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Original Article

Data-driven model for maintenance
decision support: A case study of railway
signalling systems

Amparo Morant1, Per-Olof Larsson-Kråik1,2 and Uday Kumar1

Abstract

Signalling systems ensure the safe operation of the railway network. Their reliability and maintainability directly affect the

capacity and availability of the railway network, in terms of both infrastructure and trains, as a line cannot be fully

operative until a failure has been repaired. The purpose of this paper is to propose a data-driven decision support model

that integrates the various parameters of corrective maintenance data and to study maintenance performance by con-

sidering different reliability, availability, maintainability and safety parameters. This model is based on failure analysis of

historical events in the form of corrective maintenance actions. It has been validated in a case study of railway signalling

systems and the results are summarised. The model allows the creation of maintenance policies based on failure

characteristics, as it integrates the information recorded in the various parameters of the corrective maintenance

work orders. The model shows how the different failures affect the dependability of the system: the critical failures

indicate the reliability of the system, the corrective actions give information about the maintainability of the components,

and the relationship between the corrective maintenance times measures the efficiency of the corrective maintenance

actions. All this information can be used to plan new strategies of preventive maintenance and failure diagnostics, reduce

the corrective maintenance and improve the maintenance performance.
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Introduction

The railway network is a complex system that requires
several technologies to work together to handle the
increasing demands on capacity, speed and mobility
for the transportation of goods and passengers.
Railway infrastructure managers need planning tools
that enable them to systematically analyse and opti-
mise budget needs and minimise the total costs while
achieving the required levels of reliability, availability,
maintainability and safety (RAMS), and guarantee
the long-term quality of the railway assets.1 In order
to deal with the short-term cost and performance
demands and to guarantee RAMS over time, system-
atic maintenance management of the railway assets is
needed.2 The EN 50126 standard3 establishes the pro-
cesses for the specification and demonstration of
RAMS requirements in a railway network.

Railway signalling systems are composed of several
different sub-systems, each with its own purpose;
however, their interoperability is crucial to the signal-
ling system as a whole. Previous studies have shown
the importance of signalling systems for the

dependable operation of the railway network.4,5

Since signalling systems ensure the safe operation of
the railway network, their reliability and maintain-
ability directly affect the capacity and availability of
the railway network, in terms of both infrastructure
and trains. The functionality of the signalling system
is based on the principle of fail-safe operation, mean-
ing that the railway section where a failure is located
will not return to full operation until the failure has
been repaired (since safety cannot otherwise be
ensured); hence, the dependability of the signalling
system directly affects the capacity of the network.

Rail industry records show that for common rail-
way signalling assets, the occurrence of no-fault-
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found (NFF) events can be as high as 50%.5 The high
number of NFF events can be attributed to a limited
understanding of the root causes and characteristics
of failures in complex systems, inappropriate means
of diagnosing the condition of the systems, and the
inability to duplicate field conditions.6 Some research
reported in the literature has shown the importance of
NFF events, not just technically, but also organisa-
tionally and behaviourally, and has proposed address-
ing this issue as an integrated problem.5,7–9

Granström10 has described how the number of NFF
events in railway signalling systems can be reduced by
updating the maintenance requirements for these sys-
tems. Another important cause of failure is human
error when performing corrective maintenance
actions.11,12 Other external factors, such as environ-
mental conditions, can affect the number of corrective
maintenance actions.13,14 For a holistic picture of
where failures are located and the dominant factors
causing them, structured databases containing the
complete information about the system are required.15

A failure analysis based on empirical data recorded on
the corrective maintenance work orders (WOs) would
take the external factors into account and be able to
measure their relative importance for the level of
dependability of the system.

Maintenance managers responsible for deciding
maintenance actions face large amounts of data and
have a complicated task transforming these data into
information that supports maintenance actions.16

Failure analysis of a signalling system should give
information about how this system is affecting the
dependability of the operation and maintenance of
the railway network, and identify possible areas of
improvement. Pecht and Ramappan17 found that
the primary objective of failure analysis is to provide
design feedback to improve the performance of a
component. A number of proposals have been made
to improve maintenance support performance by ana-
lysing maintenance data.18,19

Two approaches can be considered when studying
the performance of a system. Although the intrinsic
RAMS approach only depends on the design of the
asset and the time required to perform a corrective
action with no external factors involved, the oper-
ational RAMS takes into account the maintenance
performance and the external factors particular to a
location (the environment, human factors, random
failures, logistics, etc.). Although, for the intrinsic
approach, a model could be based on the theory of
failure by studying the different components and the
theory of failure for each of them, for the operational
approach a data-driven model would be a better
choice. This is due to the point that corrective main-
tenance records reflect the performance of the system
with all the external factors involved in the operation
and maintenance. Moreover, since signalling systems
are a combination of mechanical, electronic and elec-
trical components, the theory of failure becomes very

complex to model. A data-driven model can reflect the
failure phenomena with greater accuracy than models
based on the theory of failure.

The EN 50129 standard20 lists methods to identify
and evaluate the effects of faults on railway signalling
systems, including failure mode, effects and criticality
analysis (FMECA), fault tree analysis (FTA), and
other methods based on historical data, i.e. common
cause failure analysis and historical event analysis. We
propose a decision support model for maintenance
policies based on data-driven failure analysis of the
corrective maintenance. A data-driven model con-
siders all the factors when a system is in operation
(e.g. the environment, human error, etc.) thus
making it possible to quantify the probability that a
failure will occur. It can be performed on a software-
based platform using the WOs already recorded as
input.

