
RESEARCH REPORT

Data Analysis of Heavy Haul 
Locomotive Wheel-sets’ Running 

Surface Wear at Malmbanan

Jing Lin

ISSN 1402-1528  
ISBN 978-91-7439-898-4 (tryckt)
ISBN 978-91-7439-899-1 (pdf)

Luleå University of Technology 2014

Department of Civil, Environmental and Natural Resources Engineering
Division of Operation and Maintenance Engineering

Luleå Railway Research Centre

Jing Lin   D
ata A

nalysis of H
eavy H

aul Locom
otive W

heel-sets’ R
unning S

urface W
ear at M

alm
b

anan



 



 
Järnvägstekniskt centrum, Luleå tekniska universitet 

Besöksadress: Laboratorievägen, Porsön, Luleå. Postadress: S-971 87 Luleå 
 Telefon: 0920-49 10 00, Fax: 0920-49 19 35 
 Hemsida: http://www.jvtc.ltu.se  

 

 

Data Analysis of Heavy Haul 
Locomotive Wheel-sets’ Running 

Surface Wear at Malmbanan 

 

 

 
 

JVTC Projectnr 274 
 
 
 
 

Jing (Janet) Lin 
 
 
 

Division of Operation and Maintenance Engineering 
JVTC - Luleå Railway Research Centre 

 
 

      

 
 

       

 
 

LTU 2014:05 



2 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 Printed by Luleå University of Technology, Graphic Production 2014    
 
ISSN 1402-1528  
ISBN 978-91-7439-898-4 (print)  
ISBN 978-91-7439-899-1 (pdf)
 
Luleå 2014 
 
www.ltu.se  
 



 

 
 
 

i Summary 

Summary 

The research presented in this report was carried out at the Division of Operation and Maintenance 

Engineering at Luleå University of Technology between 2013 and 2014. It is a continuous study of 

“JVTC project 2012-2013: Using Integrated Reliability Analysis to Optimise Maintenance Strategies”. 

In this research, both an integrated procedure for Bayesian reliability inference using Markov Chain 

Monte Carlo (MCMC) and other traditional statistics theories (incl., reliability analysis, degradation 

analysis, Accelerated Life Tests (ALT), Design of Experiments (DOE)) are applied to a number of 

case studies using heavy haul locomotive wheel-sets’ running surface wear data from Iron Ore Line 

(Malmbanan), Sweden. The research explores the impact of the locomotive wheel-sets’ installed 

position (incl. positions of the installed locomotive, bogie, axel.) on their service lifetime and attempts 

to predict the reliability related characteristics. Results from this research will support locomotive 

wheels’ maintenance strategies using data analysis of wheels’ running surface wear (Chapter 2).  

Data used in this research span January 2010 to May 2013. Data analysis is carried out in two parts. In 

the first part (Chapter 3), corresponding to previous research, the data are collected from two specific 

locomotives at Malmbanan. The accompanying case study features reliability analysis using both 

classical and Bayesian semi-parametric frameworks to explore the impact of a locomotive wheel’s 

position on its service lifetime and to predict its other reliability characteristics. Results are used to 

illustrate how the wheel-sets’ running surface wear data can be modelled and analysed using classical 

and Bayesian approaches to flexibly determine their reliability. In the second part (Chapter 4), a 

holistic study is developed by analysing group data from 26 locomotives and 57 bogies at Malmbanan. 

In this part, data analysis is carried out from both the locomotives and bogies’ perspective. The results 

show that Malmbanan should consider the wheel-sets’ data not only from locomotives’ but also from 

bogies’ point of view. Next, wheel-sets’ running surface wear data from a group of 16 bogies are 

studied as a whole. More holistic results are drawn from both degradation analysis and wear rate 

analysis, including the following: for the studied group, a linear degradation path is more suitable; 

following the linear degradation, the best life distribution is a 3-parameter Weibull distribution, and 

the second is lognormal; comparing the wearing data of the wheel-sets’ running surfaces (including 

total wear rate, natural wear rate, re-profiling wear rate, the ratio of re-profiling and natural wear) is an 

effective way to optimise maintenance strategies; finally, more natural wear occurs for the wheels 

installed in axel 1 and axel 3, supportive evidence for other related studies at Malmbanan.  

Finally, the report makes some recommendations for future research into locomotive wheel-sets’ 

running surface wear data analysis and suggests maintenance strategies for Malmbanan (Chapters 5 & 

6). 
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1 1 Introduction 

1 Introduction 

This section presents the background, data description, and objectives and scope of this research. 

1.1 Background 

The service life of a train wheel can be significantly reduced due to failure or damage, leading to 

excessive cost and accelerated deterioration, a point which has received considerable attention in 

recent literature (Lin, 2013). In order to monitor the performance of wheel-sets and make replacements 

in a timely fashion, the railway industry uses both preventive and predictive maintenance (Palo, 2013). 

By predicting the wear (Johansson & Andersson, 2005; Braghin et al., 2006; Tassini et al., 2010), 

fatigue (Bernasconi et al., 2005; Liu, et al., 2008), tribological aspects (Clayton, 1996), and failures 

(Yang & Letourneau, 2005), the industry can design strategies for different types of preventive 

maintenance (re-profiling, lubrication, etc.) for various periods (days, months, seasons, running 

distance, etc.).  Software dedicated to predicting wear rate has also been proposed (Pombo et al., 

2010). Finally, condition monitoring data have been studied with a view to increasing the wheel-sets’ 

lifetime (Skarlatos et al., 2004; Donato et al., 2006; Stratman et al., 2007; Palo, 2012).  

One common preventive maintenance strategy (used in the case study) is re-profiling wheel-sets after 

they run a certain distance. Re-profiling affects the wheel-set’s diameter; once the diameter is reduced 

to a pre-specified length, the wheel-set is replaced by a new one. Seeking to optimise this maintenance 

strategy, some researchers have examined wheel-sets’ degradation data (i.e., the wheel-sets’ running 

surface wear data used in this research) to determine wheel reliability and failure distribution. 

Furthermore, in previous studies, some researchers have noticed that the wheel-sets’ different installed 

positions could influence the results. To avoid the potential influence of wheel location, Freitas et al. 

(2009, 2010) only consider those on the left side of a specified axle and on certain specified cars, 

arguing that “the degradation of a given wheel might be associated with its position on a given car”. 

Yang and Letourneau (2005) suggest that certain attributes, including a wheel’s installed position 

(right or left), might influence its wear rate. Palo et al. (2012) conclude that “different wheel positions 

in a bogie show significantly different force signatures,” but they do not provide case studies. 

To solve the combined problem of small data samples and incomplete datasets whilst simultaneously 

considering the influence of several covariates, Lin (2013) has explored the influence of locomotive 

wheel-sets’ positioning on reliability using Bayesian parametric models. The results indicate that the 

particular bogie in which the wheel-set is mounted has more influence on its lifetime than does the 

axle or side it is on. Related studies were supported by Luleå Railway Research Centre 

(Järnvägstekniskt Centrum (JVTC), Sweden) and Swedish Transport Administration (Trafikverket) 

between 2012 and 2013 in the project titled “Using Integrated Reliability Analysis to Optimise 

Maintenance Strategies” (corresponding report and published paper appear in Appendix A). As a 

continuous study, in this research, both the integrated procedure for Bayesian reliability inference 

using Markov Chain Monte Carlo (MCMC, (Congdon, 2001 & 2003)) and other traditional statistical 

theories (incl., reliability analysis, degradation analysis, Accelerated Life Tests (ALT), Design of 



 

 
 
 

2 Data Analysis of Heavy Haul Locomotive Wheel-sets’ Running Surface Wear at Malmbanan 
 

Experiments (DOE)) are applied to a number of case studies using heavy haul locomotive wheel-sets’ 

running surface wear data from Iron Ore Line (Malmbanan), Sweden. The research continuously 

explores the impact of a locomotive wheel-set’s installed position on its service lifetime and attempts 

to predict its reliability related characteristics. Results from this research aim to support maintenance 

strategies by analysing the data from the wheels’ running surface wear. 

The data analysis is carried out in two parts. In the first part, corresponding to previous research, data 

are collected from two specific locomotives at Malmbanan. The corresponding case study undertakes a 

reliability analysis using both classical and Bayesian semi-parametric frameworks to explore the 

impact of a locomotive wheel’s position on its service lifetime and to predict its other reliability 

characteristics. Results are used to illustrate how the wheel-sets’ running surface wear data can be 

modelled and analysed using classical and Bayesian approaches to flexibly determine their reliability. 

In the second part, a holistic study is developed by analysing group data from 26 locomotives and 57 

bogies at Malmbanan. In this part, data analysis is carried out from both the locomotives and the 

bogies’ perspective. The results suggest that Malmbanan should consider the wheel-sets’ data from 

both the locomotives’ and the bogies’ point of view. Next, wheel-sets’ running surface wear data from 

a group of 16 bogies’ are studied as a whole. More holistic results are drawn from both degradation 

and wear rate analysis. The report concludes by proposing some recommendations for future research 

into locomotive wheel-sets’ running surface wear data analysis and suggesting some maintenance 

strategies  for Malmbanan. 

 

1.2 Description of Data 

In this project, all case studies come from Sweden’s Iron Ore Line (Malmbanan). The data come from 

the heavy haul cargo trains’ locomotive wheel-sets and were collected by LKAB\MTAB from January 

2010 to May 2013. This section gives background information on the Iron Ore Line (Malmbanan). It 

also introduces the locomotive wheel-sets’ running surface wear data (degradation data) and the re-

profiling parameters for the wheel-sets being studied. 

