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Reliability Analysis for Degradation of
Locomotive Wheels using Parametric
Bayesian Approach
Jing Lin,a*† Matthias Asplunda,b and Aditya Paridaa
This paper undertakes a reliability study using a Bayesian survival analysis framework to explore the impact of a locomotive
wheel’s installed position on its service lifetime and to predict its reliability characteristics. The Bayesian Exponential Regression
Model, Bayesian Weibull Regression Model and Bayesian Log-normal Regression Model are used to analyze the lifetime of
locomotive wheels using degradation data and taking into account the position of the wheel. This position is described by three
different discrete covariates: the bogie, the axle and the side of the locomotive where the wheel is mounted. The goal is to
determine reliability, failure distribution and optimal maintenance strategies for the wheel. The results show that: (i) under
specified assumptions and a given topography, the position of the locomotive wheel could influence its reliability and lifetime;
(ii) the Bayesian Log-normal Regression Model is a useful tool. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

T
he service life of a railroad wheel can be significantly reduced due to failure or damage, leading to excessive cost and
accelerated deterioration. Damage data show that a major proportion of wheel damage stems from degradation.
In order to monitor the performance of wheels and make replacements before adverse effects occur, the railway industry uses

both preventive and predictive maintenance. By predicting the wear of train wheels (Johansson & Andersson1; Braghin et al.2; Tassini
et al.3), fatigue (Bernasconi et al.4; Liu, et al.5), tribological aspects (Clayton6) and failures (Yang & Letourneau7), the railway industry can
design strategies for different types of preventative maintenance (re-profiled, lubrication, etc.) for various time periods (days, months,
seasons, running distance, etc.). Software dedicated to predicting wear rate has also been studied recently (Pombo et al. 8). In addition,
condition monitoring data have been studied to increase the wheels’ lifetime (Skarlatos D, Karakasis K & Trochidis A9; Donato P et al.10;
Stratman et al. 11; Palo12,13). A large number of related studies examining both experimental and numerical aspects have been
published in the last decade (see above references).

In one common preventive maintenance policy in the Swedish railway company studied, a wheel’s diameter is measured after
running a certain distance. If it is reduced to a pre-specified height, the wheel is replaced. Otherwise, it is re-profiled or other
maintenance strategies are adopted. To optimize maintenance strategies for railway wheels, some researchers have used degradation
data to determine reliability and failure distribution (Freitas et al.14,15; and the reference therein). However, these studies cannot solve
the combined problem of small data samples and incomplete data sets while simultaneously considering the influence of several
covariates. For example, to avoid the potential influence of the different locations of wheels, the researchers only consider those
on the left side of axle number 1 and on certain specified cars.

Other researchers have noted that the wheel’s position on the locomotive could influence degradation. For example, researchers from
Canada (Yang & Letourneau7) suggest that certain attributes, including a wheel’s installed position (right or left), might influence its wear
rate, but they do not provide case studies. Freitas and colleagues14point out that ‘the degradation of a given wheel might be associated
with its position on a given car’; Palo12,13conclude that ‘different wheel positions in a bogie show significantly different force signatures’. In
a recent seminar in Sweden (Kiruna, April 2012), experts fromNorway illustrated their new findings that in a given topography, the wheels
installed on the right and the left sides experience different force. Unfortunately, they only illustrated the results with signal charts derived
from condition monitoring tools. Nor did they consider the influence of wheel position on degradation.
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To address the above issues, this paper undertakes a reliability study using a Bayesian survival analysis framework (Ibrahim16;
Congdon17,18; Lin19) to explore the impact of the wheel’s installed position on its service lifetime and to predict its reliability
characteristics. The Bayesian Exponential Regression Model, Bayesian Weibull Regression Model and Bayesian Log-normal Regression
Model are used to analyze the lifetime of locomotive wheels using degradation data and taking into account the position of the
wheel. This position is described by three different discrete covariates: the bogie, the axle and the side of the locomotive where
the wheel is mounted. In particular, by introducing the covariate xi’s linear functionx’ib, these three parameter models are constructed
depending on the failure rate li in the exponential model, the log of the rate parameter ln(gi) in the Weibull model and the
logarithmic mean mi in the log-normal models. The contribution of this work is to propose Bayesian survival models, which can solve
the combined problem of small data samples and incomplete data sets while simultaneously considering the influence of several
covariates. The goal is to determine reliability, failure distribution and optimal maintenance strategies for the wheel.