The purpose of this paper is to propose a data-
driven decision support model that integrates the
various parameters of corrective maintenance data,
and to study the maintenance performance by con-
sidering different RAMS parameters. This model is
based on failure analysis of historical events in the
form of corrective maintenance actions. It is validated
in a case study of railway signalling systems and the
results are presented. The model allows the creation
of maintenance policies based on failure characteris-
tics, as it integrates all the information recorded in
the various parameters of the corrective maintenance
WOs. All this information can be used to plan new
strategies of preventive maintenance, reduce the
number of corrective maintenance actions,
and improve the maintenance and operating
performance.

Research methodology

Corrective maintenance records formed the basis of
the analysis. A schematic diagram of the research
methodology is shown in Figure 1. Internal documen-
tation, a literature review and interviews with experts
were keys to interpreting the data and discussing the
results of the model. The research is based on data
obtained from Trafikverket (the Swedish infrastruc-
ture manager). The corrective maintenance WOs for
the railway infrastructure in Sweden are managed in
Trafikverket’s failure reporting system, called

Figure 1. The utilised research methodology.
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‘Ophelia’. This system is based on the BMC Software
Remedy, which was adapted to the specific require-
ments of the management of corrective maintenance
for railway infrastructure. 0felia has its own manual
for data analysis.21

The process of failure reporting is described in a
document published by Trafikverket that specifies the
appropriate procedure from the point in time when a
failure is identified and reported to the system up to
the point in time when the corrective action is finished
and the WO related to the failure is closed.22 A
number of partners are involved in the process: the
failure is generally identified by the train operator, the
railway infrastructure manager controls the activity
on the railway network, and a subcontracted com-
pany performs the corrective maintenance. Since
some parameters in 0felia are registered manually
and the data can be in several formats, processing
the data is necessary to group the information into
the correct parameters.

The IEC 61703 standard23 relates the performance
aspects of maintenance to the maintenance variables
to measure the dependability of a system. In our case,
based on the information recorded in 0felia, we con-
sider the parameters that give the most information
about failures. In order to identify these parameters,
we performed an exploratory analysis that looked at
the quality of the data recorded for each parameter
(the amount of data recorded for each parameter and
the quality of the information). This was needed
because not all the parameters are indicated in a
WO in 0felia.

Manuals, standards and interviews with experts
helped us to define the parameters for our
model.21,22,24 Any parameter that had a low data
quality (information not recorded or incomplete
information) was discarded. The chosen parameters
were analysed and the information was integrated to
obtain the maximum possible information on correct-
ive maintenance. We studied the values of the param-
eters themselves, their interrelations with other
parameters and the variations over time.

Corrective maintenance WOs were gathered from
Trafikverket’s corrective maintenance database and
then processed. The R software was used for the
data processing and posterior analysis.25 The failure
modes, causes of failures and corrective actions were
related to identify possible improvements, such as
establishing an action procedure list for corrective
maintenance performance. The times to restore were
analysed to find patterns and to compare the total
time to maintain (TTM) with the total time to restore
(TTR).

A case study was used to validate the model; some
of the results are summarised in this paper. Based on
the analysis, we could identify the weakest points,
such as a low reliability of components, problems
with information accessibility, a high failure fre-
quency, high TTR or/and TTM, problems identifying

failures, etc. The analysis allowed us to see where
the general maintenance performance could be
improved.

It is assumed that all the failures were recorded
in the corrective maintenance database. One limita-
tion of this research is that the failure data are related
to a specific railway corridor, with specific environ-
mental and operational characteristics. Since this
research is based on empirical data, the results are
limited to the information that could be obtained
from the recorded data. Finally, the results showed
here are limited to the system asset level for
simplification.

Model description

To develop our model, we considered the different
parameters recorded on the corrective maintenance
WOs as the inputs for our model. Based on the results
of the exploratory analysis of the corrective mainten-
ance records, we included the following parameters in
our model.

1. Symptom: a symptom that identifies a failure and
triggers the opening of a WO, usually observed by
the train driver and defined by reference to the
affected system asset.

2. System asset/sub-system asset: the asset where cor-
rective action is performed.

3. Failure mode: the real failure that is related to the
corrective action.

4. Cause of failure: the reason for the failure.
5. Corrective action: the action performed in order to

close the WO.
6. Failure date: the date the WO was generated.

Some conclusions can be made based on the times
spent on the different WOs. From the database, we
can extract the following times and dates for the cor-
rective maintenance WOs: the times and dates for the
failure identification, the opening of the WO, the start
of the corrective action, the completion of the correct-
ive action, and the closure of the WO. Our objective is
not only to study the mean values for each parameter,
but also to determine how the values are distributed.
This will allow us to analyse how the maintenance
performance is affected by external factors. We
define three possible states for the assets during
operation.

1. The available state, corresponding to the up-time
(UT): the system is fully operative.

2. The unavailable state corresponding to the waiting
time (WT): the time between the failure occurrence
and the start of the corrective action. During the
WT, the WO is opened, the failure is identified, the
maintenance personnel are informed, the spare
parts and tools are gathered, and the personnel
go to the location of the failure.

Morant et al. 3
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3. The unavailable state corresponding to the restor-
ation time (RT): corrective actions are performed
and the WO is closed.