1.2.1 Iron Ore Line (Malmbanan) 

The Iron Ore Line (Malmbanan) is the only existing heavy haul line in Europe; it stretches 473 

kilometres and has been in operation since 1903. As Fig.1.1 shows, it is mainly used to transport iron 

ore and pellets from the mines in Kiruna (also Malmberget, close to Kiruna,  in Sweden) to Narvik 

Harbour (Norway) in the northwest and Luleå Harbour (Sweden) in the southeast. The track section on 

the Swedish side is owned by the Swedish government and managed by Trafikverket (Swedish 

Transport Administration), while the iron ore freight trains are owned and managed by the freight 

operator (LKAB/MTAB). Each freight train consists of two IORE locomotives accompanied by 68 

wagons with a maximum length of 750 metres and a total train weight of 8500 metric tonnes. The 

trains operate in harsh conditions, including snow in the winter and extreme temperatures ranging 

from - 40 °C to + 25 °C. Because carrying iron ore results in high axle loads and there is a high 

demand for a constant flow of ore/pellets, the track and wagons must be monitored and maintained on 
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a regular basis. The condition of the locomotive wheel profile is one of the most important aspects to 

consider. 

 
 

Fig.1.1 Geographical location of Iron Ore Line (Malmbanan) from Luleå to Narvik 

1.2.2 Running Surface Wear Data and Re-profiling Parameters  

This study uses running surface wear data on selected heavy haul cargo trains collected from January 

2010 to May 2013.  

 

 Fig.1.2 Wheel positions specified in this study 

For each locomotive, see Fig.1.2, there are two bogies (incl., Bogie I, Bogie II); and each bogie 

contains three wheel sets. The installed position of a wheel on a particular locomotive is specified by 

the bogie number (I, II-number of bogies on the locomotive), an axel number (1, 2, 3-number of axels 

for each bogie) and the position of the axle (right or left) where each wheel is mounted. 
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The diameter of a new locomotive wheel in this study is around 1250 mm. Following the current 

maintenance strategy, a wheel’s diameter is measured after it runs a certain distance. If it is reduced to 

1150 mm, the wheel-set is replaced by a new one. Otherwise, it is re-profiled (see Fig.1.3). Therefore, 

in this study, a threshold level for failure, denoted as 0l , is defined as 100 mm ( 0l = 1250 mm -1150 

mm). The wheel-set’s failure condition is assumed to be reached if the diameter reaches 0l . The dataset  

includes the diameters of all locomotive wheels at a given inspection time, the total running distances 

corresponding to their “mean time between re-profiling”, and the wheels’ bill of material (BOM) data, 

from which we can determine their positions.  

 

                   

   Fig.1.3 Locomotive wheel-sets undergoing on-site re-profiling  

 

The measurement tool is SIEMENS SINUMERIK (see Fig.1.4). During the re-profiling process, the 

re-profiling parameters include but are not limited to: 1) the diameters of the wheels; 2) the flange 

thickness; 3) the radial run-out; 4) the lateral run-out. As indicated by Lin (2013), the first parameter is 

the most important indicator for re-profiling decision making. Hence, the running surface wear data 

(recorded as diameters in the on-site re-profiling system) are the main parameters adopted for study. 

 

              

   

 Fig.1.4 Re-profiling equipment 

1.3 Objectives and Scope of Work 

As a continuous study of “JVTC project 2012-2013: Using Integrated Reliability Analysis to Optimise 

Maintenance Strategies”, this research explores the impact of a locomotive wheel-set’s installed 

position (incl. positions of the installed locomotive, bogie, axel.) on its service lifetime and attempts to 
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predict its reliability related characteristics. Results from this project will support the locomotive 

wheel-sets’ maintenance strategies through data analysis of wheel-sets’ running surface wear.   

In this research, data span January 2010 to May 2013. The approach and methodology are presented in 

Section 2. The integrated procedure for Bayesian reliability inference using MCMC and other 

traditional statistical theories (incl., reliability analysis, degradation analysis, Accelerated Life Tests 

(ALT), Design of Experiments (DOE)) are applied to a number of case studies using locomotive 

wheel-sets’ running surface wear data from Iron Ore Line (Malmbanan), Sweden; these are presented 

in Section 3.  Section 4 provides a holistic study, developed by analysing group data from 26 

locomotives and 57 bogies at Malmbanan. Finally, conclusions and some recommendations appear in 

Chapter 5 and Chapter 6, respectively. 
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2 Approach and Methodology 

This section discusses the research approach and methodology. 

As shown in Fig. 2.1, the background of this research is the study of “JVTC project 2012-2013: Using 

Integrated Reliability Analysis to Optimise Maintenance Strategies”. Some updated publications 

appear in Appendix A, including an integrated procedure and analysis with Bayesian parametric 

models, Bayesian semi-parametric models, and Frailties models.  

 

Fig.2.1. Research Approach and Methodology 

As a continuous study, this research is carried out in two parts. In the first part (Section 3), the data are 

collected from two specific locomotives. The accompanying case study undertakes a reliability study 

using both classical and Bayesian semi-parametric frameworks to explore the impact of a locomotive 

wheel-set’s position on its service lifetime and to predict its other reliability characteristics. Results are 

used to illustrate how a wheel-set’s running surface wear data can be modelled and analysed using 

classical and Bayesian approaches to flexibly determine reliability. Both traditional statistical theories 

(reliability analysis, degradation analysis, Accelerated Life Tests (ALT), Design of Experiments 
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(DOE), etc.) and Bayesian statistics using MCMC methodologies are used. The integrated Bayesian 

analysis framework adopted here is developed by Lin (2013); see Fig.2.2. 

 

 
Fig.2.2 An Integrated Procedure for Bayesian Reliability Inference via MCMC 

 

In the second part (Section 4), a holistic study is developed by analysing group data from 26 

locomotives and 57 bogies at Malmbanan. Data analysis is carried out from both the locomotives and 

the bogies’ perspective. The results show that Malmbanan should consider the wheel-sets’ data from 

both points of view. Next, the wheel-sets’ running surface wear data from a group of 16 bogies are 

analysed as a whole. The procedure is shown in Fig. 2.3; reliability analysis, degradation analysis, 

lifetime analysis, as well as a comparison study on wear rate are applied. Further details appear in 

Appendix B and Appendix C.  
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Fig.2.3. Procedure for holistic study  

Section 3 and Section 4 provide the results and discussion, along with some results from previous 

study, with research conclusions and recommendations found in Section 5 and Section 6, respectively.  
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3 Comparison Analysis with Classical and Bayesian 
Approaches  

As mentioned earlier, the data analysis is carried out in two parts. In this section, as in a previous study 

(Lin, 2013), the data are collected from two specific locomotives.   

The section performs a reliability study using both classical and Bayesian semi-parametric frameworks 

to explore the impact of the locomotive wheel-set’s position on its service lifetime and to predict its 

other reliability characteristics. The goal is to illustrate how a wheel-set’s degradation data can be 

modelled and analysed using both classical and Bayesian approaches in order to flexibly determine 

reliability. 

The remainder of the section is organised as follows. Section 3.1 describes the dataset for the case 

study of the wheel-sets on two locomotives in a heavy haul cargo train from Malmbanan, using both 

Exponential and Power degradation assumptions. Section 3.2 presents the models and results using a 

classical approach. In this approach, both Accelerated Life Tests (ALT) and Design of Experiments 

(DOE) technology are used to determine how each critical factor, i.e., locomotive or bogie, affects the 

prediction of performance. Section 3.3 presents the piecewise constant hazard regression model with 

gamma frailties. In the proposed model, a discrete-time martingale process is considered as a prior 

process for the baseline hazard rate. The section adopts a MCMC computational scheme and suggests 

maintenance strategies for optimisation. Finally, Section 3.4 compares Classical and Bayesian 

approaches.   

 

3.1 Data for Comparison Analysis 

This section presents the running surface wear data (degradation data), degradation path, and the 

lifetime data of the locomotive wheels. These data are used in Section 3.2 and Section 3.3. 

3.1.1 Degradation Data 

The data were collected at Malmbanan from January 2010 to May 2012 (see Table 3.1, Table 3.2). We 

use the running surfaces wearing data (degradation data) from two heavy haul cargo trains’ 

locomotives (denoted as Locomotive 1 and Locomotive 2). Correspondingly, there are two studied 

groups, and 2n . For each locomotive, see Figure 1.2, there are two bogies (Bogie I, Bogie II), and 

each bogie has three wheel-sets, making a total of 12 wheels for each locomotive. 

As noted above, the diameter of a new locomotive wheel is about 1250 mm and a wheel’s diameter is 

measured after running a certain distance. If it is reduced to 1150 mm, the wheel is replaced by a new 

one. Otherwise, it is re-profiled or other maintenance strategies are implemented. Therefore, a 

threshold level for failure, denoted as 0l , is defined as 100 mm ( 0l = 1250 mm -1150 mm). The wheel’s 

failure condition is assumed to be reached if the diameter reaches 0l . The complete dataset  includes 



 

 
 
 

12 Data Analysis of Heavy Haul Locomotive Wheel-sets’ Running Surface Wear at Malmbanan 
 

the diameters of all locomotive wheel-sets at a given inspection time, the total running distances 

corresponding to their “time to be maintained (re-profiled or replaced)”, and the wheel-sets’ bill of 

material (BOM) data, from which we can determine their positions.  