The organization of this paper is as follows. The introductory section defines the problem. Section 2 describes the data. Section 3
presents three Bayesian survival models. In those models, some parameters depend on the above-mentioned covariates: the bogie,
the axle and the side of the locomotive where the wheel is mounted. Section 4 provides the results for a real data set. This section
adopts vague priors and a Markov Chain Monte Carlo (MCMC) computational scheme to obtain the parameters’ posterior
distributions. Section 5 compares the proposed models with Deviance Information Criterion (DIC), mean time to failure (MTTF)
predictions and discusses the effect on the results of setting maintenance inspection levels. Finally, Section 6 offers conclusions
and comments. We also note our ongoing study in the JVTC (Järnvägstekniskt Centrum, Sweden) program.
2. Data description

This paper focuses on the wheels of the locomotive of a cargo train. While two types of locomotives with the same type of wheels are
used in cargo trains, we consider only one.

2.1. Locomotive wheels’ degradation data

As shown in Figure 1, there are two bogies for each locomotive and three axels for each bogie. The installed position of the wheels on
a particular locomotive is specified by a bogie number (I, II-number of bogies on the locomotive), an axel number (1, 2, 3-number of
axels for each bogie) and the side of the wheel on the axle (right or left) where each wheel is mounted.

The diameter of a new locomotive wheel in the studied railway company is 1250mm. In the company’s current maintenance strategy,
a wheel’s diameter is measured after running a certain distance. If it is reduced to 1150mm, the wheel is replaced by a new one.
Otherwise, it is re-profiled or other maintenance strategies are implemented. A threshold level for failure, denoted as H1 in this paper,
is defined as 100mm (H1= 1250mm � 1150mm). The wheel’s failure condition is assumed to be reached if the diameter reaches H1.

The company’s complete database also includes the diameters of all locomotive wheels at a given observation time, the total
running distances corresponding to their ‘time to be maintained (be re-profiled or replaced)’, and the wheels’ bill of material data,
from which we can determine their positions.

2.2. Locomotive wheels’ lifetime data

In reliability analyses using degradation data, Freitas et al.14,15set up a threshold level as defined in section 2.1. The researchers used
the degradation data as the wheels’ lifetime data. The censored lifetime data were defined if the degradation measurements had
reached the threshold level when they were observed. However, in our study, the way we obtain the wheels’ lifetime data and
how we define censored data differ from theirs.

We make the following assumptions. First, the wheel’s degradation follows a linear path (assumption 1). Second, all maintenance
activities are assumed to be effective (assumption 2). A specified special maintenance inspection level is denoted as H2 and
0 ≤H2 ≤H1. If effective maintenance activities are implemented before the degradation height reaches H2, the wheel’s degradation
speed will be lower; if effective maintenance activities are implemented when the degradation height exceeds H2, the degradation
speed will remain unchanged.

With respect to assumption (1), Freitas et al.14,15show that the linear degradation path is reasonable by plotting the historical
records of wheel degradation. In our studies, we calculate the squares of their correlation coefficient for a linear path, which are all
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Figure 1. Wheel positions specified in this study
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larger than 0.9 and indicate that the linear degradation path is also a reasonable choice in our case. Assumption (2) is also logical, as
the railway company’s maintenance activities are intended to prolong the service life of the wheels. However, if maintenance
activities are implemented too late (for example, after the degradation height exceeds H2), the improvement effects are not
significant; at most, they will prevent the degradation from speeding up. In addition, any maintenance activity could affect the
wheel’s diameter, especially if it is re-profiled.

Based on the above assumptions, and as shown in Figure 2, we take the following steps:

• Step 1: Establish threshold level H1. As defined in section 2.1, in Figure 2, we use H1=100mm. In addition, according to
assumption (2), we establish the specified maintenance inspection level H2, where 0 ≤H2 ≤H1. In Figure 2, we use H2=50mm.

• Step 2: Transfer the diameters of locomotive wheels at observation time t to degradation data; this equals to 1250mmminus the
corresponding observed diameter. B1, B2 and B3 are three examples of degradation data shown in Figure 2;

• Step 3: According to assumption (1), we assume a liner degradation path and construct a degradation line using the origin point
and the degradation data.