Based on these three states, we define the following
parameters: the TTM, which is the total downtime
(DT) when the system is not available for operation;
the TTF, which is the time when the system is avail-
able for operation without a failure; and the relative
restoration time (RRT), which is the ratio between the
RT and the total DT (see equations (1), (2) and (3)).
Figure 2 shows the correspondence between these
parameters.

TTM ¼ tðfinish of corrective actionÞ

� t ðfailure identificationÞ ð1Þ

TTR ¼ tðfinish of corrective actionÞ

� tðstart of corrective actionÞ ð2Þ

RRTð%Þ ¼
TTRðsecÞ

TTMðsecÞ
ð3Þ

The number of failures in a determined interval is a
measure of the reliability of the system, with the TTR
and TTM indicating the maintenance support per-
formance and the UT and DT showing the maintain-
ability.23 The cause of failure and the failure mode
allow us to analyse the common cause failures, and
with the failure data we can analyse the historical
events. An analysis of the relationship between the
various parameters on the corrective maintenance
WOs yields insight into the RAMS parameters of
the system and allows us to evaluate the maintenance
performance of each asset.

Figure 3 shows the proposed decision support
model based on the maintenance records. Different
outputs are obtained. The most important are the
measurement of failure rate, availability and

maintainability performance not necessarily related
to the system or sub-system asset. This provides a
multidimensional tool for measuring the corrective
maintenance and the associated parameters that do
not depend on the affected asset. The link of the
same corrective actions on different assets allows the
comparison of procedures and identification of best
practices.

The relation between causes of failure and failure
modes allows the identification of the factors that
most affect the reliability of the signalling system; fur-
ther actions can be oriented to reduce those causes.
The relationships between the different parameters,
such as the relation between failure modes and cor-
rective actions, and the RRT provide insight about
the maintenance performance for the different failure
modes and assets, which can give indications of the
areas where an improvement would provide the most
benefits in terms of maintenance optimisation. The
relation between failure modes and failure causes
can help to identify possible failure modes that
could be suitable to consider for condition-based
maintenance (CBM) in order to reduce the corrective
maintenance actions.

Model implementation

The model can facilitate the continuous improvement
of maintenance to meet dependability standards.26 As
Trafikverket considers standards of dependability3

and RAMS26 in its maintenance strategies, this
model can be implemented as a part of its mainten-
ance assessment process to measure maintenance per-
formance, to analyse the results and determine further
actions for dependability improvement (see Figure 4).

This model identifies possible areas for improve-
ment in dependability, allowing companies to review
their maintenance planning, preparation and execu-
tion. The model considers how various changes in
maintenance policies (e.g. preventive inspections,

Figure 2. Correspondence between times.
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corrective maintenance procedures, failure identifica-
tion, etc.) affect the dependability of the systems
(e.g. increasing availability and reliability, reduce
TTR, etc.).

Finally, the model can also be an input when study-
ing different maintenance policies and their life cycle
cost (LCC) analyses. There are some uncertainties in
LCC calculations due to the statistical characteristics
of reliability and maintainability parameters, such as
the MTTF and MTTR.27 LCC analyses can be uti-
lised to focus on maintenance strategies to minimise
the maintenance cost in the system’s life cycle, while
meeting dependability requirements. Optimising the
maintenance policy is a critical factor in achieving a
cost-effective system in the long run. All such opti-
misations should aim at maximum system availability
and minimum LCC and, in the case of Trafikverket,
minimum train delays for a specific traffic scenario.28

Even though this paper focuses on signalling sys-
tems on the Swedish railway, the proposed model
could be adapted to other railway systems or other
networks. In the case of other systems on the Swedish
railway, this would be directly applicable, since the

information recorded in 0felia is the same for all
assets that are part of the overall infrastructure. In
the case of other railway networks or systems, the
model remains valid, since the parameters considered
constitute the basis for understanding and studying
the dependability of any system; the only limitation
would be the availability of the maintenance records
required to implement the model.

Case study

The analysis is based on a fully operative railway line
where the automatic train control signalling system
supervises and controls the network. The line has
been operative with no major changes for many
years; hence, we can assume that the WOs represent
maintenance and not design changes or failures. The
data cover the WOs from January 2003 to November
2012 on a 203 km long line in the northern part of
Sweden.

More specifically, 9030 WOs were registered during
that period, of which 2455 were associated with sig-
nalling systems. Due to the number of WOs directly

Figure 4. Maintenance processes.26

Figure 3. Decision support model based on failure analysis.

Morant et al. 5

 at Trafikverket on June 16, 2014pif.sagepub.comDownloaded from 

http://pif.sagepub.com/


XML Template (2014) [12.5.2014–11:44am] [1–15]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/PIFJ/Vol00000/140040/APPFile/SG-PIFJ140040.3d (PIF) [PREPRINTER stage]

related to signalling systems (27%) and in consider-
ation of the critical nature of a good performance of
the signalling systems, we focused our research on
these systems, even though the methodology can be
extrapolated to the whole railway network.

The signalling system in the corridor investigated
in this case study is composed of the following
systems.24

1. Track circuits, which are responsible for the train
location.

2. Balise groups, which give input from the track to
the on-board signalling system (e.g. speed limits,
driving mode, etc.).