Table 3.1 and Table 3.2 present the degradation data for the wheel-sets of Locomotive 1 and 

Locomotive 2, respectively.  

Table.3.1 Degradation Data of Locomotive 1 

Distance 
(kilometres) 

Degradation(mm) 

Bogie I Bogie II 

1 2 3 4 5 6 7 8 9 10 11 12 

106613 13.08 13.19 12.11 12.12 12.99 13.04 13.02 13.01 11.94 12.01 13.01 13.16 

144207 27.11 27.07 23.01 22.86 25.03 25.09 24.09 24.12 23.95 24.06 26.56 26.55 

191468 38.95 38.94 39.11 39.06 39.15 39.17 35.95 35.95 35.88 35.93 36.24 36.04 

272697 70.6 70.53 69.94 69.87 69.9 69.9 79.7 79.73 79.73 79.74 79.59 79.76 

309426 85.05 85.07 85.09 85.12 85.26 85.27 / / / / 82.87 83.77 

 

Table.3.2 Degradation Data of Locomotive 2 

Distance 
(kilometres) 

Degradation(mm) 

Bogie I Bogie II 

1 2 3 4 5 6 7 8 9 10 11 12 

33366 10.96 11.02 10.45 10.54 10.11 10.04 8.25 8.12 / / 10.06 10.03

87721 24.59 24.56 25.11 25.3 26.68 26.65 28.02 27.99 27.92 28.36 28.05 28.07

161346 44.93 45.16 44.59 44.56 44.63 44.62 45.94 45.89 45.96 45.91 45.98 45.96

204349 75.35 75.12 74.94 75.02 74.7 74.68 80.66 80.76 80.52 80.68 80.87 80.91

 

3.1.2 Degradation Path and Lifetime Data 

From the dataset (see Table 3.1, Table 3.2), we can obtain 3 to 5 measurements of the diameter of each 

wheel during its lifetime. By connecting these measurements, we can determine a degradation trend. 

The first step of the analysis is the selection of the degradation model. In their analyses of train wheel-

sets, most studies (Freitas et al. 2009, 2010; Lin et al. 2013) assume a linear degradation path. In our 

study, we plot the degradation data for the locomotive wheel-sets using Exponential degradation, 

Power degradation, Logaritmic degradation, Gompertz degradation, and the linear degradation path in 

Weibull++.  

The results (see Figure 3.1 – 3.4) show that the better choices are Gompertz degradation, Exponential 

degradation, and Power degradation, but the Gompertz model needs a total of more than 5 points to 

converge. The selection should be based on physics of failure (wear or fatigue). In our study, based on 

the type of physics of failures associated with wear and fatigue, we select Exponential and Power 

degradation models.  
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Figure 3.1 Degradation path analyses 

An Exponential model is described by the following function (3.1) and the Power model by the 

function (3.2) from Nelson (1990): 

Exponential: 

xaeby                                                                                                                                       (3.1) 

Power:  

caxby                                                                                                                                               (3.2) 

where y represents the performance (here, the diameter of the wheels), x represents time (here, the 

running distance of the wheels), and a , b and c  are model parameters to be solved. Figures 3.2, 3.3, 

and 3.4 show the results of the analysis using a Power function, an Exponential function and the 

Gompertz degradation path, respectively, for a critical degradation level (threshold level 0l ) of 100mm. 

 

 

Figure 3.2 Degradation with Power function 
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Figure 3.3 Degradation with Exponential function 

 

 

Figure 3.4 Degradation with Gompertz function 

Following the above discussion, a wheel’s failure condition is assumed to be reached if the diameter 

reaches 0l . We adopt the both the Exponential degradation path and Power degradation path for all 

wheel-sets and set 0l = y . The lifetimes for these wheels are now easily determined and are shown in 

Table 3.3.  
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Note: As discussed by Lin et al. (2013), some lifetime data can be viewed as right-censored (denoted 

by asterisk in Table 2.3); Section 4 of this paper considers such data.  
 

Table.3.3 Statistics on lifetime data 

No. 
Positions Lifetime** 

No. 
Positions Lifetime** 

Loco. Bogie Exponential Power Loco. Bogie Exponential Power 

1 1 I 316 334 13 2 I 230 316 

2 1 I 316 334 14 2 I 230 317 

3 1 I 314 331 15 2 I 230 312 

4 1 I 314 331 16 2 I 230 312 

5 1 I 316 334 17 2 I 229 305 

6 1 I 316 334 18 2 I 228 305 

7 1 II 291* 314* 19 2 II 218 269 

8 1 II 291* 314* 20 2 II 217 268 

9 1 II 289* 310* 21 2 II 237 273 

10 1 II 289* 310* 22 2 II 237 274 

11 1 II 312 329 23 2 II 222 284 

12 1 II 312 328 24 2 II 222 284 
                       * Right-censored data; **1000 km. 

 
 

3.2 Classical Approach 

Estimating the failure-time distribution or long-term performance of components of high reliability 

products is particularly difficult. Many modern products are designed to operate without failure for 

years, tens of years, or more. Thus, few units will fail or significantly degrade in a test of practical 

length at normal use conditions. For this reason, Accelerated Life Tests (ALT) are widely used in 

manufacturing industries, particularly to obtain timely information on the reliability of product 

components and materials. Generally, information from tests at high stress levels of accelerating 

variables (e.g., use rate, temperature, voltage, or pressure) is extrapolated through a physically 

reasonable statistical model (e.g. Eiren, Arrhenius, Inverse Power Law), to obtain estimates of life or 

long-term performance at lower, normal use conditions. ALT results are used in design-for-reliability 

processes to assess or demonstrate component and subsystem reliability, certify components, detect 

failure modes, compare different manufacturers, and so forth. ALTs have become increasingly 

important because of rapidly changing technologies, more complicated products with more 

components, and higher customer expectations of better reliability. 

In some reliability studies, it is possible to measure degradation directly over time, either continuously 

or at specific points in time. In most reliability testing applications, degradation data, if available, can 

have important practical advantages (Levin, 2003): particularly in applications where few or no 

failures are expected, they can provide considerably more reliability information than would be 

available from traditional censored failure-time data. Accelerated tests are commonly used to obtain 

reliability test information more quickly. Direct observation of the degradation process (e.g., tire wear) 
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may allow direct modelling of the failure-causing mechanism, providing more credible and precise 

reliability estimates and a valid basis for extrapolation. Modelling degradation of performance output 

of a component or subsystem (e.g., voltage or power) may be useful, but modelling could be more 

complicated or difficult because the output may be affected, albeit unknowingly, by more than one 

physical/chemical failure-causing process. 

In this section, we analyse the degradation data with ALT, considering lifetime data from both the 

Exponential degradation path and the Power degradation path. The analysis uses a General Log Linear 

(GLL) life stress relationship. Then, using the Exponential degradation model, we perform a two 

factor full factorial Design of Experiments analysis. We conclude with a discussion of the findings. 

3.2.1 Accelerated Life Testing (ALT) 

Once we obtain the projected failures values for each degradation model, see Table 3.3, we carry out 

an accelerated life analysis using the locomotive and bogie as stress factors.  The analysis is performed 

using a General Log Linear (GLL) life stress relationship (3.3) with a Weibull probability function 

(Meeker and Escobar, 1998). 



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                                                                                                                                (3.3) 

This model can be expressed as an Exponential model, expressing life as a function of the stress 

vector X , where X  is a vector of n stressors (Meeker and Escobar, 1998). 

For this analysis, we consider stress applications of the model and a logarithmic transformation on X , 

such that )ln(VX  where V  is the specific stress. This transformation generates an inverse power 

model life stress relationship, as shown below for each stress factor (Meeker and Escobar, 1998): 

nKV
VL

1
)(                                                                                                                                           (3.4)  

The results of the life data analysis and reliability curves appear in Figure 3.1 and Figure 3.2.  

As shown in Figures 3.5 and 3.6, the Exponential function for this set of data yields more conservative 

results and is in line with the field observation when life data are compared at different stress levels as 

previously defined.  Figure 3.6 shows reliability values for Locomotive 2 and Bogie 2; both sides have 

95% confidence level. 
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Figure 3.5 Life Data Analysis 

 

 

Figure 3.6 Reliability Curve for Degradation Type 

3.2.2 Design of Experiments Analysis (DOE) 

Using the exponential degradation model, we perform a two factor full factorial Design of 

Experiments analysis and find that the locomotive, bogie and interaction are critical factors (see Figure 

3.7). 
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Figure 3.7 Factors Pareto Chart 

A review of the life stress relationship between the factors indicates the locomotive is a higher 

contributor to the degradation of the system than the bogie (Figures 3.8 and 3.9). 
 

 

 
Figure 3.8 Life vs. Stress 
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Figure 3.9 Contour Plot 

 

3.2.3 Classical Approach: Results and Conclusions 

 
 

 
 

Figure 3.10 Reliability Curves at each condition 

 

Based on the analysis, we reach the following conclusions. Independent of the Degradation model, the 

locomotive factor is the more critical stressor, as shown in the data above. Failure modes obtained 
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from the data are similar for the locomotive and for the bogies. Of the two stress conditions, level 2 is 

the highest for the locomotive and bogie, as shown in Figure 3.9.  

