-profiling): one example (I1H & II1H) 
 

The wheels installed in the same bogie show similar trends in the before and after re-profiling statistics (denoted 
as  Rd).  Rd is decreasing for locomotive 1 and increasing for locomotive 2. 
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5.2 Assessment of re-profiling parameter (Sd)  

Fig.9 shows the statistics of the Sd for the selected wheels. Locomotive 1 is represented on the left hand side, 
with locomotive 2 on the rightt.  For both, the flange thickness increases during winter and decreases in summer; 
this phenomenon is especially pronounced for locomotive 1 and the first bogie and first axle; see the dotted lines 
in Fig.9a.  
 

 
 

(a)Sd statistics for Locomotive 1 (I1H)                                                         (b) Sd statistics for Locomotive 2 (I1H)      
 

 
 
 

(c)Sd statistics for Locomotive 1 (II1H)                                                         (d) Sd statistics for Locomotive 2 (II1H)                                        
                                  

Fig.9 Sd statistics by date (before and after re-profiling): one example (I1H & II1H) 
 

Like the Rd statistics, the Sd statistics for the wheels installed in the same bogie are quite similar. The “after” 
statistics (in blue) are stable. The “before” statistics (in red) are gradually becoming stable, which means the gap 
(denoted as  Sd) is decreasing.  

Note that if we check the before and after statistics in different seasons, we see that the flange thickness (red line) 
decreases in summer and increases in winter; see Fig.9 (a).   

 
5.3 Assessment of re-profiling parameter ( Rd, Sd, Rr, Rx) 

In this section, we simultaneously consider the gaps of the four parameters discussed above: Rd (blue), Sd 
(green), Rr (red), and Rx (yellow). 
 

 
 

(a) Gap statistics for Locomotive 1 (I1H)                                                         (b) Gap statistics for Locomotive 2 (I1H)      
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(c) Gap statistics for Locomotive 1 (II1H)                                                         (d) Gap statistics for Locomotive 2 (II1H)   
 

Fig.10 gap statistics by date (before and after re-profiling): one example (I1H & II1H) 

As discussed above, the statistics for the wheels installed in the same bogie are quite similar. Among these four 
parameters, the changing of Rd is the most obvious one, with Sd coming second. The changing of Rr and 

Rx are random and the amount is quite small compared to the first two parameters. Therefore, we suggest 
applying the first two parameters to monitor the wheels’ re-profiling performance in the future. 
 

6 Comparison of wear rate 

In this section, we compare the wheels’ wear rates, shown in Tables.4 to 7. More details appear in Appendix B 
(Table B.1- B.20).  

Table 4 shows locomotive 1, bogie 1 and the first axle on the right side; Table 5 shows locomotive 1, bogie 2 
and the first axle on the right side; see Fig. 2 for the position of the bogies and axles. The number of re-profiling 
work orders is different between bogies: bogie 1 has 4 and bogie 2 has 5. The reason for the difference may be 
that bogie 1 was changed after the fourth re-profiling. The re-profiling at times 1 to 4 was done at the same time 
for both bogies, extending over 12 months.  

As for locomotive 1, Table 4 shows that it has been running for 123.351 km; the mean distance between re-
profiling is 41.117 km. The distance after the last re-profiling for bogie 2 was only 17.930 km, less than half of 
the average distance for re-profiling numbers 1 to 4; see Table 5. Tables 4 and 5 also show the diameter of the 
wheel before and after re-profiling and the amount of material removed at each re-profiling. The mean amount of 
material removed during re-profiling for bogie 1 is 16.193 mm and for bogie 2, 11.176 mm. Remarkably, the 
amount of re-profiling for bogie 2, step 2 is 27.04 mm, much more than the others; as noted above, the mean is 
16.193 mm. If we compare natural wear with artificial wear, the former is between 15 mm and 20% of the total 
wear. In addition, the total wear rate for locomotive 2, bogie 1, is 0.619 mm/1000 km; for bogie 2, it is 0.393 
mm/1000km. 

Table.4 Statistics for wear rate: an example (locomotive 1, I1H) 

Locomotive 1 Position I1H Total/Average 
Number of re-profiling 1 2 3 4 4 times 
Re-profiling date 201010 201103 201108 201110 12 months 
Reported kilometres /1000km 720.254 759.032 815.661 843.605 / 
Absolute kilometres /1000km 0 38.778 56.629 27.944 123.351 
Diameters (before)/mm 1252.72 1240.08 1207.11 1187.81 / 
Diameters (after)/mm 1243.93 1213.04 1189.64 1176.34 / 
Re-profiling Amount/mm 8.79 27.04 17.47 11.47 64.77 
Natural Wear/mm 0 3.85 5.93 1.83 11.61 
Total Wear/mm 8.79 30.89 23.4 13.3 76.38 
Re-profiling Amount % 1 0.875 0.747 0.862 0.848 
Natural Wear % 0 0.125 0.253 0.138 0.152 
WearRate_re-profiling / 0.697 0.308 0.41 0.525 
WearRate_Natural / 0.099 0.105 0.065 0.094 
WearRate_Total / 0.797 0.413 0.476 0.619 
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Table.5 Statistics for wear rate: an example (locomotive 1, II1H) 

Locomotive 1 Position II1H Total/Average
Number of re-profiling 1 2 3 4 5 5 times 
Re-profiling date 201010 201103 201108 201110 201112 14 months 
Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 
Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 
Diameters (before)/mm 1251.01 1241.39 1226.34 1208.59 1182.66 / 
Diameters (after)/mm 1244.72 1231.16 1211.09 1195.43 1171.71 / 
Re-profiling Amount/mm 6.29 10.23 15.25 13.16 10.95 44.93 
Natural Wear/mm 0 3.33 4.82 2.5 12.77 10.65 
Total Wear/mm 6.29 13.56 20.07 15.66 23.72 55.58 
Re-profiling Amount % 1 0.754 0.76 0.84 0.462 0.808 
Natural Wear % 0 0.246 0.24 0.16 0.538 0.192 
WearRate_re-profiling / 0.264 0.269 0.471 0.611 0.318 
WearRate_Natural / 0.086 0.085 0.089 0.712 0.075 
WearRate_Total / 0.35 0.354 0.56 1.323 0.393 

 

As mentioned, locomotive 1 and locomotive 2 have the same operating conditions (see Fig. 4 for the 
comparison), but the figures in Tables 6 and 7 show different results. Table 6 shows locomotive 2, the first bogie, 
the first axle, and the right hand side wheel; Table 7 shows the second bogie, the first axle, and the right hand 
side wheel.   This locomotive has been re-profiled 4 times in 15 months; the mean distance between re-profiling 
is 56.990 km. The mean amount of material removed for re-profiling for bogie 1 is 15.10 mm; for bogie 2 it is 
16.51 mm. The last re-profiling for the first bogie removed 26.59 mm and for the second bogie 31.47 mm. 
Finally, the total wear rate for locomotive 2, bogie 1, is 0.452 mm/1000 km and for bogie 2, 0.484 mm/1000km 

 

Table.6 Statistics for wear rate: an example (locomotive 2, I1H) 