3. Level crossings, which coordinate the road traffic
crossing the railroad.

4. Signals, which give permission to or place restric-
tions on the trains coming into a track section.

5. Signalling boards, which give fixed information to
trains (e.g. tunnels, bridges, speed restriction
areas, etc.).

6. Traffic management system (TMS), which is the
interface between the traffic operator and the rail-
way network.

7. Interlockings (IXLs) and radio block centre,
which receive the input from the different systems
(e.g. track circuits, level crossings, signals and the
TMS), perform calculations and return as an
output the train operation restrictions to ensure
safe operation.

Every WO has associated values for the analysed
parameters. The values found for each parameter
include values for failure modes, causes of failure
and corrective actions. More values can be con-
sidered, but since this research is based on empirical
data, it focuses on the causes of failure for the signal-
ling systems recorded in the corrective maintenance
data.

The values found for the parameter of failure mode
are as follows: ‘not defined’ (the failure mode is not
specified in the WO), ‘non-operative’ (the asset is not
working properly), ‘NFF’ (no failure was found),
‘electrical’, ‘mechanical’ and ‘external’.

The following causes of failure for the signalling
systems were recorded in the corrective maintenance
data.

1. Design (e.g. improper design/installation/mount-
ing, etc.).

2. Electrical causes, such as electrical overstress,
improper isolation, abnormal feeding, power fail-
ure, etc.

3. Environmental causes, such as strong winds,
extreme temperatures, thunderstorms, snow, ice,
etc.

4. External reasons (e.g. railway vehicles, obstacles,
third-party work, etc.).

5. Lack of maintenance or incorrect operation.

6. Mechanical reasons, such as fatigue, wear, mech-
anical overstress, etc.

7. NFF - no failure found (it was impossible to find
any failure).

8. Not defined (unknown reason), which is recorded
when the failure cannot be defined or is not
described on the WO.

When the failure of a signalling system asset occurs,
the different possible corrective actions performed to
return it to the optimal state are classified into the
following groups.

1. Repair or replacement (restoration) of the failed
component.

2. Restart/software (SW) update when the failure is
attributed to SW causes.

3. Provisional repair, but further corrective actions
should be scheduled.

4. Adjustment/lubrication between modules/connec
tions.

5. Cleaning or removal of obstacles (due to an exter-
nal factor or dust accumulation).

6. Control of the system (it is not considered to need
repair or replacement, or the failure could not be
found, but certain symptoms indicate possible
future failure).

7. Not defined (the action performed is not specified
in the WO).

8. No action performed (it is considered that the
system does not need the repair or replacement
of a component, or the failure could not be
found).

When studying the time to restore in the WOs,
we found that, of the 2456 WOs related to failures
of signalling systems, 103 WOs had a restoration
time of 0 s. Only 19 of these had a corrective action
that could be used to calculate the restoration time,
such as ‘repair’ (one WO), ‘replacement’ (10 WOs),
‘restart’ (three WOs) and ‘removal of obstacles’
(three WOs). We decided not to consider these
data, as their omission would not greatly affect the
results of the analysis. The other abnormal result
was that one WO had a negative time, probably due
to an error when writing the ‘correction action start
date’.

Approximately 16% of the WOs have large times
to restoration and maintain (more than a day). This
can be due to different factors; e.g. the failure may not
have affected the normal operation of the railway net-
work and could wait for other scheduled maintenance
activity; the complexity of the restoration may have
been high; or it may have been difficult to identify
where the failure was, etc. The procedures for correct-
ive maintenance at Trafikverket state that a WO
should be closed within a maximum of 24 h.22 As a
result we discarded any WOs that were open for
longer than 24 h.

6 Proc IMechE Part F: J Rail and Rapid Transit 00(00)
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A preliminary analysis could be made by determin-
ing the values for each of the parameters that were
more important (considering the WOs that comprised
80% of the total). However, to state the maintenance
characteristics and needs for each asset, we not only
had to examine the total number of failures during the
time frame of our sample, but also had to consider the
yearly occurrences. This helped to show if the failures
had occurred in one particular year (caused by specific
environmental factors, for example), or if the results
could be generalised. To study how the different par-
ameters were related for the different assets in the
railway signalling systems, we needed to find trends
and differences in behaviour related to where the fail-
ure had occurred. The results of our analysis varied
and are summarised in the next sections, together with
a discussion of how to improve the dependability of
the system based on our analysis.

Results

Figure 5 shows the Pareto diagrams for the chosen
parameters (system asset, failure mode, cause of fail-
ure and corrective action); these parameters and the
relationship between them will be summarised in this
section.

The affected system asset

When examining the different system assets that com-
prise signalling systems, we found that the IXLs, the
level crossings, the track circuits and the signals
accounted for more than 80% of the failures overall
(see Figure 5(a)).

When studying the failures by the year, we detected
a maximum value of WOs related to signalling sys-
tems during 2010, followed by an improvement. The
number of WOs for IXLs was significantly reduced
(see Figure 6). At the same time, we observed an
increase in the number of WOs for the track circuits,
level crossings and balise groups during the last years.
The results shown in Figure 5(a) and 6 led us to focus

our improvement measures on the RAMS of the fol-
lowing system assets: IXLs, level crossings and track
circuits; this is because they produce around 80% of
the WOs related to corrective maintenance. An
improvement in the performance of these systems
will improve the performance of the entire signalling
system and, hence, the overall performance of the rail-
way network.