Figures 3.9 and 3.10 show the reliability values at each operating distance. Figure 3.10 indicates that 

Locomotive2 has the highest degradation per distance travelled. 
 

3.3 Bayesian Semi-parametric Approach 

Most reliability studies are implemented under the assumption that individual lifetimes are 

independent identically distributed (i.i.d). At times, however, Cox proportional hazard (CPH) models 

cannot be used because of the dependence of data within a group. For instance, because they have the 

same operating conditions, the wheel-sets mounted on a particular locomotive may be dependent. In a 

different context, some data may come from multiple records which actually belong to the wheel-sets 

installed in the same position but on another locomotive. Modelling dependence in multivariate 

survival data has received considerable attention in cases where the datasets may come from subjects 

of the same group which are related to each other (Sahu et al., 1997; Aslanidou et al., 1998). A key 

development in modelling such data is to consider frailty models, in which the data are conditionally 

independent. When frailties are considered, the dependence within subgroups can be considered an 

unknown and unobservable risk factor (or explanatory variable) of the hazard function. In this section, 

we consider a gamma shared frailty, first discussed by Clayton (1978) and later developed by Sahu et 

al. (1997), to explore the unobserved covariates’ influence on the wheel-sets on the same locomotive. 

In addition, since semi-parametric Bayesian methods offer a more general modelling strategy that 

contains fewer assumptions (Ibrahim et al., 2001), we adopt the piecewise constant hazard model to 

establish the distribution of the locomotive wheel-sets’ lifetime. The applied hazard function is 

sometimes referred to as a piecewise exponential model; it is convenient because it can accommodate 

various shapes of the baseline hazard over the intervals.  

In this section, first, we propose a Bayesian semi-parametric framework, incorporating the piecewise 

constant hazard regression model, a gamma shared frailty model, the discrete-dime martingale process 

for the baseline hazard rate, and a MCMC computation scheme. Second, we present the case study’s 

results from the Bayesian semi-parametric model. We conclude with a discussion of the results. 

Note that after considering the results from Section 3.1 and Section 3.2, we adopt the results found by 

using the Exponential degradation path. 

3.3.1 Piecewise Constant Hazard Regression Model 

The piecewise constant hazard model is one of the most convenient and popular semi-parametric 

models in survival analysis. We begin by denoting the thj individual in the thi group as having 

lifetime ijt , where ni ,,1  and imj ,,1 . Divide the time axis into intervals  ksss 210 , 

where ijk ts  , thereby obtaining k intervals ],,0( 1s ],,( 21 ss  ],( 1 kk ss  . Suppose the thj individual in the 
thi group has a constant baseline hazard kijth )(0 as in the thk interval, where kij It  ],( 1 kk ss  . Then, 

the hazard rate function for the piecewise constant hazard model can be written as 
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kijkij Itth  ,)(0                                                                           (3.5) 

Equation (3.5) is sometimes referred to as a piecewise exponential model; it can accommodate various 

shapes of the baseline hazard over the intervals.  

Studies of how to divide the time axis into k intervals include the following. Kalbfleisch & Prentice 

(1973) suggest that the selection of intervals should be made independently of the data; this has been 

adopted in the construction of the traditional lifetime table. Breslow (1974) suggests using distinct 

failure times as end points of each interval. Sahu et al. (1997), Aslanidou et al. (1998), and Ibrahim et 

al. (2001) discuss the robustness of choosing different k . In this section, we discuss the choice of k  in 

the case study. 

Suppose '
1 ),( piii xx x denotes the covariate vector for the individuals in the thi group, and β  is the 

regression parameter. Therefore, the regression model with the piecewise constant hazard rate can be 

written as 
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Its corresponding probability density function )( ijtf , cumulative distribution function )( ijtF , reliability 

function )( ijtR , together with the cumulative hazard rate )( ijt   can now be achieved (Ibrahim et al., 

2001).  
 

3.3.2 Gamma Shared Frailty Model  

Frailty models were first considered by Clayton (1978) to handle multivariate survival data. In these 

models, the event times are conditionally independent according to a given frailty factor, which is an 

individual random effect. As discussed by Sahu et al. (1997), the models formulate different 

variabilities and come from two distinct sources. The first source is natural variability, explained by 

the hazard function; the second is variability common to individuals of the same group or variability 

common to several events of an individual, explained by the frailty.  

Assume the hazard function for the thj individual in the thi group is 

)exp()()( 0 βx'
ij iij thth                                                                                                                      (3.7) 

In equation (3.7), i represents the frailty parameter for the thi group. By denoting )exp( ii   , the 

equation can be written as 

)exp()()( 0 βx'
ijiij thth                                                                                                   (3.8) 

Equation (3.7) is an additive frailty model, and equation (3.8) is a multiplicative frailty model. In both 

equations, i and i  are shared by the individuals in the same group; they are thus referred to as 

shared-frailty models and are actually extensions of the CPH model. 

To this point, discussions of frailty models have focused on the choices of: 1) the form of the baseline 

hazard function; 2) the form of the frailty’s distribution. Representative studies related to the former 
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include the gamma process for the accumulated hazard function (Clayton, 1991; Sinha, 1993), the 

Weibull baseline hazard rate (Sahu et al., 1997), and the piecewise constant hazard rate (Aslanidou et 

al., 1998) which is adopted in this report due to its flexibility. Some researchers have examined finite 

mean frailty distributions, including gamma distribution (Clayton et al., 1978; Clayton & Cuzick, 

1985), lognormal distribution (McGilchrist, 1991),  and the like; others have studied non-parameter 

methods, including the inverse Gaussion frailty distribution (Hougaard, 1986), the power variance 

function for frailty (Crowder, 1989), the positive stable frailty distribution (Hougaard, 1995; Qiou et 

al.,1999), the Dirichlet process frailty model (Pennell & Dunson, 2006) and the Levy process frailty 

model (Hakon et al., 2003). In this report, we consider the gamma shared frailty model, the most 

popular model for frailty. 

From equation (3.8), suppose the frailty parameters i are independent and identically distributed (i.i.d) 

for each group, and follow a gamma distribution, denoted by ),( 11  Ga . In this case, the probability 

density function can be written as 
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                                                            (3.9) 

In equation (3.9), the mean value of i  is 1, where  is the unknown variance of i s. Greater values of 

 signify a closer positive relationship between the subjects of the same group as well as greater 

heterogeneity among groups. Furthermore, as i >1, the failures for the individuals in the 

corresponding group will appear earlier than if i =1; in other words, as i <1, their predicted lifetimes 

will be greater than those found in the independent models.  

Suppose '
21 ),,,( n ω ; then  
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3.3.3 Discrete-time Martingale Process for Baseline Hazard Rate 

Based on the above discussion (equations (3.6), (3.8), and (3.9)), the piecewise constant hazard model 

with gamma shared frailties can be written as: 
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In equation (3.11), i ~ ),( 11  Ga .  

To analyse the baseline hazard rate k , a common choice is to construct an independent incremental 

process, e.g., the Gamma process, the Beta process, or the Dirichlet process. However, as pointed out 

by Ibrahim et al. (2001), in many applications, prior information is often available on the smoothness 

of the hazard rather than the actual baseline hazard itself. In addition, given the same covariates, the 

ratio of marginal hazards at the nearby time-points is approximately equal to the ratio of the baseline 

hazards at these points. In such situations, correlated prior processes for the baseline hazard can be 
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more suitable. Such models, for instance, the discrete-time martingale process for the baseline hazard 

rate k , are discussed by Sahu et al. (1997) and Aslanidou et al. (1998).  

Given ( 121 ,,, k  ), we specify that 

),(~,,,
1

121
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k

k
kkk Ga
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                                                                                                              (3.12)  

Let 10  .  In equation (3.12), the parameter k represents the smoothness for the prior information. 

If 0k , then k and 1k are independent. As k , the baseline hazard is the same in the nearby 

intervals. In addition, the Martingale k ’s expected value at any time point is the same, and 

1121 ),,,(   kkkE  

                                                                               
(3.13) 

                        
Equation (3.13) shows that given specified historical information ( 121 ,,, k  ), the expected value of 

k is fixed.  

3.3.4 Bayesian Semi-parametric Model using MCMC  

In reliability analysis, the lifetime data are usually incomplete, and only a portion of the individual 

lifetimes are known. Right-censored data are often called Type I censoring, and the corresponding 

likelihood construction problem has been extensively studied in the literature (Lawless, 1982; Klein & 

Moeschberger, 1997). Suppose the thj individual in the thi group has lifetime ijT and censoring time ijL . 

The observed lifetime ),min( ijijij LTt  ; therefore, the exact lifetime ijT will be observed only if ijij LT  . 

In addition, the lifetime data involving right censoring can be represented by n pairs of random 

variables ),( ijijt  , where 1ij if ijij LT  and 0ij if ijij LT  . This means that ij  indicates whether 

lifetime ijT is censored or not. The likelihood function is deduced as 


 


n

i

m

j
ijij

i
ijij tRtftL

1 1

1
)()]([)(

                                                                                                             (3.14) 

In the above piecewise constant hazard model, we denote ijg as 11),(  
ijijij gggij Isst and the model’s 

dataset as )( υX,t,ω,D . Following equations (3.11) ~ (3.14), the complete likelihood function 

)( DL λβ,  for the individuals for the thi group in k  intervals can be written as 
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Let )(  denote the prior or posterior distributions for the parameters. Following equations (3.10) and 

(3.15), the joint posterior distribution )( Di λ,β, for gamma frailties i can be written as  
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Equation (3.16) shows that the full conditional density of each i  is a gamma distribution. Similarly, 

the full conditional density of 1 andβ can be given by 
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Let });,{( kijk stjiR  denote the risk set at ks and kkk RRD  1 ; let kd denote the failure individuals in 

the interval kI . Let )( )( k
k

λ denote the conditional prior distribution for ( ,1 ,2 J, ) without k . 