Locomotive 2 Position 11H Total/Average 
Number of re-profiling 1 2 3 4 4 times 
Re-profiling date 201010 201102 201109 201201 15 months 
Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 
Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 
Diameters (before)/mm 1251.97 1234.15 1217.22 1201.24 / 
Diameters (after)/mm 1239.04 1225.41 1205.07 1174.65 / 
Re-profiling Amount/mm 12.93 8.74 12.15 26.59 60.41 
Natural Wear/mm 0 4.89 8.19 3.83 16.91 
Total Wear/mm 12.93 13.63 20.34 30.42 77.32 
Re-profiling Amount % 1 0.641 0.597 0.874 0.781 
Natural Wear % 0 0.359 0.403 0.126 0.219 
WearRate_re-profiling / 0.161 0.165 0.618 0.353 
WearRate_Natural / 0.09 0.111 0.089 0.099 
WearRate_Total / 0.251 0.276 0.707 0.452 
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Table.7 Statistics for wear rate: an example (locomotive 2, II1H) 

Locomotive 2 Position II1H Total/Average 
Number 1 2 3 4 4 times 
Date 201010 201102 201109 201201 15 months 
Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 
Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 
Diameters (before)/mm 1252.09 1236.67 1213.58 1200.81 / 
Diameters (after)/mm 1241.75 1221.98 1204.06 1169.34 / 
re-profiling Amount/mm 10.34 14.69 9.52 31.47 66.02 
Natural Wear/mm 0 5.08 8.4 3.25 16.73 
Total Wear/mm 10.34 19.77 17.92 34.72 82.75 
re-profiling Amount % 1 0.743 0.531 0.906 0.798 
Natural Wear % 0 0.257 0.469 0.094 0.202 
WearSpeed_re-profiling / 0.27 0.129 0.732 0.386 
WearSpeed_Natural / 0.093 0.114 0.076 0.098 
WearSpeed_Total / 0.364 0.243 0.807 0.484 
 

Explanatory comments for Tables.4, 5, 6, 7 include the following: 

Absolute kilometres = the current reported kilometres – the previous reported kilometres; 
Re-profiling Amount = Diameters (before) - Diameters (after); 
Natural Wear = the previous Diameters (after) – the current Diameters (before); 
Total Wear = Re-profiling Amount + Natural Wear; 
Re-profiling Amount % = Re-profiling Amount / Total Wear; 
Natural Wear % = Natural Wear/ Total Wear; 
WearRate_Reprofiling = Re-profiling Amount / Absolute kilometres; 
WearRate_Natural = Natural Wear / Absolute kilometres; 
WearRate_Total = Total Wear / Absolute kilometres; 
Average of the total wear rate = the average of WearRate_Total. 

In addition, by comparing the interval of the re-profiling date, we can simply divide each re-profiling episode 
into seasons (for instance, the summer and warmer times, the winter and cooler times).  

In Table.8, we list the statistics for the WearRate_total of all the wheels for the two locomotives. The mean wear 
rates are 0.516 mm/1000km for locomotive 1 and 0.480 mm/1000km for locomotive 2; in other words, 
locomotive 1 has a 75% higher wear rate. Axles 1, 2 and 5 have 11.6 % higher wear rate than axles 3, 4 and 6. 

 

Table.8 Statistics for total wear rates 

WearRate total
11H 11V 12H 12V 13H 13V 21H 21V 22H 22V 23H 23V 

Locomotive 1 0.619 0.607 0.614 0.605 0.542 0.533 0.393 0.404 0.467 0.467 0.467 0.472 
Locomotive 2 0.452 0.439 0.448 0.448 0.449 0.448 0.484 0.482 0.568 0.575 0.487 0.476 
 

By comparing the above parameters of the wheels installed in different positions on the locomotives, including 
the results shown in Tables 4 to 8, as well as the results shown in Appendix B (Table B.1 – B.20), we can reach 
the following additional conclusions:  
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the average wear rate of the wheels on locomotive 1 is greater than for locomotive 2; 
the natural wear is about 10% ~ 25 % of the total wear; the re-profiling is about  75 %~ 90% of the total; 
the natural wear in winter time is slower than in summer; 
the re-profiling rate in winter is larger than in summer;  
the wheels installed on the second axel in the second bogie have an abnormal higher wear rate 
compared to the wheels installed in the same bogie but on the other axel; this requires more attention; 
The wheels installed in the same bogie perform similarly. 

 

7 Conclusions 

This paper compares the wheels of two selected locomotives on the Iron Ore Line in northern Sweden in an 
effort to explore their heterogeneity and their differences in reliability. To this end, it proposes integrating 
degradation data and re-profiling performance data to perform a reliability assessment.  

The Weibull frailty model is used to analyse the wheels’ degradation.  The gamma shared frailties i are used to 
explore the influence of unobserved covariates within the same locomotive. By introducing covariate ix ’s linear 
function x'

i , we can take into account the influence of the bogie in which a wheel is installed. The proposed 
framework can deal with small and incomplete datasets; it can also simultaneously consider the influence of 
various covariates. The MCMC technique is used to integrate high-dimensional probability distributions to make 
inferences and predictions about model parameters. Finally, we compare the statistics on re-profiling work 
orders, the performance of re-profiling parameters (denoted as Rd, Sd, Rr, Rx), and wear rates.  

The results show the following for the two locomotives: 1) with the specified installation position and operating 
conditions, the Weibull frailty model is a useful tool to determine wheel reliability; 2) rolling contact fatigue 
(RCF) is the main type of re-profiling work order; 3) the re-profiling parameters can be applied to monitor both 
the wear rate and the re-profiling loss; 4) the total wear of the wheels can be determined by investigating natural 
wear and/or loss of wheel diameter through re-profiling loss, but these are different in different locomotives and 
under different operating conditions; 5) the bogie in which a wheel is installed is a key factor in assessing the 
wheel’s reliability.  

Finally, the approach discussed in this paper can be applied to cargo train wheels or to other technical problems 
(e.g. other industries, other components). 

We suggest the following additional research:  

The covariates considered here are limited to the positions of the locomotive wheels; more covariates 
must be considered. For example, the braking forces and the curving forces should also be considered.  

We have chosen vague prior distributions for the case study. Other prior distributions, including both 
informative and non-informative prior distributions, should be studied. 

In subsequent research, we plan to use our results to optimise maintenance strategies and the related 
LCC (Life Cycle Cost) problem considering maintenance costs, particularly with respect to different 
maintenance inspection levels and inspection periods (long, medium and short term).  
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Appendix A 

 
Table A.1 work order’s categories

Code Description Code Description Code Description 

1 High flange 6 Out-of-round wheel 11 Measurements on the wheel, Miniprof 

2 Thin flange 7 
Dimension difference 

in between wheels in bogie 
12 Other defect, pressure defect 

3 RCF 8 Vibrations 13 Empty, no code 

4 Unbalanced wheel 9 Thick flanges 14 Plant to be re-profiled 

5 QR measurements 10 Cracks 15 Double flanges 
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Appendix B 

 
Table B.1 Statistics for wear rate: locomotive 1. I1V

Locomotive 1 Position I1V Total/Average 

Number of re-profiling 1 2 3 4 / 4 times 

Re-profiling date 201010 201103 201108 201110 / 12 months 

Reported kilometres /1000km 720.254 759.032 815.661 843.605 / / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 / 123.351 