The failure mode

The failure modes recorded are shown in Figure 5(b).
The most common values recorded for this parameter
are ‘not defined’ (26%), ‘non-operative’ (24%) and
‘NFF’ (21%). In other words, either there was no
failure or it was not possible to identify a failure
(hence, if there actually was a failure, it would
remain unrepaired and the asset in question would
fail again). Lacking the proper data can cause an
increased amount of time to be devoted to corrective
maintenance actions, as incorrect failure identification
decreases the system availability.

Table 1 shows the relationships between the sys-
tem’s asset parameters that are affected and the failure
modes. Based on these data, we can identify how the
system assets fail. The most common value recorded
for the failure mode of the IXLs is ‘non-operative’.
We can assume that one of the reasons for these
results is the complexity of the system where the
failure occurs in the case of the signals and the level
crossings. For the balise groups and track
circuits, ‘NFF’ is the most recorded value for the
failure mode.

The cause of failure

The types of causes of failures related to the signalling
systems are shown in Figure 5(c). The most recorded
values for this parameter are ‘not defined’ (29% of the
WOs), ‘mechanical’ (23%) and ‘electrical’ (14%).
Other values recorded for the cause of a failure,
such as ‘external’, ‘environment’ and ‘NFF’, are also

Figure 5. Pareto graphs showing the values for the different parameters: (a) signalling system asset affected; (b) failure modes;

(c) failure causes; and (d) corrective actions performed.
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relevant, each represents 10% of the WOs recorded.
Clearly, the causes of failures of the signalling systems
are quite widely distributed, and the data should be
studied in more depth to find possible trends.

Different assets have different failure causes, since
their architecture and operating conditions differ.
Studying the causes in terms of the asset where the
failure occurred, we can identify some trends. The
different causes of failures recorded for the various
system assets are listed in Table 2.

The most commonly recorded value for the cause
of failure for four of the seven systems is ‘not defined’.
Signalling boards have an ‘electrical’ cause and signals
have a ‘mechanical’ cause as the most common failure
cause. Electrical causes derive from thunderstorms

affecting the cable that connects the signalling board
to the ground. For the signals, the mechanical causes
of failure are higher because failures in assets such as
the signal lamp or bulb are recorded as being mech-
anical in nature.

The corrective actions

The corrective action parameter consists of the
actions that were performed to restart the system
after it failed. The most common actions recorded
for the signalling systems (see Figure 5(d)) are
‘replacement’ (31%), ‘control’ (24%), ‘repair’ (14%)
and ‘cleaning or removal of obstacles’ (11%). The
architecture of most signalling systems is modular,

Table 2. Cause of the failure of an affected system asset.

Cause of failure

Affected system asset

Balise groups IXLs Level crossings Sign. boards Signals TMS Track circuits

Design 8 16 7 0 6 4 5

Electrical 14 166 43 14 53 6 47

Environment 5 82 129 2 10 1 24

External 16 22 99 0 17 0 105

Maintenance 1 6 11 1 4 0 0

Mechanical 29 143 96 7 210 6 59

NFF 40 35 47 0 37 3 87

Not defined 107 193 116 10 113 11 182

Figure 6. Failures of the signalling systems based on the year and system asset.

Table 1. Failure modes of an affected system asset.

Affected system asset

Failure mode Balise groups IXLs Level crossings Sign. boards Signals TMS Track circuits

Electrical 15 71 54 0 207 5 140

External 1 4 9 1 4 0 1

Mechanical 16 31 92 10 26 0 10

NFF 80 86 107 2 66 6 162

Non-operative 55 290 84 2 51 4 118

Not defined 53 181 202 19 96 16 78
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allowing the replacement of an asset that fails with a
new one, reducing the time for restoration of
operation.

Table 3 shows the relationship between the system
assets and the corrective actions. For the track circuits
and balise groups the most common action is a con-
trol action (45% and 31%, respectively), whereas for
the IXLs and signals, for example, replacing a failed
component is more important (40% and 50%,
respectively). For the TMS, the most common cor-
rective actions are replacement and restart, both cor-
responding to 29% of the WOs. Balise groups and
track circuits are easily affected by environmental or
external factors (they are located along the track), and
their failure may not be permanent. IXLs are designed
as lineside replacement units (LRUs) to optimise
maintenance while promoting replacement over
repair on-site so as to minimise the DT of the
system. Balise groups have replacement as the
second most common corrective action. Since the fail-
ure of a balise can affect the operation of the track
section where it is located, it is more effective to

replace the balise with a new one, rather than taking
the failed one to the workshop to study the failure,
thus minimising the DT.

Relationship between ‘corrective action’ and
‘failure mode’

Table 4 shows the relationship between the param-
eters ‘corrective action’ and ‘failure mode’. The
number of ‘NFFs’ linked to the corrective action ‘con-
trol’ contributes to making this measure one of the
most commonly recorded corrective actions for the
signalling systems. The most common corrective
actions are a ‘control’ and ‘replacement’ of the
asset. For example, ‘control’ is related to the follow-
ing values for ‘failure mode’: ‘external’, ‘NFF’ and
‘not defined’; whereas ‘replacement’ is associated
with the following values for ‘failure mode’: ‘elec-
trical’, ‘mechanical’ and ‘non-operative’. This is due
to the modular architecture of signalling systems and
the high incidence of ‘NFFs’ and ‘not defined’ failure
modes.

Table 3. Corrective action for an affected system asset.