We therefore derive ),,( 1 Dk
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3.3.5 Parameter Configuration 

In this model, the installed positions of the wheel-sets on a particular locomotive are specified by the 

bogie number and are defined as covariates x . The covariates’ coefficients are represented byβ . More 

specifically, 1x represents the wheel-sets mounted in Bogie I, while 2x represents the wheel-sets 

mounted in Bogie II. 1 is the coefficient, and 0 is defined as natural variability. 

It is clear that a very small k will make the model nonparametric. However, if k  is too small, estimates 

of the baseline hazard rate will be unstable, and if k is too large, a poor model fit could result (Ibrahim 

et al., 2001). In our study, determining the degradation path requires us to make 3 to 5 measurements 

for each locomotive wheel; in other words, the lifetime data are based on the data acquired at 3 to 5 

different inspections. Following the reasoning above, we divide the time axis into 6 sections 

piecewise. In our case study, no predicted lifetime exceeds 360,000 kilometres. Therefore, k =6, and 

each interval is equal to 60,000km. We get 6 intervals (0, 60 000], (60 000, 120 00]… (300 000, 

360 000].  

For convenience, we let )exp( kk b , and vague prior distributions are adopted here as the following: 

 Gamma frailty prior: ),(~ 11   Gai  

 Normal prior distribution: ),(~ 1 kk bNb  

 Normal prior distribution: ),0(~1 Nb  

 Gamma prior distribution:  ~ Ga  (0.0001, 0.0001) 

 Normal prior distribution: 0  ~ N (0.0, 0.001) 

 Normal prior distribution:  1 ~ N (0.0, 0.001) 

At this point, the MCMC calculations are implemented with the software WinBUGS (Spiegelhalter et 

al., 2003). A burn-in of 10,001 samples is used, with an additional 10,000 Gibbs samples.  
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3.3.6 Bayesian Approach: Results and Conclusions 

Following the convergence diagnostics (incl., checking dynamic traces in Markov chains, time series, 

and comparing the Monte Carlo (MC) error with Standard Deviation (SD); see Spiegelhalter et al., 

2003), we consider the following posterior distribution summaries (Table.3.4): the parameters’ 

posterior distribution mean, SD, MC error, and the 95% highest posterior distribution density (HPD) 

interval.  

Table.3.4 Posterior Distribution Summaries 

Parameter mean SD MC error 95% HPD Interval 

0  -12.08 4.184 0.4019 (-22.17,-4.802) 

1  0.04517 0.4889 0.02025 (-0.948,0.9669) 

  0.1857 0.1667 0.008398 (0.008616,0.6128) 

1  0.5246 0.2878 0.01401 (0.06489,1.064) 

2  1.473 0.5807 0.01596 (0.6917,2.948) 

1b  -0.3764 4.113 0.1619 (-8.316,5.933) 

2b  0.3571 4.95 0.2429 (-8.836,8.181) 

3b  2.272 4.61 0.3029 (-6.4,10.81) 

4b  7.301 4.106 0.3938 (0.2106,17.13) 

5b  5.223 4.225 0.3281 (-3.166,13.41) 

6b  10.03 3.993 0.3802 (2.72,19.3) 

In Table.3.4, 01  means that wheels mounted in the first bogie (as 1x ) have a shorter lifetime than 

those in the second (as 2x ). However, the influence could possibly be reduced as more data are 

obtained in the future, because the 95% HPD interval includes 0 point. In addition, the small value of 

1  ( 0.045) indicates that, in this case, heterogeneity among wheels installed in different bogies exists 

but is not significant. Because 5.0 , heterogeneity among the locomotives does exist but is not 

significant either. However, the frailty factors obviously exist. For instance, 11   suggests the 

predicted lifetimes for those wheels mounted on the first locomotive are longer than if the frailties are 

not considered; meanwhile, 12  indicates the wheels mounted on the second locomotive have a 

shorter lifetime than if the frailties are not considered. 

Baseline hazard rate statistics based on the above results ( 61 ,, bb  ) are shown in Table 3.5 and Figure 

3.11. At the fourth piecewise interval, the wheels’ baseline hazard rate increases dramatically 

(1481.78). It is interesting that at the fifth piecewise interval, it decreases (185.49) but increases again 

after the sixth piecewise (22697.27). 

Table.3.5 Baseline Hazard Rate Statistics 

Piecewise  
Intervals( 1000km) 

1 2 3 4 5 6 

(0, 60] (60, 120] (120, 180] (180, 240] (240, 300] (300, 360] 

k  0.069 1.43 9.7 1481.78 185.49 22697.27 



 

 
 
 

26 Data Analysis of Heavy Haul Locomotive Wheel-sets’ Running Surface Wear at Malmbanan 
 

 

Fig.3.11 Plot of Baseline Hazard Rate 

By considering the random effects resulting from the natural variability (explained by covariates) and 

from the unobserved random effects within the same group (explained by frailties), we can determine 

other reliability characteristics of the lifetime distribution. The statistics on reliability )(tR and 

cumulative hazard rate )(t for the two wheels mounted in different bogies are listed in Table 3.6, 

Figure 3.12 and Figure 3.13. 

Table.3.6 Reliability and Cumulative hazard statistics 

Distance 
(1000 km) 

Reliability )(tR  Cumulative hazard )(t  

Locomotive 1 Locomotive 2 Locomotive 1 Locomotive 2 

Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II 

60 0.999872 0.999866 0.99964 0.999624 5.57E-05 5.82E-05 0.000156 0.000164 

120 0.999466 0.999442 0.998502 0.998433 0.000232 0.000243 0.000651 0.000681 

180 0.99458 0.994331 0.984857 0.984162 0.00236 0.002469 0.006627 0.006933 

240 0.330536 0.314054 0.044672 0.038695 0.480781 0.502996 1.349964 1.41234 

300 0.840949 0.834245 0.614843 0.601179 0.07523 0.078707 0.211236 0.220996 

360 8.98E-12 2.77E-12 9.61E-32 3.54E-33 11.0466 11.55701 31.01723 32.4504 

For Locomotive 1 and Locomotive 2, Figure 3.12 and Figure 3.13 show the plots of reliability and 

cumulative hazard, respectively.  
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Fig.3.12 Plot of the Reliabilities for Locomotive 1 and Locomotive 2 

 

    
 

Fig.3.13 Plot of the Cumulative hazard for Locomotive 1 and Locomotive 2 

It should be pointed that both Figure 3.12 and Figure 3.13 show change points in the wheels. For 

example, the reliability declines sharply at the fourth and the sixth piecewise interval. Meanwhile, 

after the fifth and the sixth piecewise interval, the cumulative hazard increases dramatically. 

Table.3.7 Re-profiling Statistics 

No. 
Piecewise Intervals* 1 2 3 4 5 6 

Re-profiling  (0, 60] (60, 120] (120, 180] (180, 240] (240, 300] (300, 360] 

1 Locomotive 1 0 106 144 191 272 309 

2 1D  106 38 47 81 37 51 

3 Locomotive 2 33 87 161 204 0 0 

4 2D  54 74 43 189 / / 
                    *  1000km 
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The above results can be applied to maintenance optimisation, including wheel-sets’ re-profiling 

optimisation, lifetime prediction and replacement optimisation, and preventive maintenance 

optimisation.  

Before continuing, in Table 3.7, we list the re-profiling times (running distance/kilometres) for 

Locomotive 1 and Locomotive 2, in row 1 and 3, respectively.  We can see the difference of the re-

profiling polices: for Locomotive 1, re-profiling is done, at most, 5 times; the wheel-sets on 

Locomotive 2 are re-profiled, at most, 4 times. For greater clarification, we list them under the k  

intervals. For instance, for Locomotive 1, the first re-profiling was performed at 106 000 kilometres, 

which belongs to the second piecewise interval. We can denote D  as the gap from the “current re-

profiling” to the next one in each piecewise interval (rows 2 and 4). For instance, for Locomotive 1, 

the first re-profiling is at 106 000 kilometres, and the next at 144 000 kilometres, creating a gap of 

38 000 kilometres (=144 000 – 106 000). For the last re-profiling, we use the boundary of 360 000 

kilometres as the “next re-profiling”. By comparing D , we can see the running distances of the 

wheels between profiling. If we do not consider the first interval’s statistics (normally, the new wheel 

is treated as running in a good condition), the largest values appear at the fourth interval for each 

locomotive, consistent with the findings from Figures 3.11 and 3.12. Therefore, the re-profiling time 

will influence the wheel-sets’ degradation rate. If the re-profiling was performed earlier than 272 000 

kilometres for Locomotive 1, the degradation rate could be reduced, as could the baseline hazard rate. 

Meanwhile, the reliability in piecewise interval 4 could be increased. This conclusion could also 

explain why at the fifth interval, the baseline hazard rate decreased while the reliability increased. As 

discussed above, we recommend improving the re-profiling polices by considering the re-profiling 

intervals.   