• Step 4: If the degradation data are not less than H1=100mm (for example: B1), the degradation line will intersect with H1. Based
on the point of intersection (for example, E1) and the wheel’s failure conditions (see section 2.1), the wheel’s lifetime can be
determined (for example, D1).

• Step 5: If the degradation data are less than H1=100mm but more than H2=50mm (for example, B2), the extended degradation
line will also intersect with H1 (for example, E2). Based on the intersection point and according to assumption (2), the wheel’s
lifetime can be obtained (for example, D2).

• Step 6: If the degradation data are less than H2, which equals to 50mm in Figure 2 (for example, B3), the intersection point and
the lifetime can be derived (for example, E3 and D3) as discussed above. However, according to assumption (2), the slope of the
extended degradation line could be lower, and intersection point could be changed (for example, E ’3 ). Therefore, the lifetime
could be longer than the original prediction (for example, D’

3). In this case, the lifetime D3 is defined as right censored.

By following the above steps, we can obtain the locomotive wheels’ lifetime data and the right-censored data.
We consider the wheels of only one locomotive because for the same locomotive: (i) the wheels’ maintenance strategies are

similar; (ii) the axle load and running speed can be supposed to have no obvious difference; (iii) the operational environments
including routes and climates are expected to be the same. Given these expectations, the installed positions become covariates.
Ultimately, we can predict a wheel’s lifetime based on its positioning and other important characteristics, including MTTF.
3. Bayesian survival models

3.1. Likelihood construction for right-censored data

In reliability analysis, the lifetime data are usually incomplete, and only a portion of the individual lifetimes are known. Take the
locomotive wheels’ lifetime data for example. As discussed in section 2.2, if the degradation data B3 is less than the specified
maintenance inspection level H2, the predicted lifetime D3 is viewed as right censored under assumption (2). Therefore, we believe
maintenance activities will diminish degradation and the real lifetime D’

3 will exceed the predicted lifetime (see Figure 2).
Right-censored data are often called Type I censoring in the literature; the corresponding likelihood construction problem has been

extensively studied (Klein & Moeschberger20; Lawless21). Suppose there are n individuals whose lifetimes and censoring times
are independent. The i th individual has life time Ti and censoring time Li. The Ti s are assumed to have probability density function (p.d.f.)
f(t) and reliability function R(t). The exact lifetime Ti of an individual will be observed only if Ti≤ Li. The lifetime data involving right censoring
can be conveniently represented by n pairs of random variables (ti,ui), where ti=min(Ti,Li) and ui=1 if Ti≤ Li, and ui=0 if Ti> Li. That is, ui
indicates whether the lifetime Ti is censored or not. The likelihood function is deduced (Klein & Moeschberger20; Lawless21) as
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Figure 2. Plot of the wheel degradation data: one example

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



J. LIN, M. ASPLUND AND A. PARIDA
L tð Þ ¼
Yn
i¼1

f tið Þ½ �ui R tið Þ1�ui (1)

3.2. Bayesian Exponential Regression Model

Suppose the lifetimes t= (t1,⋯ tn)
’ for n individuals are independent identically distributed (i.i.d.), and each corresponds to an

exponential distribution with failure rate l, where l> 0. Therefore, the p.d.f. is f(ti|l) = l exp(�lti). Correspondingly, the cumulative
distribution function (c.d.f.) F(ti|l) and the reliability function R(ti|l) are F(ti|l) = 1� exp(�lti) = 1� R(ti|l). Let y= (u1,u2,⋯,un)

’ indicate
whether the lifetime is censored or not, and let the observed data set for current study be denoted as D0, where D0 = (n,t,y); following
equation (1), the likelihood function related to l is given by

L ljD0ð Þ ¼
Yn
i¼1

l exp �ltið Þ½ �ui exp �ltið Þ½ �1�ui : (2)

Suppose xi= (x1i,⋯ xpi)
’ denotes the ith individual of the p� 1 vector of covariates; X is the n� p vector of covariates studied in

reliability analysis, where p denotes the quantity of the considered covariates. Suppose b is a p� 1 vector of regression coefficients,
representing the degree of the covariates’ influence. Let li ¼ exp x’ib