Diameters (before)/mm 1251.2 1241.18 1207.71 1187.39 / / 

Diameters (after)/mm 1243.88 1212.98 1188.83 1176.38 / / 

Re-profiling Amount/mm 7.32 28.2 18.88 11.01 / 65.41 

Natural Wear/mm 0 2.7 5.27 1.44 / 9.41 

Total Wear/mm 7.32 30.9 24.15 12.45 / 74.82 

Re-profiling Amount % 1 0.913 0.782 0.884 / 0.874 

Natural Wear % 0 0.087 0.218 0.116 / 0.126 

WearRate_re-profiling / 0.727 0.333 0.394 / 0.53 

WearRate_Natural / 0.07 0.093 0.052 / 0.076 

WearRate_Total / 0.797 0.426 0.446 / 0.607 

Table B.2 Statistics for wear rate: locomotive 1. I2H

Locomotive 1 Position I2H Total/Average 

Number of re-profiling 1 2 3 4 / 4 times 

Re-profiling date 201010 201103 201108 201110 / 12 months 

Reported kilometres /1000km 720.254 759.032 815.661 843.605 / / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 / 123.351 

Diameters (before)/mm 1251.77 1241.42 1208.16 1188.77 / / 

Diameters (after)/mm 1244.06 1213.04 1190.09 1176.09 / / 

Re-profiling Amount/mm 7.71 28.38 18.07 12.68 / 66.84 

Natural Wear/mm 0 2.64 4.88 1.32 / 8.84 

Total Wear/mm 7.71 31.02 22.95 14 / 75.68 

Re-profiling Amount % 1 0.915 0.787 0.906 / 0.883 

Natural Wear % 0 0.085 0.213 0.094 / 0.117 

WearRate_re-profiling / 0.732 0.319 0.454 / 0.542 

WearRate_Natural / 0.068 0.086 0.047 / 0.072 

WearRate_Total / 0.8 0.405 0.501 / 0.614 
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Table B.3 Statistics for wear rate: locomotive 1. I2V 

Locomotive 1 Position I2V Total/Average 

Number of re-profiling 1 2 3 4 / 4 times 

Re-profiling date 201010 201103 201108 201110 / 12 months 

Reported kilometres /1000km 720.254 759.032 815.661 843.605 / / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 / 123.351 

Diameters (before)/mm 1250.9 1241.76 1208.86 1188.44 / / 

Diameters (after)/mm 1244.05 1213.09 1190.08 1176.31 / / 

Re-profiling Amount/mm 6.85 28.67 18.78 12.13 / 66.43 

Natural Wear/mm 0 2.29 4.23 1.64 / 8.16 

Total Wear/mm 6.85 30.96 23.01 13.77 / 74.59 

Re-profiling Amount % 1 0.926 0.816 0.881 / 0.891 

Natural Wear % 0 0.074 0.184 0.119 / 0.109 

WearRate_re-profiling / 0.739 0.332 0.434 / 0.539 

WearRate_Natural / 0.059 0.075 0.059 / 0.066 

WearRate_Total / 0.798 0.406 0.493 / 0.605 
 

 

 

Table B.4 Statistics for wear rate: locomotive 1. I3H 

Locomotive 1 Position I3H Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 720.254 759.032 815.661 843.605 861.535 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1252.66 1235.89 1206.49 1185.39 1171.07 / 

Diameters (after)/mm 1241.1 1213.05 1190.3 1176.09 1153.26 / 

Re-profiling Amount/mm 11.56 22.84 16.19 9.3 17.81 59.89 

Natural Wear/mm 0 5.21 6.56 4.91 5.02 16.68 

Total Wear/mm 11.56 28.05 22.75 14.21 22.83 76.57 

Re-profiling Amount % 1 0.814 0.712 0.654 0.78 0.782 

Natural Wear % 0 0.186 0.288 0.346 0.22 0.218 

WearRate_re-profiling / 0.589 0.286 0.333 0.993 0.424 

WearRate_Natural / 0.134 0.116 0.176 0.28 0.118 

WearRate_Total / 0.723 0.402 0.509 1.273 0.542 
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Table B.5 Statistics for wear rate: locomotive 1. I3V 
 

Locomotive 1 Position I3V Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 720.254 759.032 815.661 843.605 861.535 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1251.67 1237.74 1207.52 1187.95 1172.95 / 

Diameters (after)/mm 1244.13 1212.87 1190.57 1176.31 1153.1 / 

Re-profiling Amount/mm 7.54 24.87 16.95 11.64 19.85 61 

Natural Wear/mm 0 6.39 5.35 2.62 3.36 14.36 

Total Wear/mm 7.54 31.26 22.3 14.26 23.21 75.36 

Re-profiling Amount % 1 0.796 0.76 0.816 0.855 0.809 

Natural Wear % 0 0.204 0.24 0.184 0.145 0.191 

WearRate_re-profiling / 0.641 0.299 0.417 1.107 0.432 

WearRate_Natural / 0.165 0.094 0.094 0.187 0.102 

WearRate_Total / 0.806 0.394 0.51 1.294 0.533 

 

 
 
      

Table B.6 Statistics for wear rate: locomotive 1. II1V 

Locomotive 1 Position II1V Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1252.34 1240.81 1226.12 1209.16 1182.08 / 

Diameters (after)/mm 1244.77 1231.11 1210.92 1195.29 1171.89 / 

Re-profiling Amount/mm 7.57 9.7 15.2 13.87 10.19 46.34 

Natural Wear/mm 0 3.96 4.99 1.76 13.21 10.71 

Total Wear/mm 7.57 13.66 20.19 15.63 23.4 57.05 

Re-profiling Amount % 1 0.71 0.753 0.887 0.435 0.812 

Natural Wear % 0 0.29 0.247 0.113 0.565 0.188 

WearRate_re-profiling / 0.25 0.268 0.496 0.568 0.328 

WearRate_Natural / 0.102 0.088 0.063 0.737 0.076 

WearRate_Total / 0.352 0.357 0.559 1.305 0.404 
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Table B.7 Statistics for wear rate: locomotive 1. II2H 
 

Locomotive 1 Position II2H Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1251.24 1241.86 1228.16 1194.45 1183.93 / 

Diameters (after)/mm 1243.91 1231.35 1211.31 1185.28 1172.06 / 

Re-profiling Amount/mm 7.33 10.51 16.85 9.17 11.87 43.86 

Natural Wear/mm 0 2.05 3.19 16.86 1.35 22.1 

Total Wear/mm 7.33 12.56 20.04 26.03 13.22 65.96 

Re-profiling Amount % 1 0.837 0.841 0.352 0.898 0.665 

Natural Wear % 0 0.163 0.159 0.648 0.102 0.335 

WearRate_re-profiling / 0.271 0.298 0.328 0.662 0.31 

WearRate_Natural / 0.053 0.056 0.603 0.075 0.156 

WearRate_Total / 0.324 0.354 0.932 0.737 0.467 
 
 
 
 

Table B.8 Statistics for wear rate: locomotive 1. II2V 
 

Locomotive 1 Position II2V Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1251.18 1241.53 1227.69 1194.44 1183.43 / 