Now consider the seasonal influence (temperature). In this case, the re-profiling at the fourth 

piecewise was done between March 2010 and September 2010. Although the degradation rate should 

be lower than if it were winter, if the time between re-profiling is too long, the baseline hazard rate 

could increase dramatically and the reliability could decrease. Again, we recommend improving the 

re-profiling polices by considering the re-profiling intervals, although the seasonal influence should 

also be included. 

It is interesting to see that in Figures 3.11, 3.12, and 3.13, the change points appearing in the fourth 

piecewise interval (from 180 000 to 360 000 kilometres) indicate that after running about 180 000 

kilometres, the locomotive wheel has a high risk of failure. Although the D  is sometimes larger (for 

instance, 1D equals 106 at the first interval), it is more stable before the fourth piecewise interval. 

Rolling contact fatigue (RCF) problems could start at the fourth interval (after 180 000 kilometres). 

Therefore, we recognize the whole period as two stages: one is stable (before 180 000 kilometres), and 

the second is unstable. Special attention should be paid if the wheel-sets have run longer than these 

change points (reaching an unstable stage). In addition, because re-profiling may leave cracks over 

time and reduce the wheel-set’s lifetime, we recommend cracks be checked after re-profiling to 

improve the lifetime. 

Although the difference is not that obvious, the wheel-sets installed in the first bogie should be given 

more attention during maintenance. Especially when the wheels are re-profiled, they should be 

checked, starting with the first bogie to avoid duplication of effort. Note that in the case study, the 

wheel-sets’ inspecting sequences are random; this means that the first checked wheel-set could belong 
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in the second bogie. After the second checked wheel-set is lathed or re-profiled, if the diameter is less 

than predicted, the first checked wheel-set might need to be lathed or re-profiled again. Therefore, 

starting with the wheel-set installed in the first bogie could improve maintenance effectiveness.  

Determining reliability characteristics distributed over the wheel-sets’ lifetime (see Table 4.3) could 

be used to optimise replacement strategies. The results could also support related predictions for 

spares inventory. 

Last but not least, the different frailties between locomotives could be caused by the different 

operating environments (e.g., climate, topography, and track geometry), configuration of the 

suspension, status of the bogies or spring systems, operating speeds, the applied loads and human 

influences (such as drivers’ operations, maintenance policies and lathe operators). Specific operating 

conditions should be considered when designing maintenance strategies because even if the 

locomotives and wheel-set types are the same, the lifetimes and operating performance could differ.  
 

3.4 Comparison of Classical and Bayesian Approaches 

For the sake of comparison, Figure 3.8 presents the reliability statistics using the classical model and 

an Exponential degradation path, as discussed in Section 3.  

Table.3.8 Reliability statistics using classical model 

Distance 
(1000 km) 

Reliability )(tR  

Locomotive 1 Locomotive 2 

Bogie I Bogie II Bogie I Bogie II 

60 1.000000000000 1.000000000000 1.000000000000 1.000000000000 

120 1.000000000000 1.000000000000 1.000000000000 1.000000000000 

180 0.999999999500 0.999999999100 0.999949988500 0.999912782200 

240 0.999963596200 0.999936513100 0.032469287900 0.002535299700 

300 0.814489640600 0.699174645800 0.000000000000 0.000000000000 

360 0.000000000000 0.000000000000 0.000000000000 0.000000000000 

The results of the two approaches show that Locomotive 2 has lower reliability than Locomotive 1. In 

addition, for both Locomotive 1 and Locomotive 2, before the fourth piecewise interval, the reliability 

statistics from the classical approach have a higher value; after the fifth piecewise interval, the 

reliability statistics from the Bayesian approach have a higher value. 
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4 Holistic Study of Running Surface Wear Data 

This section presents a holistic study of heavy haul locomotive wheel-sets’ running surface wear at 

Malmbanan. Data on the wheel-sets come from 26 locomotives and 57 bogies and were compiled 

between January 2010 and May 2013.  

By analysing the wheel-sets’ maintenance and re-profiling data, and comparing both from the 

locomotives’ and bogies’ perspectives, this section will determine the context based reliability 

characteristics of the wheel-sets. The goal is to find the best way to perform a reliability analysis using 

running surface wear data.  

First, as shown in Fig. 2.2, an important background of the problem – Mean Time Between Re-

profiling - is described in Section 4.1. Second, data analysis is carried out in Section 4.2 from both 

locomotives and bogies’ perspective by comparing the work orders’ history. The results show 

Malmbanan should to consider the wheel-sets’ data not only from the locomotives’ but also from the 

bogies’ point of view. In Section 4.3, the wheel-sets’ running surface wear data from a group of 16 

bogies’ are studied as a whole, applying reliability analysis, degradation analysis, lifetime analysis, as 

well as comparison studies of wear rates. Finally, Section 4.4. offers results and discussions deriving 

from this holistic study. 
 

4.1 Mean Time Between Re-profiling 

 
Fig.4.1 Statistics on mean time between re-profiling for 26 locomotives’ wheel-sets at Malmbanan 

(Data Source: this figure is supplied by LKAB/MTAB) 
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In the current research, 26 locomotives at Malmbanan are numbered consecutively, starting at 101 and 

ending at 126 (see Fig.4.1). As mentioned earlier, re-profiling wheel-sets after they run a certain 

distance is a common preventive maintenance strategy. Re-profiling affects the wheel’s diameter; once 

the diameter is reduced to a pre-specified length (a threshold level for failure, denoted as 0l , is defined 

as 100 mm ( 0l = 1250 mm -1150 mm) in this study), the wheel is replaced by a new one.  

Fig.4.1, supplied by LKAB/MTAB, contains statistics taken from data on re-profiling (see Fig.1.4). 

For the wheel-sets of the 26 locomotives, statistics show that, from October 2010 to May 2013, the 

longest mean time between the wheels’ two re-profilings (named Mean Time Between Re-profiling 

here) was around 60 000 kilometres (locomotive 124). Meanwhile, the shortest was about 31 000 

kilometres (locomotive 111). Fig. 4.1 also presents the mean value in the red column (marked as 

“Med” in Swedish).  

To determine the main factors influencing these differences and, thus, to facilitate maintenance 

strategy decision making, LKAB/ MTAB has organized regular on-site workshops, inviting experts 

from academia and industry, from Norway, Sweden, Germany, etc. This research presented in this 

report is also intended to help determine the root causes since 2011. Results of the previous study (Lin, 

2013) show that the large difference can be attributed to the non-heterogeneous nature of the wheel-

sets; each differs according to its installed position, operating conditions, re-profiling characteristics, 

etc. However, this and the former study are based on specific locomotives’ wheel-sets.  

Given the above, a better understanding of the re-profiling data based on a group of wheel-sets by 

bogies (not only by locomotives as in the previous study) could be necessary to better explain the 

behaviour of the difference in wheel-sets’ Mean Time Between Re-profiling.  

 

4.2 Comparison of Locomotives and Bogies using Work Orders 

This section explains why the bogie-grouped strategy is selected for further study (why the wheel-sets 

are recommended to be studied not only from locomotive’s perspective, but also from the bogies’.) in 

this research.  As mentioned above, the data adopted by this research is from work orders history, 

including both the maintenance and re-profiling system, from January 2010 to May 2013.  
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4.2.1 Comparison of Total Re-profiling Statistics 

 
Fig.4.2 Statistics on amount of re-profiling for 26 locomotives’ wheel-sets 

In Fig.4.2, the horizontal axle represents the 26 locomotives (from 101 to 126) operating on the Iron 

Ore Line (Malmbanan). The longitudinal axle of Fig. 4.2 represents the total amount of re-profiling 

(mm) of the 6 installed wheel-sets on each locomotive. For instance, as seen in Fig.4.2, during the 

period in question (January 2010 to May 2013), the wheel-sets installed in locomotive 111 have the 

most re-profiling, a total of 2108.12 mm (red column); the wheel-sets installed in locomotive 115 have 

the lowest amount of re-profiling, a total of 747.62 mm (green column); the average for the 26 

locomotives’ wheels is 1158.96 mm (last column, orange). 

 

 
Fig.4.3 Statistics on amount of re-profiling for 57 bogies’ wheel-sets* 

(*: the bogies’ number can be found in Table 4.1; the corresponding amount of re-profiling appears in 
Table 4.2) 
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Similarly, in Fig.4.3, the horizontal axle represents the 57 bogies (corresponding bogie number in re-

profiling system appears in Table 4.1) operating on the Iron Ore Line (Malmbanan). The longitudinal 

axle of Fig. 4.3 represents the total amount of re-profiling (mm) of the 3 installed wheel-sets (6 

wheels) on each bogie. As shown in Fig.4.3 and Table 4.2, during the period in question (January 2010 

to May 2013), the wheel-sets installed in bogie 169074 (first column; the first bogie in Fig 4.3 has the 

bogie number 169074 for re-profiling) have the most re-profiling, a total of 1623.12 mm (red column); 

the wheel-sets installed in bogie 195908 have the least re-profiling, a total of 310 mm (green column); 

the average amount for the 57 bogies is 528.65 mm (last column, orange). 

Table. 4.1 Bogies’ number list  

No. Bogie No. No. Bogie No. No. Bogie No. No. Bogie No. No. Bogie No. 