� �
, and the data set for the current study be denoted by D, where

D= (n,t,X,y). Following equation (2), the joint likelihood function for the exponential regression model is given by

L bjDð Þ ¼
Yn
i¼1

½ expðx’ibÞ expð� expðx’ibÞtiÞ�ui exp � exp x’ib
� �

ti
� �� �1�ui

¼ exp
Xn
i¼1

uix’ib

" #
exp �

Xn
i¼1

exp x’ib
� �

ti

" #
:

(3)

The prior distributions should be realistic and computationally feasible. There are two common choices for b’s prior distribution.
One is uniform improper prior distribution, for example, p(b)/ 1; the other is normal distribution. As proved by Ibrahim et al. 16, the
latter is a log-concave prior distribution and is convenient for the computation of the posterior distribution. In this paper, we assume a
multinormal prior distribution b~Np(m0,Σ0), with mean m0 and covariance matrix Σ0. Let p(�) denote the prior or posterior
distributions for the parameters; then, the joint posterior distribution p(b|D) can be written as

p bjDð Þ / L bjDð Þ � p bjm0;Σ0ð Þ / exp
Xn
i¼1

uix’ib

" #
exp �

Xn
i¼1

exp x’ib
� �

ti

" #
� exp � 1

2
b� m0ð Þ’Σ�1

0 b� m0ð Þ
� �

¼ exp
Xn
i¼1

uix’ib�
Xn
i¼1

exp x’ib
� �

ti � 1

2
b� m0ð Þ’Σ�1

0 b� m0ð Þ
" #

:

(4)

Obviously, it is not easy to get the exact integration results for p(b|D) due to its complexity. Therefore, we select the MCMC method
with the Gibbs sampler, which has been widely applied to Bayesian statistics since the 1990s, to carry out the posterior inference. Let
(�j) denote some vector without the jth component. The jth full conditional distribution can be written as

p bjjD;b �jð Þ
� 	

/ L bj;b
�jð Þ Dj Þ � p bj;b

�jð Þ m0;Σ0j Þ:
��

(5)

3.3. Bayesian Weibull Regression Model

Suppose the lifetimes t= (t1,⋯ tn)
’ for n individuals are i.i.d., and each corresponds to a two-parameter Weibull distribution W(a,g),

where a> 0 and g> 0. The p.d.f. is f ti a; gj Þ ¼ agta�1
i exp �gtai

� ��
while the c.d.f. F(ti|a, g) and the reliability function R(ti|a, g) are

F ti a; gj Þ ¼ 1� exp �gtai
� ��

=1� R(ti|a, g). To facilitate the analysis, let x= ln(g) (note: it also can be viewed as an extreme value
distribution). Then, the reliability function becomes

f ti a; xj Þ ¼ ata�1
i exp x� exp xð Þtai

� �
:

�
(6)

Similarly, we can get F(ti|a, x) and R(ti|a, x).
As discussed in section 3.2, the censoring indicators are denoted as y= (u1,u2,⋯,un)

’, and the observed data set is D0 = (n,t,y),
following equation (2); therefore, the likelihood function for a and x is

L a; xjD0ð Þ ¼ a

Xn

i¼1
ui exp

Xn
i¼1

uixþ
Xn
i¼1

ui a� 1ð Þln tið Þ � exp xð Þtai
� �( )

: (7)

To construct the Weibull Regression Model, we introduce the covariates through x. Denoting xi ¼ x’ib and following other
definitions in section 3.2, the joint likelihood function for the Weibull regression model is given by
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L a;bjDð Þ ¼ a

Xn

i¼1
ui exp

Xn
i¼1

ui x’ibþ ui a� 1ð Þln tið Þ � exp x’ib
� �

tai
� �( )

: (8)

In this paper, we take a and x to be independent. Furthermore, we assume a to be a gamma distribution denoted by G(a0,b0) as its
prior distribution, written as p(a|a0, b0), which means

p a a0; b0j Þ / aa0�1exp �b0að Þ:�
(9)