Corrective action

Affected system asset

Balise groups IXLs Level crossings Sign. boards Signals TMS Track circuits

Adjustment/lubrication 10 23 32 6 27 1 5

Cleaning /removal of obstacles 5 20 139 1 19 0 76

Control 99 119 128 2 90 6 158

No action 7 15 5 0 17 0 71

Not defined 2 8 5 1 7 0 5

Provisional repair 0 26 9 2 3 4 19

Repair 23 82 71 15 49 2 101

Replacement 65 268 131 3 227 9 64

Restart 9 101 28 4 11 9 10

SW update 0 1 0 0 0 0 0

Table 4. Corrective action based on the failure mode.

Corrective action

Failure mode

Electrical External Mechanical NFF Non-operative Not defined

Adjustment/lubrication 21 0 11 2 12 58

Cleaning /removal of obstacles 90 1 6 16 20 127

Control 16 7 1 402 7 169

No action 7 0 0 80 1 27

Not defined 5 1 3 5 2 12

Provisional repair 13 0 9 0 27 14

Repair 54 4 48 1 171 65

Replacement 267 2 91 1 325 81

Restart 19 5 16 2 39 91

SW update 0 0 0 0 0 1
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In fact, 10% of the WOs are related to the correct-
ive action of ‘cleaning / removal of obstacles’; of
these, most are either ‘not defined’ or ‘electrical’ fail-
ure modes. This could be due to the effect of rain and
snow on operation. A total of 53% of the WOs related
to the corrective action ‘restart’ have a failure mode of
‘not defined’. This could be associated with the diffi-
culty of identifying the failure mode of electronic
assets. There are fewer appearances of the corrective
action ‘provisional repair’ associated with the failure
modes ‘non-operative’, ‘not defined’ and ‘electrical’.
This low rate reflects the modular nature of signalling
systems, for which the most common repair action is
the replacement of the LRU.

Relationship between ‘failure mode’ and ‘cause of
failure’

When analysing the failure data, it is important to
remember that different values can refer to the same
kind of failure, since there is no exact way to evaluate
them. This can be seen when comparing the param-
eters ‘failure mode’ and ‘cause of failure’ (Table 5).
For example, 37% of the WOs where the cause of
failure was recorded as ‘not defined’ have ‘NFF’ as
the failure mode. With regard to the WOs where the
failure mode was recorded as ‘non-operative’, 32% of
the failures were mechanical failures, 29% electrical
failures and 16% were not defined.

In fact, 78% of the WOs relate to environmental
issues and 42% of the WOs relate to external reasons
to have a failure mode of ‘not defined’ or ‘non-opera-
tive’, possibly because it was not considered relevant

to describe how the cause affected the asset when rec-
ording the WO; it was considered enough to simply
state that the system asset was not working properly.

Relationship between the system asset affected,
restoration time and maintenance time

Table 6 shows the main parameters for the TTM,
TTR and RRT for the whole signalling system; note
that approximately half of the total time is due to the
restoration time (46%). A number of factors can
influence these values, including failure mode identifi-
cation and specification of the repair requirements,
the distance to the failure location, human and/or
material resources, etc. We can compare the maintain-
ability between the different system assets by compar-
ing the respective values of the mean time to
restoration (MTTR), mean time to maintain
(MTTM), mean waiting time (MWT) and mean rela-
tive time to restore (MRTTR) obtained from the
empirical data.

Figure 7 shows the relationship between the time
variables (MTTM, MTTR and MWT) for the differ-
ent system assets. As can be observed, the values for
the MTTM and MWT have the same relationship in
all the systems with the exception of the TMS, where
the MTTR is proportionally much higher. The other
major result is the lower value of the MWT for the
level crossings and the TMS. This is due to the critical
nature of these assets, as well as the ease of access of
the asset locations.

Figure 8 visually summarises the RRT for system
assets affected by a failure. This figure shows the

Table 5. Relationship between failure mode and cause of failure.

Failure mode

Cause of failure Electrical External Mechanical NFF Non-operative Not defined

Design 5 2 3 2 11 23

Electrical 62 1 15 3 172 90

Environment 32 0 7 15 65 134

External 73 5 66 7 62 46

Maintenance 2 9 1 3 0 8

Mechanical 234 0 67 0 193 56

NFF 5 0 0 211 1 32

Not defined 79 3 26 268 100 256

Table 6. TTM, TTR and RRT.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Maintenance time (TTM, (s)) 180 4560 8700 16,580 17,400 86,340

Restoration time (TTR, (s)) 60 1260 3060 6094 6960 83,880

Relative restoration time (RRT, (%)) 0 19 43 45 70 100
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maximum and minimum times spent on restoration,
along with the median and first and third quartiles.
The density distribution is shown by the perimeter of
the boxplots, and the thickness depends on the
number of WOs associated with a failure of the
system asset. It can be observed that the different rela-
tionships between the TTR and TTM depend on the
asset affected.

For example, the mean values for the level cross-
ings, signals and signalling boards are quite similar
and slightly lower than those for the other assets. It
is possible that failures of these systems are easier to
identify, since their architecture is simpler than that of
systems such as IXSs or the TMS. Systems with a
more mature design (i.e. a design that has not been
modified to a great extent) are more familiar to the
maintenance personnel than other systems; hence,
the personnel’s knowledge of the failure modes and
their corresponding corrective actions is greater.
For other systems, such as the TMS, the time to
restore is higher, mainly due to the complexity of
the architecture, which hinders failure identification
and restoration. Some systems show an increase in
the number of WOs for low restore times (e.g. the
level crossings, signals and track circuits). One pos-
sible cause is the ease of identification of failures and
the quickness of restorations of these systems (e.g.
replacing the lamp of a signal); another possible

cause is the impossibility of finding failures (NFF)
on occasions.