1 169074 13 169087 25 169099 37 169111 49 195908 

2 169075 14 169088 26 169100 38 169112 50 195909 

3 169076 15 169089 27 169101 39 170256 51 195910 

4 169077 16 169090 28 169102 40 170257 52 195911 

5 169079 17 169091 29 169103 41 195900 53 195912 

6 169080 18 169092 30 169104 42 195901 54 195913 

7 169081 19 169093 31 169105 43 195902 55 195914 

8 169082 20 169094 32 169106 44 195903 56 195915 

9 169083 21 169095 33 169107 45 195904 57 198618 

10 169084 22 169096 34 169108 46 195905 - - 

11 169085 23 169097 35 169109 47 195906 - - 

12 169086 24 169098 36 169110 48 195907 - - 

Table. 4.2 Statistics on amount of re-profiling for 57 bogies’ wheel-sets 

No. 
Re-profiling 

(mm) 
No. 

Re-profiling 
(mm) 

No. 
Re-profiling 

(mm) 
No. 

Re-profiling 
(mm) 

No. 
Re-profiling 

(mm) 

1 1 623.12 13 381.68 25 517.58 37 621.55 49 310 

2 336.99 14 723.37 26 432.34 38 721.7 50 502.64 

3 406.29 15 869.72 27 559.08 39 441.23 51 529.53 

4 429.75 16 819.36 28 531.75 40 512.69 52 496.79 

5 492.57 17 496.24 29 379.94 41 455.01 53 469.75 

6 428.94 18 417.18 30 422.06 42 332.23 54 471.78 

7 328.96 19 585.53 31 521.27 43 498.09 55 391.39 

8 567.16 20 589.02 32 873.6 44 340.95 56 503.22 

9 356.49 21 549.18 33 487.09 45 453.67 57 432.02 

10 394.89 22 643.72 34 539.24 46 368.36 Mean 528.65 

11 539.15 23 565.32 35 540.99 47 503.57 - - 

12 523.33 24 860.91 36 664.13 48 378.82 - - 

Although there are total 26 locomotives and each has 2 bogies, the 2 installed bogies could be any 

from the total 57 bogies.   
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Comparing Fig. 3.3 with Fig.4.2, we see the gaps between wheels installed in bogies are larger than 

those installed in locomotives.  
 

 
Fig.4.4 Statistics on re-profiling times for 26 locomotives’ wheel-sets 

Fig.4.4 and Fig. 4.5 show the statistics of the re-profiling times, from the locomotives’ perspective and 

bogies’ perspective, respectively. For instance, as seen in Fig.4.4, during the period in question 

(January 2010 to May 2013), the wheel-sets installed in locomotive 102 have the most re-profiling, a 

total of 8 times (red column); the wheel-sets installed in locomotive 121 have the least re-profiling, 

only 1 time (green column). Meanwhile, from the bogies’ perspective, the wheel-sets installed in 

locomotive 169105 (No.31) have the most re-profiling (red), a total of 4 times; the wheel-sets installed 

in locomotives 195901 and 195908 (No.42 and No.49 respectively) have no re-profiling. 
 

 
Fig.4.5 Statistics on re-profiling times for 57 bogies’ wheel-sets 

4.2.2 Comparison of Re-profiling History: four examples  

As discussed in Section 4.2.1 (see Fig.4.3), the wheel-sets installed in locomotive 111 have the highest 

amount of re-profiling, 2108.12 mm; the wheel-sets installed in locomotive 115 have the lowest 

amount of re-profiling, 747.62 mm. Similarly, the wheel-sets installed in bogie 169074 have the 

highest amount of re-profiling, 1623.12 mm; at the same time, the wheel-sets installed in bogie 

195908 have the lowest amount of re-profiling, 310 mm. To compare gaps in the work orders, four 

examples (from one wheel installed in Locomotive 111, 115, Bogie 169074 and 195908, respectively) 

are illustrated here.  

Note: Appendix B has all statistics on bogies.  
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Example I: one wheel installed in Locomotive 111 

The first example is taken from a wheel installed in Locomotive 111, bogie I, Axel 1, on the right side 

(see Fig. 4.6).  

In Fig.4.6, the horizontal axle represents the corresponding wheel’s re-profiling time (the re-profiled 

date); the longitudinal axle represents the diameters of the wheel before (red) and after (blue) each re-

profiling. For instance, in August 2012, before re-profiling, the wheel’s diameter is 1249.97mm; after 

re-profiling, the diameter is 1240.52 mm. It is also obvious that a new wheel is installed in this 

position around August 2012, since the original value is increasing and close to 1250 mm.    

However, as marked in a green circle , in April 2010, there is an abnormal re-profiling history for this 

wheel. Before re-profiling, the diameter is close to 1195.77mm; after re-profiling, it is only 888.6 mm. 

This means that 307.17 mm was removed during one re-profiling, which equals 15% of the total re-

profiling amount from 2010 to 2013. It has been suggested to LKAB/MTAB that it follow such kinds 

of abnormal history to discover the reasons.  

 

 
 

Fig.4.6 Re-profiling history by locomotive  
(wheel installed in locomotive 111, bogie I, axel 1 on right side) 

 
 

Table.4.3 Re-profiling history by locomotive  
(wheel installed in locomotive 111, bogie I, axel 1 on right side) 

 
Time Bogie No. Count Time Bogie No. Count 

2010-04 169074 2 2012-08 169094 1 

2010-09 169074 1 2012-10 169094 1 

2011-10 169106 1 2012-12 169094 1 

2012-01 169106 1 2013-03 169094 1 

2012-04 169106 1 2013-06 169094 1 

 

In this example, three bogies are installed in locomotive 111, bogie 1 (see Table.4.3). The three bogies 

are numbered 169074, 169106, and 169094. In Table.4.3, the re-profiling times are also listed. For 

instance, in April 2014, a wheel was installed in bogie 169074 and was re-profiled twice at this time. 

We suggested that LKAB/MTAB follow such kinds of abnormal history to look for the reasons.  
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Example II: one wheel installed in Locomotive 115 

As in Example I, the second example is taken from 1 wheel installed in Locomotive 115, bogie I, Axel 

1 on the right side (see Fig. 4.7).  In Fig.4.7, it is obvious that a new wheel is installed in this position 

around June 2012.    

It is interesting to note in Fig. 4.7 (marked in a green circle) and Table.4.4, that from February 2010 to 

April 2013, 5 bogies are installed in locomotive 115, bogie 1, an abnormal observation in this case; we 

have suggested that LKAB/MTAB follow up on this.  

 
 

 
 

Fig.4.7 Re-profiling history by locomotive  
(wheel installed in locomotive 115, bogie I, axel 1 on the right side) 

 
 

Table.4.4 Re-profiling history by locomotive  
(wheel installed in locomotive 115, bogie I, axel 1 on the right side) 

 
Time Bogie No. Count Time Bogie No. Count 

2010-02 169092 1 2012-10 169076 1 

2010-12 169081 1 2013-01 169076 1 

2011-03 169081 1 2013-04 169076 1 

2011-09 169095 1 2013-04 169104 1 

2012-06 169076 1 - - - 

 
 
 
Example III: one wheel installed in Bogie 169074 

The third example is taken from one wheel installed in Bogie 169074, Axel 1 on the right side (Fig. 

4.8).  As shown in Fig.4.8, a new wheel is installed in this position around August 2011.  It is 

interesting to see that for this wheel, there are two abnormal values in April 2010 and November 2012. 

For those two abnormal histories, the total amount removed is 630.21 mm, which equals 39% of the 

total re-profiling amount. It is also unusual that two abnormal histories are recorded for the same 

bogie. We suggested that LKAB/MTAB follow such kinds of abnormal history to determine the 

reasons.  
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Fig.4.8 Re-profiling history by bogie  
(wheel installed in bogie 169074, axel 1 on the right side) 

 

Table.4.5 indicates that during the period from April 2010 to March 2013, this bogie was installed in 

three different locomotives.  
 

Table.4.5 Re-profiling history by bogie  
(wheel installed in bogie 169074, axel 1 on the right side) 

 
Time Locomotive No. Count Time Locomotive No. Count 

2010-04 111 2 2012-05 108 1 

2010-09 111 1 2012-11 108 1 

2011-08 108 1 2013-03 103 1 

2011-12 108 1 - - - 

 
 
 
Example IV: one wheel installed in Bogie 195908 

The fourth example is taken from 1 wheel installed in Bogie 195908, Axel 1 on the right side (see Fig. 

4.9).  Fig.4.9 shows the whole lifetime of this wheel, with no abnormal data.  

Table.4.6 shows that during the period from December 2010 to November 2012, this bogie was 

installed in the same locomotive (122) and re-profiled once each time.  
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Fig.4.9 Re-profiling history by bogie  
(wheel installed in bogie 195908, axel 1 on the right side) 

 

 
Table.4.6 Re-profiling history by bogie  

(wheel installed in bogie 195908, axel 1 on the right side) 
 

Time Locomotive No. Count Time Locomotive No. Count 

2010-12 122 1 2012-01 122 1 

2011-04 122 1 2012-07 122 1 

2011-10 122 1 2012-11 122 1 

 

Note: For other researchers’ reference, Appendix B has all statistics from the bogies’ perspectives.  

 

4.2.3 Re-profiling Statistics by Locomotives 

Section 4.2.2 provides four examples of the wheels’ re-profiling history, following the results given in 

section 4.2.1, to illustrate the wheel-sets’ re-profiling performance, going from the “best” to the 

“worst” Mean Time Between Re-profiling statistics. 