Assume b has a multinormal prior distribution p(b|m0,Σ0) with p vector, denoted by Np(m0,Σ0). Therefore, the joint posterior
distribution can be obtained as

p a;bjDð Þ / Lða;bjDÞ � pðaja0; b0Þ � pðbjm0;Σ0Þ

/ a
a0�1þ

Xn

i¼1
ui exp

Xn
i¼1

uix’ibþ ui a� 1ð Þln tið Þ � exp x’ib
� �

tai
� �� b0a� 1

2
b� m0ð Þ’Σ�1

0 b� m0ð Þ
( )

(10)

Then, the parameters’ full conditional distribution with Gibbs sampling can be written as

p ajja �jð Þ;b;D
� 	

/ L a;bjDð Þ � aa0�1exp �b0að Þ; (11)

p bjja;b �jð Þ;D
� 	

/ L a;bjDð Þ � exp
1

2
b� m0ð Þ’Σ�1

0 b� m0ð Þ
� �

: (12)

3.4. Bayesian Log-normal Regression Model

Suppose the lifetimes t= (t1,⋯ tn)
’ for n individuals are i.i.d., and each ln(t) corresponds to a normal distribution N(m,s2). We can get ti’s

log-normal distribution with parameters m and s2, denoted by LN(m,s2). Then, the p.d.f. and reliability function are given by

f tijm;s2
� � ¼ 1ffiffiffiffiffiffi

2p
p

sti
exp � 1

2s2
ln tið Þ � m½ �2

� �
; (13)

R ti m; s2


 � ¼ 1�Φ

ln tið Þ � m
s

� �
:

�
(14)

The likelihood function related to m and s, considering the censoring indicators y= (u1,u2,⋯,un)
’ and the observed data D0 = (n,t,y),

becomes

L m;sjD0ð Þ ¼ 2ps2
� ��1

2

Xn

i¼1
uiexp � 1

2s2
ln tið Þ � m½ �2

� �
�
Yn
i¼1

t-uii 1�Φ
log tið Þ � m

s

� �� �1�ui

: (15)

To construct a log-normal regression model, the covariates through m are introduced with mi ¼ x’ib . Letting t=1/s2, the joint
likelihood function is given by

L b; tjDð Þ ¼ 2pt�1
� ��1

2

Xn

i¼1
uiexp � t

2

Xn
i¼1

ui ln tið Þ � x’ib
� �� �2( )

�
Yn
i¼1

t-uii 1�Φ
ln tið Þ � x’ib

t�1=2

� �� �1�ui

: (16)

As both m and t are assumed unknown, a typical choice for t is a gamma prior distribution. In this paper, we suppose t~G(a0/2,b0/2).
Meanwhile, as mi ¼ x’ib , we also suppose b has a multinormal prior distribution with p vector, denoted by Np(m0, t

� 1Σ0). The joint
posterior distribution for t and b can be obtained as

p b; tjDð Þ / Lðb; tjDÞ � pðtja0=2; b0=2Þ � pðbjm0; t
�1Σ0Þ

/ t

a0 þ
Xn

i¼1
ui

2
� 1

exp -
t
2

Xn
i¼1

ui ln tið Þ � x’ib
� �2 þ b� m0ð Þ’Σ�1

0 b� m0ð Þ þ b0

( )

�
Yn
i¼1

t-uii 1�Φ
ln tið Þ � x’ib

t�1=2

� �� �1�ui

: (17)

Therefore, the parameters’ full conditional distribution with Gibbs sampling can be written as

p tjjt �jð Þ;b;D
� 	

/ L b; tjDð Þ � t a0=2ð Þ�1exp �b0t=2ð Þ; (18)

p bjjb �jð Þ; t;D
� 	

/ L b; tjDð Þ � exp
1

2
b� m0ð Þ’ tΣ0ð Þ�1 b� m0ð Þ

� �
: (19)
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4. Case study

In this section, we present a case study to illustrate our models for locomotive wheels’ degradation analysis. The adopted data have
been collected from a Swedish railway company’s cargo locomotives. The studied locomotive is relatively new compared to others
owned by the same company. The degradation data are reported from November 2010 to January 2012. There are 46 records
(n=46); we obtained the locomotive wheels’ ‘lifetime’ data in the manner described in section 2.2 and shown in Figure 3. In this study,
we define H2=20mm; therefore, 12 records are denoted as censored data.