Diameters (after)/mm 1243.99 1231.34 1211.07 1185.26 1172.05 / 

Re-profiling Amount/mm 7.19 10.19 16.62 9.18 11.38 43.18 

Natural Wear/mm 0 2.46 3.65 16.63 1.83 22.74 

Total Wear/mm 7.19 12.65 20.27 25.81 13.21 65.92 

Re-profiling Amount % 1 0.806 0.82 0.356 0.861 0.655 

Natural Wear % 0 0.194 0.18 0.644 0.139 0.345 

WearRate_re-profiling / 0.263 0.293 0.329 0.635 0.306 

WearRate_Natural / 0.063 0.064 0.595 0.102 0.161 

WearRate_Total / 0.326 0.358 0.924 0.737 0.467 
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Table B.9 Statistics for wear rate: locomotive 1. II3H 
 

Locomotive 1 Position II3H Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1250.99 1239.23 1221.26 1204.72 1182.2 / 

Diameters (after)/mm 1242.87 1227.73 1207.29 1185.02 1171.97 / 

Re-profiling Amount/mm 8.12 11.5 13.97 19.7 10.23 53.29 

Natural Wear/mm 0 3.64 6.47 2.57 2.82 12.68 

Total Wear/mm 8.12 15.14 20.44 22.27 13.05 65.97 

Re-profiling Amount % 1 0.76 0.683 0.885 0.784 0.808 

Natural Wear % 0 0.24 0.317 0.115 0.216 0.192 

WearRate_re-profiling / 0.297 0.247 0.705 0.571 0.377 

WearRate_Natural / 0.094 0.114 0.092 0.157 0.09 

WearRate_Total / 0.39 0.361 0.797 0.728 0.467 
 
 
 
 

Table B.10 Statistics for wear rate: locomotive 1. II3V 
 

Locomotive 1 Position II3V Total/Average 

Number of re-profiling 1 2 3 4 5 5 times 

Re-profiling date 201010 201103 201108 201110 201112 14 months 

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 / 

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281 

Diameters (before)/mm 1251.65 1240.1 1222.88 1205.08 1182.09 / 

Diameters (after)/mm 1243.03 1228.55 1206.93 1184.9 1171.98 / 

Re-profiling Amount/mm 8.62 11.55 15.95 20.18 10.11 56.3 

Natural Wear/mm 0 2.93 5.67 1.85 2.81 10.45 

Total Wear/mm 8.62 14.48 21.62 22.03 12.92 66.75 

Re-profiling Amount % 1 0.798 0.738 0.916 0.783 0.843 

Natural Wear % 0 0.202 0.262 0.084 0.217 0.157 

WearRate_re-profiling / 0.298 0.282 0.722 0.564 0.398 

WearRate_Natural / 0.076 0.1 0.066 0.157 0.074 

WearRate_Total / 0.373 0.382 0.788 0.721 0.472 
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Table B.11 Statistics for wear rate: locomotive 2. I1V

Locomotive 2 Position I1V Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1249.91 1234.97 1216.01 1199.92 / 

Diameters (after)/mm 1238.98 1225.44 1204.84 1174.88 / 

Re-profiling Amount/mm 10.93 9.53 11.17 25.04 56.67 

Natural Wear/mm 0 4.01 9.43 4.92 18.36 

Total Wear/mm 10.93 13.54 20.6 29.96 75.03 

Re-profiling Amount % 1 0.704 0.542 0.836 0.755 

Natural Wear % 0 0.296 0.458 0.164 0.245 

WearRate_re-profiling / 0.175 0.152 0.582 0.331 

WearRate_Natural / 0.074 0.128 0.114 0.107 

WearRate_Total / 0.249 0.28 0.697 0.439 
 
 
 
 

Table B.12 Statistics for wear rate: locomotive 2. I2H

Locomotive 2 Position I2H Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1251.73 1235.75 1218.36 1202.83 / 

Diameters (after)/mm 1239.55 1224.89 1205.41 1175.06 / 

Re-profiling Amount/mm 12.18 10.86 12.95 27.77 63.76 

Natural Wear/mm 0 3.8 6.53 2.58 12.91 

Total Wear/mm 12.18 14.66 19.48 30.35 76.67 

Re-profiling Amount % 1 0.741 0.665 0.915 0.832 

Natural Wear % 0 0.259 0.335 0.085 0.168 

WearRate_re-profiling / 0.2 0.176 0.646 0.373 

WearRate_Natural / 0.07 0.089 0.06 0.076 

WearRate_Total / 0.27 0.265 0.706 0.448 
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Table B.13 Statistics for wear rate: locomotive 2. I2V 
 

Locomotive 2 Position I2V Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1251.55 1234.84 1218.37 1203.42 / 

Diameters (after)/mm 1239.46 1224.7 1205.44 1174.98 / 

Re-profiling Amount/mm 12.09 10.14 12.93 28.44 63.6 

Natural Wear/mm 0 4.62 6.33 2.02 12.97 

Total Wear/mm 12.09 14.76 19.26 30.46 76.57 

Re-profiling Amount % 1 0.687 0.671 0.934 0.831 

Natural Wear % 0 0.313 0.329 0.066 0.169 

WearRate_re-profiling / 0.187 0.176 0.661 0.372 

WearRate_Natural / 0.085 0.086 0.047 0.076 

WearRate_Total / 0.272 0.262 0.708 0.448 
 
 
 
 

Table B.14 Statistics for wear rate: locomotive 2. I3H 
 

Locomotive 2 Position I3H Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1252.12 1233.64 1215.35 1201.39 / 

Diameters (after)/mm 1239.89 1223.32 1205.37 1175.3 / 

Re-profiling Amount/mm 12.23 10.32 9.98 26.09 58.62 

Natural Wear/mm 0 6.25 7.97 3.98 18.2 

Total Wear/mm 12.23 16.57 17.95 30.07 76.82 

Re-profiling Amount % 1 0.623 0.556 0.868 0.763 

Natural Wear % 0 0.377 0.444 0.132 0.237 

WearRate_re-profiling / 0.19 0.136 0.607 0.343 

WearRate_Natural / 0.115 0.108 0.093 0.106 

WearRate_Total / 0.305 0.244 0.699 0.449 
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Table B.15 Statistics for wear rate: locomotive 2. I3V 
 

Locomotive 2 Position I3V Total/Average 

Number 1 2 3 4 4 times 

Date 201010 201102 201109 201201 15 months 

Reported kilometers /1000km 33.366 87.721 161.346 204.349 / 

Absolut kilometers /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1251.91 1234.58 1216.09 1202.29 / 

Diameters (after)/mm 1239.96 1223.35 1208.38 1175.32 / 

re-profiling Amount/mm 11.95 11.23 7.71 26.97 57.86 

Natural Wear/mm 0 5.38 7.26 6.09 18.73 

Total Wear/mm 11.95 16.61 14.97 33.06 76.59 

re-profiling Amount % 1 0.676 0.515 0.816 0.755 

Natural Wear % 0 0.324 0.485 0.184 0.245 

WearSpeed_re-profiling / 0.207 0.105 0.627 0.338 

WearSpeed_Natural / 0.099 0.099 0.142 0.11 

WearSpeed_Total / 0.306 0.203 0.769 0.448 
 
 
 
 

Table B.16 Statistics for wear rate: locomotive 2. II1V 
 

Locomotive 2 Position II1V Total/Average 

Number of re-profiling 1 2 3 4 1 

Re-profiling date 201010 201102 201109 201201 201010 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 33.366 