For the system assets mostly affected by mechan-
ical failures (e.g. signals and signalling boards), the
relative restoration time is proportionally smaller
and the distribution of the relative restoration time
decreases when the values of TTR and TTM are
more similar. Mechanical failures may be easier to
identify; assets prone to mechanical failure also have
a simpler architecture that facilitates repair or replace-
ment, reducing the TTR. The balise groups also have
a smaller relative restoration time, even though most
of the failures are electronically based, due to the sim-
plicity of their architecture.

For the electronically based system assets with a
more complex architecture (e.g. IXLs and the TMS),
the relative restoration time is proportionally higher
than that for the mechanically based assets, and the
distribution of the relative restoration time does not
show a trend. Arguably, more time is spent on iden-
tifying the failure that has occurred and finding the
proper corrective action.

NFFs are more common for electronically based
systems and the architecture of these systems is
more complex. Better knowledge of the systems to
be maintained can reduce the time needed to identify
the required corrective maintenance action in these
cases.

Figure 8. Relative restoration time for the system assets.

Figure 7. MTTM, MTTR and MRTTR for the system assets.
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Relationship between the symptom and system
asset affected

We studied the relationship between the parameters
‘symptom’ and ‘system asset affected’ to determine
how much information could be extracted from the
former. When a WO is opened, there is a symptom
indicating where the failure has occurred. Failures are
usually identified by the train driver, and it is not
always possible for them to make an accurate identi-
fication of the failure, since failures of different sys-
tems may have the same failure effect (e.g. it can
be difficult for a train driver to differentiate between
a failure in the track circuit and a signal failure).
The values of the ‘symptom’ parameter are associated
with the different systems; therefore, they may differ
from what was reported when the WO was opened
and from the system where the failure actually
occurred.

To maximise the usability of the symptom param-
eter for giving information on the real failure, we
grouped the systems into more generic groups, such
as signalling systems (including track circuits,
signals, IXLs, etc.), power and electric systems
(e.g. transformers, substations, etc.), telecommunica-
tion systems (e.g. radio, telephony, signal cable, etc.)
and track systems (turnouts, rail, etc.). When the
system was not defined, it was classified as ‘other
systems’ and, when no fault was found, it was
classified as a system with a NFF. Figure 9 shows
the relationship between the symptoms and the
system groups affected; the identification given by
the symptom mostly relates to the affected system
asset.

Having a more general classification of the symp-
toms may result in better accuracy; in addition, data
classified in this manner can be used by the mainten-
ance personnel. Therefore, using broader groups for
the symptom classification can give the maintenance
personnel a better initial idea of which technology has
failed.

Discussion

Based on the number of WOs related to failures, we
conclude that signalling systems play an important
role in the dependability of the railway system.
IXLs, level crossings and track circuits are the systems
most affected by failures and cause most of the WO
actions. Improving the performance of these systems
will improve the overall performance of the railway
network.

‘Non-operative’, ‘not defined’ and ‘NFF’ are the
most common values recorded for the failure mode
for signalling systems. There are two possible reasons
for this: either there was no failure or it was not pos-
sible to identify a failure (hence, if there actually was a
failure, it would remain unrepaired and the asset in
question would fail again). The most common value
recorded for the cause of failure is ‘not defined’. A
comparison of the number of WOs for each system
and the real failure recorded shows that the more
complex the system is, the more often a clear failure
mode is not identified. Identifying failures in electron-
ically based systems presents some difficulty, since
ageing in such systems is not directly visible (unlike
mechanical fatigue). This can be seen in the high
number of WOs with the following values recorded
for the failure mode: ‘NFF’, ‘not defined’ or ‘non-
operative’; these WOs concern failures for which the
failure mode was not identified, and either no action
was taken or the component was replaced. These WOs
require extra time for corrective maintenance due to
the time spent trying to identify a failure (sometimes
unsuccessfully).

The complexity of the system and the maturity
of the design architecture (e.g. it is easier to identify
failures in a well-known system) play an important
role when identifying failure and performing
corrective maintenance actions. Better knowledge of
the systems to be maintained can reduce the time
needed to identify the required corrective maintenance
action.

Figure 9. The system where the failure actually occurred related to the symptom.
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Factors such as environmental conditions or elec-
tromagnetic compatibility can affect the normal oper-
ation of the assets, producing random failures, for
which it is difficult to identify the failure cause and
mode. Better failure identification would lead to
better preventive measures, reducing the occurrence
of failures or minimising their effects.

Studying the relationship between the corrective
actions and the systems affected allows us to examine
the maintainability of the various systems, and to pro-
pose improvements to reduce the time for corrective
maintenance actions and increase the efficiency and
efficacy of such actions. A review of the corrective
maintenance procedures can help to achieve this goal.