For each reported datum, a wheel’s installation position is documented, and as mentioned above, positioning is used in this study
as a covariate. As discussed in section 3, the wheel’s position (bogie, axel and side) or covariate X is denoted by x1 (bogie I: x1=1, bogie
II: x1=2), x2 (axel 1: x2=1, axel 2: x2=2, axel 3, x2=3) and x3 (right: x3=1, left: x3=2). Correspondingly, the covariates’ coefficients are
represented by b1, b2, and b3. In addition, b0 is defined as a constant intercept. Other statistics on the wheel’s position and the data
structure appear in Table I.

The calculations are implemented with the software WinBUGS, version 1.4 (Spiegelhalter et al.22). A three-chain is constructed for
each MCMC simulation. A burn-in of 10,001 samples is used, with an additional 10,000 Gibbs samples for each Markov chain. Vague
prior distributions are adopted here as the following:

• In Bayesian Exponential Regression model:

b0eN 0; 0:0001ð Þ;b1eN 0; 0:0001ð Þ; b2eN 0; 0:0001ð Þ;b3eN 0; 0:0001ð Þ:

• In Bayesian Weibull Regression Model:

aeG 0:2; 0:2ð Þ; b0eN 0; 0:0001ð Þ;b1eN 0; 0:0001ð Þ;b2eN 0; 0:0001ð Þ; b3eN 0; 0:0001ð Þ:
H1

H2

Figure 3. Plot of the wheel degradation data

Table I. Statistics on quantity and data structure

x1: Bogie x2: Axel x3: Side

Position Quantities Position Quantities Position Quantities

n=46 I (1)a 24 1 (1) 8 Right (1) 4
Left (2) 4

2 (2) 8 Right (1) 4
Left (2) 4

3 (3) 8 Right (1) 4
Left (2) 4

II (2) 22 1 (1) 8 Right (1) 4
Left (2) 4

2 (2) 8 Right (1) 4
Left (2) 4

3 (3) 6 Right(1) 3
Left (2) 3

aThe number in ( ) denotes the covariate’s indicator value as it was used in our models

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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• In Bayesian Log-normal Regression Model:

teG 1; 0:01ð Þ; b0eN 0; 0:0001ð Þ;b1eN 0; 0:0001ð Þ; b2eN 0; 0:0001ð Þb3eN 0; 0:0001ð Þ:
Following the convergence diagnostics (i.e. checking dynamic traces in Markov chains, time series and Gelman-Rubin-Statistics,

and comparing the MC error with standard deviation (SD)), we consider the following posterior distribution summaries (shown in
Tables II, III and IV), for our models (Bayesian Exponential Regression Model, Bayesian Weibull Regression Model and Bayesian Log-
normal Regression Model), including the parameters’ posterior distribution mean, SD, Monte Carlo error and 95% highest posterior
distribution density (HPD) interval.

Accordingly, the locomotive wheels’ reliability functions can be written as:

• Bayesian Exponential Regression Model:

R tijXð Þ ¼ exp � exp �5:862� 0:072x1 � 0:032x2 � 0:012x3ð Þ � ti½ � (20)

• Bayesian Weibull Regression Model:

R ti Xj Þ ¼ exp � exp �60:47� 0:078x1 � 0:146x2 � 0:050x3ð Þ � t10:08i

� ��
(21)

• Bayesian Log-normal Regression Model:

R ti X







!

¼ 1�Φ
ln tið Þ � 5:864þ 0:067x1 þ 0:02x2 þ 0:001x3ð Þ

187:5ð Þ�1=2

" # 
(22)

Obviously, other reliability characteristics of lifetime distribution, including MTTF, can also be determined.
Table II. Posterior distribution summaries for Exponential Regression Model

Parameter Mean SD MC error 95% HPD interval

b0 �5.862 0.7355 0.02299 (�7.366, �4.452)
b1 �0.07207 0.3005 0.007269 (�0.6672,0.5104)
b2 �0.03219 0.1858 0.003797 (�0.3889,0.3325)
b3 �0.0124 0.2973 0.00726 (�0.5954,0.5787)

Table III. Posterior distribution summaries for Weibull Regression Model

Parameter Mean SD MC error 95% HPD interval

a 10.08 0.9674 0.05559 (8.234,11.76)
b0 �60.47 5.977 0.3434 (�71.01, �49.16)
b1 �0.07775 0.306 0.008339 (�0.6845,0.5156)
b2 �0.146 0.2231 0.005801 (�0.5878,0.2856)
b3 �0.05026 0.2982 0.007143 (�0.6356,0.5324)