Absolute kilometres /1000km 0 54.355 73.625 43.003 0 

Diameters (before)/mm 1251.67 1237.44 1213.65 1201.64 1251.67 

Diameters (after)/mm 1241.88 1222.01 1204.11 1169.24 1241.88 

Re-profiling Amount/mm 9.79 15.43 9.54 32.4 9.79 

Natural Wear/mm 0 4.44 8.36 2.47 0 

Total Wear/mm 9.79 19.87 17.9 34.87 9.79 

Re-profiling Amount % 1 0.777 0.533 0.929 1 

Natural Wear % 0 0.223 0.467 0.071 0 

WearRate_re-profiling / 0.284 0.13 0.753 / 

WearRate_Natural / 0.082 0.114 0.057 / 

WearRate_Total / 0.366 0.243 0.811 / 
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Table B.17 Statistics for wear rate: locomotive 2. II2H 
 

Locomotive 2 Position II2H Total/Average 

Number of re-profiling 0 1 2 3 3 times 

Re-profiling date / 201102 201109 201201 11 months 

Reported kilometres /1000km / 87.721 161.346 204.349 / 

Absolute kilometres /1000km / 0 73.625 43.003 116.628 

Diameters (before)/mm / 1235.7 1215.56 1201.41 / 

Diameters (after)/mm / 1225.41 1204.04 1169.48 / 

Re-profiling Amount/mm / 10.29 11.52 31.93 53.74 

Natural Wear/mm / 0 9.85 2.63 12.48 

Total Wear/mm / 10.29 21.37 34.56 66.22 

Re-profiling Amount % / 1 0.539 0.924 0.812 

Natural Wear % / 0 0.461 0.076 0.188 

WearRate_re-profiling / / 0.156 0.743 0.461 

WearRate_Natural / / 0.134 0.061 0.107 

WearRate_Total / / 0.29 0.804 0.568 
 
 

 
 

Table B.18 Statistics for wear rate: locomotive 2. II2V  
 

Locomotive 2 Position II2V Total/Average 

Number of re-profiling 0 1 2 3 3 times 

Re-profiling date / 201102 201109 201201 11 months 

Reported kilometres /1000km / 87.721 161.346 204.349 / 

Absolute kilometres /1000km / 0 73.625 43.003 116.628 

Diameters (before)/mm / 1236.39 1215.64 1201.57 / 

Diameters (after)/mm / 1225.18 1204.09 1169.32 / 

Re-profiling Amount/mm / 11.21 11.55 32.25 55.01 

Natural Wear/mm / 0 9.54 2.52 12.06 

Total Wear/mm / 11.21 21.09 34.77 67.07 

Re-profiling Amount % / 1 0.548 0.928 0.82 

Natural Wear % / 0 0.452 0.072 0.18 

WearRate_re-profiling / / 0.157 0.75 0.472 

WearRate_Natural / / 0.13 0.059 0.103 

WearRate_Total / / 0.286 0.809 0.575 
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Table B.19 Statistics for wear rate: locomotive 2. II3H 
 

Locomotive 2 Position II3H Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1252.38 1235.08 1214.07 1198.96 / 

Diameters (after)/mm 1240.05 1224.93 1204.02 1169.13 / 

Re-profiling Amount/mm 12.33 10.15 10.05 29.83 62.36 

Natural Wear/mm 0 4.97 10.86 5.06 20.89 

Total Wear/mm 12.33 15.12 20.91 34.89 83.25 

Re-profiling Amount % 1 0.671 0.481 0.855 0.749 

Natural Wear % 0 0.329 0.519 0.145 0.251 

WearRate_re-profiling / 0.187 0.137 0.694 0.365 

WearRate_Natural / 0.091 0.148 0.118 0.122 

WearRate_Total / 0.278 0.284 0.811 0.487 
 

 
 
 

Table B.20 Statistics for wear rate: locomotive 2. II3V 
 

 
Locomotive 2 Position II3V Total/Average 

Number of re-profiling 1 2 3 4 4 times 

Re-profiling date 201010 201102 201109 201201 15 months 

Reported kilometres /1000km 33.366 87.721 161.346 204.349 / 

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983 

Diameters (before)/mm 1250.55 1236.41 1213.63 1198.7 / 

Diameters (after)/mm 1248.02 1225.1 1204.04 1169.09 / 

Re-profiling Amount/mm 2.53 11.31 9.59 29.61 53.04 

Natural Wear/mm 0 11.61 11.47 5.34 28.42 

Total Wear/mm 2.53 22.92 21.06 34.95 81.46 

Re-profiling Amount % 1 0.493 0.455 0.847 0.651 

Natural Wear % 0 0.507 0.545 0.153 0.349 

WearRate_re-profiling / 0.208 0.13 0.689 0.31 

WearRate_Natural / 0.214 0.156 0.124 0.166 

WearRate_Total / 0.422 0.286 0.813 0.476 
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SUMMARY & CO CLUSIO S 

This paper proposes a new approach to study reliability of 
locomotive wheels with Bayesian framework, utilizing 
locomotive wheel degradation data sets that can be small or 
incomplete. In our study, a linear degradation path is assumed 
and locomotive wheels’ installation positions are considered 
as covariates. A Markov Chain Monte Carlo (MCMC) 
computational method is also implemented. In the case study, 
data were collected from a Swedish railway company. This 
data includes, the diameter measurements of the locomotive 
wheels, total distances corresponding to their “time to 
maintenance”, and the wheels’ bill of material (BOM) data. 
During this study, likelihood functions were constructed for 
Expontional regression models, Weibull regression models, 
and lognormal regression models. The results show that the 
locomotive wheels’ lifetimes are dependent on installation 
positions. For the studied locomotive wheels data, the 
Lognormal regression model is a better choice, because the 
model obtained the lowest Deviance Information Criterion 
(DIC) values. In addition, under current operation situation 
(e.g. topography) and current maintenance strategies (re-
profiled, lubrication, etc.), the locomotive wheels installed in 
the second bogie have longer lifetimes than those installed in 
the first bogie; the wheels installed on the “back” axle have 
longer lifetimes than those on the “front” axle; and the right 
side wheels’ lifetime is shorter than that for the left side under 
a given running situation. 

1 I TRODUCTIO  

The service life of a railroad wheel can be significantly 
reduced due to failure or damage, leading to excessive cost 
and accelerated deterioration. Damage data show that a major 
proportion of wheel damage stems from degradation. 

 In order to monitor the performance of wheels and make 
replacement before adverse effects occur, the railway industry 
uses both preventive and predictive maintenance. [1-5] By 
predicting train wheel wear, fatigue, tribological aspects, and 
failures, the railway industry can formulate different 
preventive maintenance strategies under different time 
periods. [6] For predictive maintenance, wheel condition 
monitoring data have been studied to increase the lifetime by 

knowing the condition of the wheel profile. [7-9] A large 
number of related studies have been published in the last 
decade. 

One common preventive maintenance strategy (that is 
used in the case study) is wheel re-profiling after running a 
certain distance, with its diameter being measured; if it 
reduces to a pre-specified diameter, the wheel will be replaced 
by a new one. In order to optimize such maintenance 
strategies, some researchers started looking into wheel 
degradation utilization data to determine reliability and failure 
distribution. [10] However, these studies cannot solve the 
combined problem of small data samples and incomplete data 
sets while simultaneously considering the influence of several 
covariates. For example, to avoid the potential influence of the 
different locations of wheels, Freitas [10] only consider those 
on the left side of axle number and on certain specified cars. 
Yang and Letourneau [5] suggest that certain attributes, 
including a wheel’s installed position (right or left), might 
influence its wear rate, but they do not provide case studies.  