The study of failure modes and their occurrence
allows a better understanding of the reliability of the
system, allowing the possibility of developing hybrid
reliability models combining physics of failure and
data-driven models to study failure prognosis and
remaining useful life. This model, together with
other methodologies such as FMECA and FTA,
allows companies to review their preventive mainten-
ance inspections, with special emphasis on the most
frequent failure modes. Finding the link between fail-
ure modes and failure causes assists in reviews of pre-
ventive maintenance and CBM, yielding insight into
how operational and external factors affect the reli-
ability of the system and suggesting ways to either
minimise their effect or monitor them to adjust the
estimated remaining useful life. Studying the causes
of failure can facilitate a better understanding of the
failure modes, even on WOs where little information
is recorded (e.g. in the case of ‘not defined’ and ‘non-
operative’). Linking the failure modes to the failure
causes and corrective actions performed can help to
reduce the time for failure identification, which leads
to a reduction in the time needed to perform the cor-
rective maintenance action (leading to improved
availability).

From our observations of the TTM, the TTR and
the relative RT, we conclude that, depending on the
system asset, a number of different factors can influ-
ence the times required to maintain and to restore.
Analysing the values for the factors affecting mainten-
ance performance for each system can help reduce the
time spent on corrective maintenance, thus improving
the dependability of the system. Proposals for
improvement depend on the focus; e.g. one can
reduce the waiting time by improving the maintenance
support, and one can decrease the RT by striving for a
more efficient corrective maintenance performance,
etc.

Depending on the system asset, different factors
can influence the TTM and TTR for different reasons;
examples of such factors are failure mode identifica-
tion, specification of the repair requirements, the dis-
tance to the failure location, human and/or material
resources, etc. Analysing the values of the factors that
affect the maintenance performance for each system

can help to reduce the time spent on corrective main-
tenance and improve the dependability of the system.

Conclusions

The purpose of this paper was to propose a data-
driven decision support model that would integrate
the various parameters of corrective maintenance
data and study maintenance performance by consider-
ing different RAMS parameters. To develop our
model we considered the different parameters rec-
orded on the corrective maintenance WOs as the
inputs for our model. The output of the model is
the relations between the different parameters and a
presentation of the relations that occur more fre-
quently. This makes it possible to review the current
maintenance policies and propose continuous
improvements depending on the current performance.
A limitation of the model is its dependence on the
quality of the data recorded on the WOs.
Depending on the quality of the input data, the reli-
ability of the output for the decision support process
can vary.

The proposed model is based on failure analysis of
historical events in the form of corrective maintenance
actions. It has been validated with corrective mainten-
ance data from a specific case study. We have focused
on signalling systems for two reasons. First, the fail-
ure of a signalling asset may mean that the railway
section where it is located will be not fully operative
until the failure has been repaired (since safety cannot
otherwise be ensured); hence, the availability of the
whole railway section will be affected. Second, signal-
ling systems receive a great deal of corrective main-
tenance WOs (27% in our case study).

Implementation of the proposed decision support
model has shown that it can be successfully applied,
with the following results.

1. The model treats the failure occurrence from a
holistic perspective; it integrates the information
recorded in the different parameters of the correct-
ive maintenance WOs.

2. The model is based on empirical data and can
therefore be used to validate results from other
methodologies.

3. The model allows companies to review how
changes in maintenance policies (e.g. scheduled
maintenance and inspection procedures) affect
corrective maintenance performance.

4. New policies can be oriented to a reduction of the
most common causes of failure and to an opti-
misation of the most frequent corrective actions
to reduce the time spent on maintenance.

5. The need to improve failure identification and
reduce the number of WOs with ‘not defined’,
‘non-operative’ and ‘NFF’ recorded for the failure
mode is indicated by the number of WOs with
these values recorded. Improvements in
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knowledge transfer and information logistics
could reduce their number.

6. The model links failure modes and causes of fail-
ure, establishing the basis for possible future
improvements, such as the implementation of
CBM (e.g. CBM of track circuits depending on
the rainfall).

7. The model identifies the assets that affect railway
availability most; improving their reliability will
maximise the global benefits.

Signalling systems are designed based on the ‘fail safe’
mode; a failure can mean that the railway section
where they are located will be not fully operative
until the failure has been repaired. Hence, the failure
of a single component can affect the availability of the
whole railway network. The model identifies the sys-
tems that are more likely to fail, the causes of failure
and the most common corrective actions.
Maintenance policies can be proposed to improve
the reliability and availability of these systems.

From the results of the case study, we conclude
that signalling systems play an important role in the
dependability of the railway system, and this is par-
ticularly true of such assets as IXLs track circuits and
level crossings. We also find that ‘non-operative’, ‘not
defined’ and ‘NFF’ are the most common values rec-
orded for the failure mode. Further research on the
NFF phenomena can help to optimise maintenance
performance and reduce the corrective maintenance
WOs.

For the analysis performed in the presented
research study, we assumed that all the failures were
recorded in the corrective maintenance database.
Since this research is based on empirical data, the
results are limited to the information that could be
obtained from the recorded data. Further research
can reduce these limitations and examine the results
more closely.
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5. Granström R and Söderholm P. Condition monitoring

of railway wheels and no fault found problems. Int J

COMADEM 2009; 12(2): 46–53.
6. Williams R, Banner J, Knowles I, et al. An investigation

of ‘cannot duplicate’ failures. Qual Reliab Engng Int

1998; 14(5): 331–337.
7. Pecht MG. Establishing a relationship between war-

ranty and reliability. IEEE Trans Electron Pack Mfg
2006; 29(3): 184–190.
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