Table IV. Posterior distribution summaries for Log-normal Regression Model

Parameter Mean SD MC error 95% HPD interval

b0 5.864 0.05341 0.001622 (5.76,5.97)
b1 0.06733 0.02174 5.042E�4 (0.02492,0.1103)
b2 0.02077 0.01373 2.765E�4 (�0.006291,0.04781)
b3 0.001102 0.02175 5.007E�4 (�0.0412,0.04444)
t 187.5 39.84 0.3067 (118.3,273.5)
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5. Discussion

5.1. Model comparison

Traditional technologies for model comparison consider two main aspects: the model’s measure of fit and its complexity.
Usually, improving the model’s complexity can simultaneously improve its fit. For instance, by considering more unknown
parameters, the SD and MC error of the model’s posterior could be reduced and the model’s measure of fit could be
improved. However, the complexity of the model will be increased simultaneously. Therefore, most model comparison studies
focus on the balance between them. When comparing Bayesian models, both Bayesian Factor and Bayesian Information
Criterion can be used. However, for complex Bayesian hierarchical models, it becomes more difficult. Spiegelhalter et al.23 have
proposed DIC, which utilizes the model’s deviance to evaluate its measure of fit, and the effective number of parameters to
evaluate its complexity.

Define a Bayesian model’s Bayesian deviance, denoted as D(θ), as:

D θð Þ ¼ �2log p D θj Þð Þ:ð (23)

Define the effective number of parameters, denoted as pd, as:

pd ¼ �D θð Þ � D �θð Þ ¼ �
Z

2ln p D θj Þð Þdθ� �2ln p D �θj Þð Þð Þ:ðð (24)

Then,

DIC ¼ D �θð Þ þ 2pd ¼ �D θð Þ þ pd: (25)

We calculate the DIC values for the above three Bayesian parametric models separately, as shown in Table V.
Based on Celeux et al.24and related discussions of their paper, we choose the model with the lowest DIC value. When DIC< 5, the

difference among models can be neglected. Our results show that the DIC for Log-normal Regression Model is the lowest (447.19),
and following the arguments above, it is more suitable than the other two. In addition, we analyse other locomotives’ wheels with
the same model, which are running under similar situations. The results show that similar conclusions can be achieved. However,
comparing the DIC values for Weibull Regression Model and for Exponential Regression Model, which is 477.05 and 652.93, separately,
they indicate that the performance of Weibull Regression Model is close to the Log-normal Regression Model, which might also be a
suitable choice under specified situations.
5.2. Maintenance predictions

Although there is a little difference among the different Bayesian parameter models, all results achieve consistent common
conclusion: the installation positions influence the wheels’ lifetimes. In addition, considering the character of the covariates’
coefficients in our case study, we find the following: (i) the lifetime of the wheel installed in the second bogie is longer than
that of the wheel installed in the first one; (ii) the wheel installed in the third axel has a longer lifetime than that installed in
the second axel, and the wheel in the second axel has a longer lifetime than the one in the first axel; (iii) the right side wheel’s
lifetime is shorter than the left side. (Researchers from Norwegian National Rail Administration cited previously concur with
this. Using condition monitoring methods on train wheels operating on the same route, they found that the wheel forces
on the right and the left sides can be different, even for wheels in the same axel.). Possible causes include the influence of
the topographical complexity and the position of the locomotive’s centre of gravity.

The three Bayesian parametric regression models presented here are all effective according to Markov chain convergence and
other diagnostic tools; see, for example, Spiegelhalter et al.23who compare the computation process, including checking Markov
chains’ dynamic traces, time series and Gelman-Rubin-Statistics, and comparing the MC error with SD. However, we prefer Bayesian
Log-normal Regression Model because of its DIC values. The prediction of the locomotive wheels MTTF, following Bayesian Log-
normal Regression Model, appears in Table VI.