To address the above issues, this paper undertakes a 
reliability study using a Bayesian survival analysis framework 
to explore the impact of the wheel’s installed position on its 
service lifetime and to predict its reliability characteristics. 
[11] In section 2, the Expontional regression models, Weibull 
regression models, and lognormal regression models are used 
to establish the lifetime of locomotive wheels using 
degradation data and taking into account the position of the 
wheel. This position is described by three different discrete 
covariates: the bogie, the axel and the side of the locomotive 
where the wheel is mounted. In section 3, a linear degradation 
path is considered and the case study is performed using 
Markov Chain Monte Carlo methods. And finally, section 4 
offers conclusions and comments. 

2  BAYESIA  PARAMETRIC MODELS 

In reliability analysis, the lifetime data set is usually 
incomplete, which means only a portion of the subsystem 
failures (i.e. wheels) are known. For other subsystems, the 
lifetimes are only known to exceed certain values. Take the 
locomotive wheels’ degradation data for example. If the 
degradation data is less than the pre-specified diameter, the 
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corresponding predicted lifetime is viewed as right-censored. 
The reason is that under a linear degradation path assumption, 
we just know those wheels’ real lifetime will exceed the 
predicted lifetime.  

Right-censored data are often called Type I censoring in 
the literature; the corresponding likelihood construction 
problem has been extensively studied. [12, 13]  Suppose there 
are n individuals whose lifetimes and censoring times are 
independent. The ith individual has life time iT and censoring 
time iL . The iT s are assumed to have probability density 
function )(tf and reliability function )(tR . The exact lifetime 

iT of an individual will be observed only if ii LT . The 
lifetime data involving right censoring can be conveniently 
represented by n pairs of random variables ),( iit , where 

iii LTt ,min  and 1i if ,ii LT and 0i if ii LT . 
That is, i  indicates whether the lifetime iT is censored or not. 
The likelihood function is deduced as [12, 13]   

        
n

i
ii ii tRtftL

1

1)()]([)(                                                    (1) 

2.1 Exponential regression model 

Suppose the lifetimes ),( 1 nttt  for n  wheels are 
independent and identically distributed (iid), and the 
distribution being exponential distribution with a failure 
rate , where 0 . Therefore, the probability density 
function (pdf) is )exp()( ii ttf  , the cumulative 
distribution function (cdf) is )exp(1)( ii ttF  and the 
reliability function is  )( itR  )(1 itR . The incomplete 
indicators are denoted '

21 ),,,( n and the observed 
data set for the current study is ),(0 t,nD . From equation 
(1), the likelihood function of  is 

      
n

i
ii ii ttDL

1

1
0 )exp()exp()(            (2) 

The 1p  vector of covariates for the ith wheel is 
denoted '

1 ),( pii xxix . Similarly,  is a 1p  vector of 
regression coefficients, which represents the degree of 
influences of covariates. Let )exp(x'

ii  and the observed 
data set for current study is denoted by ),( X,t,nD . The 
likelihood function for the regression coefficients is given by 

      
n

i
i

n
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i                (3) 

The prior distributions should be realistic and computationally 
feasible. There are two common choices for ’s prior 
distributions. [11] One is uniform improper prior distribution, 
for example, 1)(  .The other is the normal distribution.  
As proved by Ibrahim [11], it’s a log-concave prior and such 
kind of choice will be convenient for posterior’s computation. 
To implement the MCMC simulation more easily, a 
multinomial prior ),(~ 00p  with mean 0  and 
covariance matrix 0  is assumed. Let )(  denote the prior or 
posterior distributions for the parameters. The posterior 
distribution, )( D , can be written as 

)()(
2
1)exp(exp
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It is not easy to get the exact integration results for )( D  due 
to its complexity. Therefore, we select the MCMC method, 
which has been widely applied to Bayesian statistics since 
1990s, to carry out the posterior inference. 

2.2 Weibull regression model 

Suppose, the lifetimes ),( 1 nttt  for n  individuals are 
iid, and the distribution is Weibull, ),(W , where 0  and 

0 . The pdf is )exp(),( 1
iii tttf  while the cdf 

is )exp(1),( ii ttF and the reliability function 
),( itR ),(1 itF . To facilitate the analysis, let 
)(ln , permitting the following representation: 

             
))(expexp(),( 1

iii tttf                    (5) 
Similarly, we can get ),( itF and ),( itR  . 
From equation (1), the joint likelihood function for and is 
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To construct the Weibull Regression Model, covariates are 
introduced through . With x'

ii , the likelihood function is 
given by 

n
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                 (7) 

In this paper, it is assumed that and  are independent. 
Furthermore, it is assumed that the prior distribution of  is a 
gamma distribution, denoted by ),( 00 baG . The prior 
distribution can be written as )(exp),( 0

1
00 0 bba a . 

Then, the posterior distribution of  and  is:  
0 1

1

1
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2.3 Lognormal regression model 

Suppose the lifetimes ),( 1 nttt  of n  wheels are iid, 
with )(ln t  being normally distributed according to ),( 2 . 
This implies that it  is lognormally distributed with parameters 

and 2 , denoted by ),( 2L . The pdf and reliability 
functions for ti are 

           2
2

2 ))(ln(
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From equation (1), the joint likelihood function for and 
given an incomplete data set is 
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To construct a lognormal regression model covariates that 
are realized through are introduced by defining x'

ii . By 
defining 2/1 , the likelihood function is given can be 
written as 

1
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A typical prior distribution for is a gamma prior 
distribution. [11] In this paper, it is supposed 
that )2/,2/(~ 00 baG ,  has a multinormal prior 
distribution with p vector, denoted by ),( 1

00p .[11] 
Therefore, the posterior distribution for and can be is 
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3 EXAMPLE 

This paper focuses on the wheels of the locomotive of a 
cargo train. While two types of locomotives with the same 
type of wheels are used in cargo trains, we consider only one. 

 

 

 

Fig.1 Locomotive wheels’ installation positions 

There are two bogies for each locomotive and three axels 
for each bogie (Fig.1). The installed position of the wheels on 
a particular locomotive is specified by a bogie number (I, II-
number of bogies on the locomotive), an axel number (1, 2, 3-
number of axels for each bogie) and the side of the wheel on 
the axle (right or left) where each wheel is mounted. 

The diameter of a new locomotive wheel in the studied 
railway company is 1250 mm. In the company’s current 
maintenance strategy, a wheel’s diameter is measured after 
running a certain distance. If it is reduced to 1150 mm, the 
wheel is replaced by a new one. Otherwise, it is re-profiled or 
other maintenance strategies are implemented. A threshold 
level for failure, is defined as 100 mm (= 1250 mm -1150 
mm). The wheel’s failure condition is assumed to be reached 
if the diameter reaches 100mm. 

The company’s complete database also includes the 
diameters of all locomotive wheels at a given observation 
time, the total running distances corresponding to their “time 
to be maintained”, and the wheels’ bill of material (BOM) 
data, from which we can determine their positions. 

Two assumptions are made: 1) for each censored datum it 
is supposed that the wheel is replaced; 2) degradation is linear. 
Only one locomotive is considered in this example to ensure 
that 1) all wheel’s maintenance strategies are the same; 2) the 
axle load and running speed are obviously constant; and 3) the 
operational environments including routes, climates and 
exposure are common for all wheels. 

The data set contains 46 datum points ( n =46) of a single 
locomotive throughout period November 2010 to January 
2012. We take the following steps to obtain locomotive 
wheels’ lifetime data (Fig.2):  

sL

1L

2L

1B
2B

1D 2D

 
Fig.2 Plot of the wheel degradation data: one example 

 Establish a threshold level sL , where sL =100 mm (1250 
mm – 1150 mm).  

 Transfer observed 90 records of wheel diameters at 
reported time t to degradation data; this equals to 
1250mm minus the corresponding observed diameter.  

 Assume a liner degradation path and construct a 
degradation line iL (e.g. 1L , 2L ) using the origin point 
and the degradation data (e.g. 1B , 2B ). 

 Set sL = iL , get the point of intersection and the 
corresponding lifetimes data (e.g. 1D , 2D ). 



For each reported datum, a wheel’s installation position is 
documented, and as mentioned above, positioning is used in 
this study as a covariate. As discussed in section 3, the wheel’s 
position (bogie, axel, and side) or covariate X  is denoted by 

1x (bogie I: 1x =1, bogie II: 1x =2), 2x  (axel 1: 2x =1, axel 2: 
2x =2, axel 3, 2x =3) and 3x (right: 3x =1, left: 3x =2). 

Correspondingly, the covariates’ coefficients are represented 
by 1 , 2 , and 3 . In addition, 0 is defined as random effect. 

The calculations are implemented with the software 
WinBUGS[14] . A burn-in of 10,001 samples is used, with an 
additional 10,000 Gibbs samples for each Markov chain. 
Vague prior distributions are adopted here as the following: 
For exponential regression: )0001.0,0(~ ; for Weibull 
regression: )2.0,2.0(~ G , )0001.0,0(~ ; for lognormal 
Regression: )01.0,1(~ G , )0001.0,0(~ . 

Following the convergence diagnostics (including to 
check Markov chains’ dynamic trace, time series, Gelman-
Rubin-Statistics, as well as to compare the MC error with 
Standard Deviation (SD)), [14] we consider following 
posterior summaries of parameters as shown in tables 1, 2 and 
3 for our models with censored data, including the parameters’ 
posterior mean, standard deviation, Monte Carlo (MC) error, 
and 95% HPD (highest posterior distribution density) interval. 
In below tables, the mean values for seem quite small, that 
is because the measurement unit to locomotive wheels lifetime 
is by thousands kilometers ( 310 km).  

Table.1 Posteriors Summaries - Exponential Regression 
Model 

Parameter Mean SD MC error 95 % HPD 

0  -5.862 0.7355 0.02299 (-7.366,-4.452) 

1  -0.07207 0.3005 0.007269 (-0.6672,0.5104) 

2  -0.03219 0.1858 0.003797 (-0.3889,0.3325) 

3  -0.0124 0.2973 0.00726 (-0.5954,0.5787) 

Table.2 Posteriors Summaries - Weibull Regression Model 

Parameter Mean SD MC error 95 % HPD  
 10.08 0.9674 0.05559 (8.234,11.76) 

0  -60.47 5.977 0.3434 (-71.01,-49.16) 

1  -0.07775 0.306 0.008339 (-0.6845,0.5156) 

2  -0.146 0.2231 0.005801 (-0.5878,0.2856) 

3  -0.05026 0.2982 0.007143 (-0.6356,0.5324) 

Table.3 Posteriors Summaries - Log-normal Regression 
Model 

Parameter Mean SD MC error 95 % HPD  

0  5.864 0.05341 0.001622 (5.76,5.97) 

1  0.06733 0.02174 5.042E-4 (0.02492,0.1103) 

2  0.02077 0.01373 2.765E-4 (-0.00629,0.0478) 

3  0.001102 0.02175 5.007E-4 (-0.0412,0.04444) 

 187.5 39.84 0.3067 (118.3,273.5) 
 

 Accordingly, the locomotive wheels’ reliability functions 
are: 
 Exponential Regression Model:  

1 2 3

( | )
exp exp( 5.862 0.072 0.032 0.012 )
i

i

R t
x x x t

X
 

 Weibull Regression Model:   

10.08
1 2 3

( | )

exp exp( 60.47 0.078 0.146 0.050 )
i

i

R t

x x x t

X
 

 Log-normal Regression Model:  

1 2 3
1/2

( | )

ln( ) (5.864 0.067 0.02 0.001 )1
(187.5)

i

i

R t

t x x x

X
 

Obviously, other quantities regarding lifetime 
distribution, including MTTF can be determined. 

For model comparison, usually two main aspects are 
considered: the model’s measure of fit and its complexity. In 
this paper, we adopt the Deviance Information Criterion 
(DIC), which utilizes the model’s deviance to evaluate its 
measure of fit, and the effective number of parameters to 
evaluate its complexity. [14] 

Define a Bayesian model’s Bayesian deviance, denoted 
as )(D , as ))((2log)( DpD ; Define the effective 
number of parameters, denoted as dp , as:  

)))((2ln())((2ln)()( DpdDpDDpd  

Then, dd pDpDDIC )(2)( .  We calculate the DIC 
values for the above three Bayesian parametric models 
separately, as shown in Table 4. 

Table.4 DIC Summaries  

 Model )(D  )(D  dp  DIC 
Exponential 648.98 645.03 3.95 652.93 

Weibull  472.22 467.39 4.83 477.05 
Log-normal 442.03 436.87 5.16 447.19 

 
Our results show that the DIC for Log-normal Regression 

Model is the lowest (447.19), and it is a better choice.  The 
prediction of the locomotive wheels MTTF, following 
Bayesian Lognormal regression model, appears in Table.5. 

It should be pointed out that the 95% HPD interval in 
Bayesian Lognormal regression model for 2 and 3  
includes 0 (Table.3). This means that, although the positioning 
does have an influence, in some instances, the impact on the 
wheel’s service lifetime is not significantly strong. In our case, 
the bogies have more impact on service lifetime than axels or 
sides. Given this conclusion, we can deal with such covariates 
better in our future research. Besides above, other conclusions 
include: 1) the lifetime of the wheel installed in the second 
bogie is longer than that of the wheel installed in the first one; 
2) the wheel installed in the third axel has a longer lifetime 
than that installed in the second axel, and the wheel in the 
second axel has a longer lifetime than the one in the first axel; 
3) the right side wheel’s lifetime is shorter than the left side. 



(Researchers from Norwegian National Rail Administration 
cited previously concur with this. Using condition monitoring 
methods on train wheels operating on the same route, they 
found that the wheel forces on the right and the left sides can 
be different, even for wheels in the same axel.). Possible 
causes include the influence of the earth's rotation, 
topographical complexity, and the position of the locomotive’s 
centre of gravity.  