It should be pointed out that the 95% HPD interval in Bayesian Log-normal Regression Model for b2 and b3 includes 0 (Table IV).
This means that, although the positioning does have an influence, in some instances, the impact on the wheel’s service lifetime is not
significantly strong. In our case, the bogies have more impact on service lifetime than axels or sides. Given this conclusion, we can
deal with such covariates better in our future research.
Table V. DIC summaries

Model �D θð Þ D �θð Þ pd DIC

Exponential Regression 648.98 645.03 3.95 652.93
Weibull Regression 472.22 467.39 4.83 477.05
Log-normal Regression 442.03 436.87 5.16 447.19
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Table VI. MTTF statistics based on Bayesian Log-normal Regression Model

Bogie Axel Side mi MTTF(� 103km)

I (x1=1) 1 (x2=1) Right (x3=1) 5.9532 387.03
Left (x3=2) 5.9543 387.46

2 (x2=2) Right (x3=1) 5.9740 395.16
Left (x3=2) 5.9751 395.60

3 (x2=3) Right (x3=1) 5.9947 403.43
Left (x3=2) 5.9958 403.87

II (x1=2) 1 (x2=1) Right (x3=1) 6.0205 413.97
Left (x3=2) 6.0216 414.43

2 (x2=2) Right (x3=1) 6.0413 422.67
Left (x3=2) 6.0424 423.14

3 (x2=3) Right(x3=1) 6.0621 431.56
Left (x3=2) 6.0632 432.03
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Figure 4. Maintenance inspection level with Zone I and Zone II
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5.3. Maintenance inspection level

According to the assumptions in section 2.2, the maintenance inspection level H2 (where 0≤H2≤H1) determines howmany lifetime data
are ‘right censored’. Obviously, the higher the maintenance inspection level, the more data are considered ‘right censored’ and vice versa.
For instance, in Figure 4, we show a higher maintenance inspection level (80mm) and a lower one (20mm). We denote the area between
H1 and H2 as Zone I, and the area betweenH2 and zero degradation level as Zone II. Therefore, based on the likelihood functions discussed
in section 3, the MTTF statistics which are achieved from the higher H2 (the left picture in Figure 4, where H2= 80mm) will be higher than
those obtained from the lower H2 (the right picture, where H2=20mm), because fewer degradation data are considered right censored. In
other words, the results achieved from the former are more ‘optimistic’, and the results obtained from the latter are more ‘pessimistic’. An
extreme condition is to suppose H2=0mm.

For this reason, we can get an interval prediction between ‘optimistic’ and ‘pessimistic’ with different maintenance inspection
levels, which actually reflect the different risk confidence levels. This will be studied in another research paper.
6. Conclusions

This paper proposes three parametric Bayesian models for locomotive wheels’ reliability analysis using degradation data: Bayesian
Exponential Regression Model, Bayesian Weibull Regression Model (as discussed in section 3.3.1, it can easily be transferred to an
Extreme-Value Regression Model) and Log-normal Regression Model. The Bayesian survival models can deal with small and
incomplete data sets and simultaneously consider the influence of several covariates.

The case study’s results suggest that the wheels’ lifetimes differ according to where they are installed on the locomotive. The wheel
installed in the second bogie has a longer lifetime than the one installed in the first bogie; the one installed in the ‘back’ axel has a
longer lifetime than the ‘front’ one; the right and left side wheels also differ. The differences between the latter two could be
influenced by many aspects, for instance, the locomotives’ heterogeneities, the real running situation (e.g. topography, temperature,
moisture, applied loading, train speed, etc.) and the locomotive’s centre of gravity. However, the bogies have the strongest influence
on wheel lifetime. We can determine the wheel’s MTTF using the prediction results obtained from equation (20) ~ (22); this, in turn,
allows us to evaluate and optimise the wheel’s replacement and maintenance strategies (including the re-profiling interval, inspection
interval, lubrication interval and so on). In addition, by defining different maintenance inspection levels, we can obtain an interval
prediction between ‘optimistic’ and ‘pessimistic’ with different risk confidence levels.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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Finally, the approach discussed in this paper can be applied to cargo train wheels or to other technical problems (e.g. other
industries, other components).

The study suggests the following additional research:

• The assumed linear degradation path is a simple one. For more complex path models, more degradation paths should be studied.
• The covariates considered in this paper are limited to locomotive wheels’ installed positions; more covariates must be
considered.

• We have chosen vague prior distributions for the case study. Other prior distributions, including both informative and
non-information prior distributions, should be studied.
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