Table.5 MTTF statistics based on Bayesian Lognormal 
Regression Model 

Bogie  Axel Side i  MTTF 
( 310 km) 

I  
( 1x =1) 

1 
( 2x =1) 

Right( 3x =1) 5.9532 387.03 
Left   ( 3x =2) 5.9543 387.46 

2 
( 2x =2) 

Right( 3x =1) 5.9740 395.16 
Left   ( 3x =2) 5.9751 395.60 

3 
( 2x =3) 

Right( 3x =1) 5.9947 403.43 
Left   ( 3x =2) 5.9958 403.87 

II  
( 1x =2) 

1 
( 2x =1) 

Right( 3x =1) 6.0205 413.97 
Left ( 3x =2) 6.0216 414.43 

2 
( 2x =2) 

Right( 3x =1) 6.0413 422.67 
Left   ( 3x =2) 6.0424 423.14 

3 
( 2x =3) 

Right( 3x =1) 6.0621 431.56 
Left   ( 3x =2) 6.0632 432.03 

4 CO CLUSIO S A D FUTURE RESEARCH 

This paper proposes three parametric Bayesian models for 
locomotive wheels’ reliability analysis using degradation data: 
Bayesian Exponential Regression Model, Bayesian Weibull 
Regression Model, and Log-normal Regression Model. By 
introducing the covariate ix ’s linear function x'

i , these three 
parameter models are constructed depending on the failure 
rate i in the exponential model, the log of the rate parameter 

)ln( i in the Weibull model and the logarithmic mean i in the 
log-normal models. The proposed Bayesian survival models 
can deal with small and incomplete data sets and 
simultaneously consider the influence of several covariates. 
The MCMC technique via the Gibbs sampler is used here to 
achieve models’ posteriors estimations.  

The case study’s results suggest that the locomotive 
wheels’ lifetimes are different with different installed 
positions. In addition, the approach discussed in this paper can 
also be applied for analyzing cargo train wheels.The work 
presented also leads to the implementation of additional 
research:  
 The assumed liner degradation path was a simple one. For 

more complex path models, more degradation paths need 
to be studied, including considering different wear rates. 

 The covariates considered here are only limited to 
locomotive wheels’ installed positions, more covariates 
needs to be considered later, like: temperature, applied 
loading, train speed, etc. 

 We have chosen general prior distributions for the case 
study. As more information can be utilized, how to 
integrate different prior also need to be studied. Besides 
above limitations, in our later research, we also plan to 
consider utilization of utilization of our results to optimize 
maintenance strategies and related LCC (Life Cycle Cost) 
problems with consideration of maintenance cost.  

REFERE CES 

1. Braghin F, et al. A Mathematical Model to Predict 
Railway Wheel Profile Evolution Due to Wear. Journal of 
Wear. 2006. 261: 1253-1264 

2. Tassini N, et al. A Numerical Model of Twin Disc Test 
Arrangement for the Evaluation of Railway Wheel Wear 
Prediction Methods.  Journal of Wear. 2010. 268: 660-
667 

3. Bernasconi A, et al. An Integrated Approach to Rolling 
Contact Sub-surface Fatigue assessment of Railway 
Wheels. Journal of Wear. 2005. 258: 973-980  

4. Clayton P. Tribological Aspects of Wheel-Rail Contact: A 
Review of Recent Experimental Research. Journal of 
Wear. 1996. 191: 170-183 

5. Yang C, Letourneau S. Learning to Predict Train Wheel 
Failures. Conference Proceedings. The 11th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining (KDD 2005). Chicago, 
Illinois, USA. 

6. Pombo J, Ambrosio J, Pereira M. A Railway Wheel Wear 
Prediction Tool based on A Multibody Software. Journal 
of Theoretical and Applied Mechanics. 2010. 48, 3:751-
770 

7. Donato P, et al. Design and Signal Processing of A 
Magnetic Sensor Array for Train Wheel Detection.  
Journal of Senors and Actuators A. 2006. 132: 516-525 

8. Stratman B, Liu Y, Mahadevan S. Structural Health 
Monitoring of Railroad Wheels Using Wheel Impact 
Load Detectors. Journal of Failure Analysis and 
Prevention. 2007. 7(3):218-225 

9. Palo M. Condition Monitoring of Railway Vehicles: A 
Study on Wheel Condition for Heavy Haul Rolling Stock. 
Licentiate Thesis. Luleå University of Technology, 
Sweden. 2012 

10. Freitas M A, et al. Using Degradation Data to Assess 
Reliability: A Case Study on Train Wheel Degradation. 
Journal of Quality and Reliability Engineering 
International. 2009, 25: 607-629 

11. Ibrahim J G, Chen M H, Sinha D. Bayesian Survival 
Analysis. New York: Berlin Heidelberg, 2001 

12. Klein J P, Moeschberger M L. Survival Analysis: 
Techniques for Censored and Truncated Data. Springer-
Verlag New York, Inc.1997 

13. Lawless. Statistical Models and Methods for Lifetime 
Data. John Wiley and Sons.1982 

14. Spiegelhalter D, et al. WinBUGS User Manual (Version 
1.4). January, 2003. http:// www.mrc-bsu.cam.ac.uk/bugs 



ACK OWLEDGEME TS 

The authors would like to thank Luleå Railway Research 
Centre (Järnvägstekniskt Centrum, Sweden) for initiating the 
research study and Swedish Transport Administration 
(Trafikverket) for providing financial support. Also we would 
like to thank the editor and anonymous referees for their 
constructive comments. 

BIOGRAPHIES 

Jing Lin, PhD 
Division of Operation, Maintenance and Acoustics 
Luleå University of Technology  
Luleå, Norrbotten 97187 Sweden 

e-mail: janet.lin@ltu.se 

Dr. Jing Lin is currently a researcher in the Division of 
Operation, Maintenance and Acoustic, at Luleå University of 
Technology (LTU), Sweden. She obtained her PhD degree in 
Management from Nanjing University of Science and 
Technology (NJUST), China, in April 2008; and she received 
the bachelor degree in Management from (NJUST) in 2003. 
After the college, she worked 3 years for SKF Co., Ltd as an 
Asset Management Consultant. Dr. Lin’s research interests 
primarily lie in asset management and reliability. She has 
published 35 peer reviewed Journal and Conference papers 
and 1 monograph in related topics.  

Matthias Asplund, PhD candidate 
Division of Operation, Maintenance and Acoustics 
Luleå University of Technology  
Luleå, Norrbotten 97187 Sweden 

e-mail: Matthias.asplund@ltu.se 

Matthias Asplund is a PhD student in the Division of 
Operation, Maintenance and Acoustic, at Luleå University of 
Technology (LTU), Sweden.  since 2011. His research area is 
RAMS with railway topics in focus. He has twelve years 
working experience from product development, lean 
production, maintenance and railway engineering. He got his 
Master degree in Mechanical Engineering with focus on 
Applied Mechanics from Luleå Technical University. His last 
work before studies to PhD was Track Engineering for the 
Swedish Infrastructure Manager.  
Aditya Parida, PhD  
Division of Operation, Maintenance and Acoustics 
Luleå University of Technology  
Luleå, Norrbotten 97187 Sweden 

e-mail: Aditya.parida@ltu.se 

Dr. Aditya Parida is an Associate Professor in the Division of 
Operation, Maintenance and Acoustic, at Luleå University of 
Technology, Sweden. He obtained his PhD in Operation and 
Maintenance Engineering. His area of research is Asset 
Management, Maintenance Performance Measurement and 
model, RCM and eMaintenance. Besides teaching, he is 
actively involved in research and projects. He is the author of 
65 peer reviewed Journal and Conference papers, besides 3 
book chapters and guest editors of four special issues of 
International Journals. 

 

 



 



 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