First, we supply several other normal examples of the re-profiling statistics for the wheels, inspected 

by re-profiling date (time) and operating distance (kilometres) separately. Second, we note some 

abnormal points in these statistics to reveal the performance of the work order data from the 

locomotives’ perspective.  
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Fig.4.10 Re-profiling history by locomotive and re-profiling date 
(wheel installed in locomotive 118, bogie I, axel 1 on the right side) 

 
 

Table.4.7 Re-profiling history by locomotive and re-profiling date 
(wheel installed in locomotive 118, bogie I, axel 1 on the right side) 

 
Time Bogie No. Count Time Bogie No. Count 

2010-03 169093 1 2011-08 169093 1 

2010-09 169093 1 2012-09 169097 1 

2010-12 169093 1 2013-05 169097 1 

2011-04 169093 1 - - - 

 

As illustrated in Section 4.2.2, this example is taken from 1 wheel installed in Locomotive 118, bogie 

I, Axel 1 on the right side (see Fig. 4.10).  In Fig.4.10, the horizontal axle represents the corresponding 

wheel’s re-profiling time (date); the longitudinal axle represents the diameters of the wheel before and 

after each re-profiling (diameters in mm). In this example, two bogies (169093 and 169097) are 

changed to be installed in locomotive 118 (the first date is marked in a purple circlein Fig.4.10), bogie 

1 (see Table.4.7). In Table.4.7, the re-profiling times are also listed. 

In the statistics for the re-profiling history, we found that the wheels installed in the same bogie have 

quite similar behaviour in their re-profiling performance. Therefore, we include another example in 

Fig.4.11 and Table 4.8 as a comparison. This wheel is also installed in locomotive 118, but in bogie II.  
 
 

 
Fig.4.11 Re-profiling history by locomotive and re-profiling date 

(wheel installed in locomotive 118, bogie II, axel 1 on the right side) 
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Table.4.8 Re-profiling history by locomotive and re-profiling date 

(wheel installed in locomotive 118, bogie II, Axel 1 on the right side) 
 

Time Bogie No. Count Time Bogie No. Count 

2010-03 170257 1 2011-04 169112 1 

2010-09 169112 1 2011-08 169112 1 

2010-12 169112 1 2012-09 195903 1 

2011-02 169112 1 2013-05 195905 1 

In this example, four bogies are installed in Locomotive 118, bogie II (also seen in Table.4.7). 

In Fig.4.10, see that even for wheels installed in the same locomotive, behaviour can differ due to 

different installed bogies.  

Below we provide the statistics on operating distance (in kilometres, the horizontal axle) for the 

wheels installed in the same position in Locomotive 118.  

 

 
 

Fig.4.12 Re-profiling history by locomotive and operating distance 
(wheel installed in locomotive 118, bogie I, axel 1 on the right side) 

 
 

Table.4.9 Re-profiling history by locomotive and operating distance 
(wheel installed in locomotive 118, bogie I, axel 1 on the right side) 

 
 

Kilometres Bogie No. Count Kilometres Bogie No. Count 

874,500 169093 1 1,077,863 169093 1 

931,318 169093 1 1,131,104 169097 1 

973,989 169093 1 1,202,787 169097 1 

1,021,372 169093 1 - - - 
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Fig.4.13 Re-profiling history by locomotive and operating distance 
(wheel installed in locomotive 118, bogie II, axel 1 on the right side) 

 
 

Table.4.10 Re-profiling history by locomotive and operating distance 
(wheel installed in locomotive 118, bogie II, axel 1 on the right side) 

 
Kilometres Bogie No. Count Kilometres Bogie No. Count 

383,257 195905 1 949,849 169112 1 

396,072 195903 1 971,858 169112 1 

765,852 170257 1 997,232 169112 1 

907,178 169112 1 1,053,723 169112 1 

Comparing Fig.4.10 – Fig.4.13, we see the figures for the wheel’s re-profiling history are different 

from those for the wheels installed in Bogie II (marked in a purple circle in Fig.4.13). The record of 

the operating distance found in Malmbanan’ s work orders is a global record for the bogie, not for the 

specified wheel-sets. This finding is important for our future study.   

We now list some abnormal statistics, as shown below.  

 

Example I: Complex situations to be considered 

 
 

Fig.4.14 Re-profiling history by locomotive and re-profiling date 
(wheel installed in locomotive 102, bogie I, axel 1 on the right side) 

In Fig.4.14, the bogie (each circle in purple or green represents different bogie numbers) was changed 

too many times (more than 5 times). In addition, even during the same re-profiling, the bogie could 

have been changed. As shown in Fig.4.14, the green circle represents the changed bogie for the same 
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re-profiling, which means the re-profiling statistics at this point actually involve more than two bogies. 

The purple circles represent the same bogie. In October 2011, the bogie was changed to the purple 

one, but in January 2011, it was changed back to the green one. Clearly, the situation can be complex.  

 

Example II: Is smaller before re-profiling than after 

In some cases, the re-profiling history in work orders show that the diameter of the wheel before re-

profiling is smaller than the diameter of the wheel after re-profiling. In Fig.4.15, the green circle 

represents an abnormal value found in the work orders. These data result from incorrect recording of 

work orders, something to be studied in future research.  

 
Fig.4.15 Re-profiling history by locomotive and re-profiling date 

(wheel installed in locomotive 104, bogie I, axel 1 on the right side) 

 

Example III: Different behaviour as recorded by re-profiling date and operating distance  

 
 

Fig.4.16 Re-profiling history by locomotive and re-profiling date 
(wheel installed in locomotive 113, bogie I, axel 1 on the right side) 
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Fig.4.17 Re-profiling history by locomotive and operating distance 
(wheel installed in locomotive 113, bogie I, axel 1 on the right side) 

As mentioned before, because the operating distance in the work order system represents a global 

record, the figures for re-profiling date and operating distance at the time of re-profiling could vary. 

Fig.4.16 and Fig.4.17 offer a comparison.  
 

4.2.4 Re-profiling Statistics by Bogies 

In this section, we review the abnormal points noted in Section 4.2.3. First, we provide several normal 

examples of the re-profiling statistics for the wheels, inspected by re-profiling date and operating 

distance, separately. Second, we note several abnormal points in these statistics to reveal the 

performance of the work order data from the bogie’s perspective.  

As in Section 4.2.3, the first example is taken from 1 wheel installed in bogie 169096, Axel 1 on the 

right side (Fig. 4.18).  In Fig.4.18, the horizontal axle represents the corresponding wheel’s re-

profiling time; the longitudinal axle represents the diameters of the wheel before and after each re-

profiling. In this example, three locomotives (101,119 and 111) are changed to be installed in bogie 

169096 (see Table.4.11 and the purple circle in Fig.4.18). In Table.4.11, the re-profiling times are also 

listed. 
  

 
Fig.4.18 Re-profiling history by bogie and re-profiling date 
(wheel installed in bogie 169096, axel 1 on the right side) 
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Table.4.11 Re-profiling history by bogie and re-profiling date 
(wheel installed in bogie 169096, axel 1 on the right side) 

 
 

Time Locomotive No. Count Time Locomotive No. Count 

2010-10 101 1 2012-08 111 1 

2011-03 101 1 2012-10 111 1 

2011-08 101 1 2012-12 111 1 

2011-10 101 1 2013-03 111 1 

2011-12 101 1 2013-06 111 1 

2012-03 119 1 - - - 

 

In the second example (bogie 169105), five locomotives (127,117,102,113,110) are changed for bogie 

169105 (see Table.4.12 and the purple circle in Fig.4.19).  
 

 
 

Fig.4.19 Re-profiling history by bogie and re-profiling date 
(wheel installed in bogie 169905, axel 1 on the right side) 

 
 

Table.4.12 Re-profiling history by bogie and re-profiling date 
(wheel installed in bogie 169905, axel 1 on the right side) 

 
Time Locomotive No. Count Time Locomotive No. Count 

2010-05 112 1 2011-12 117 1 

2010-12 117 1 2012-05 102 2 

2011-06 117 1 2012-12 113 1 

2011-10 117 1 2013-04 110 1 

 

Below we give the statistics by operating distance (in kilometres, the horizontal axle) for the wheels 

installed in the same position on bogie 169096 and 169105.  
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Fig.4.20 Re-profiling history by bogie and operating distance 
(wheel installed in bogie 169096, axel 1 on the right side) 

 
 

Table.4.13 Re-profiling history by bogie and operating distance 
(wheel installed in bogie 169096, axel 1 on the right side) 

 
 

Kilometres Locomotive No. Count Kilometres Locomotive No. Count 

838,124 101 1 1,050,320 111 1 

876,902 101 1 1,074,638 111 1 

933,531 101 1 1,099,287 111 1 

961,475 101 1 1,124,605 111 1 

979,405 101 1 1,150,019 111 1 

1,010,923 119 1 - - - 

 
 

 
 

Fig.4.21 Re-profiling history by bogie and operating distance 
(wheel installed in bogie 169905, axel 1 on the right side) 
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Table.4.14 Re-profiling history by bogie and operating distance 
(wheel installed in bogie 169905, axel 1 on the right side) 

 
Kilometres Locomotive No. Count Kilometres Locomotive No. Count 

346,897 112 1 1,048,280 117 1 

913,818 117 1 1,095,576 102 2 

986,641 117 1 1,153,385 113 1 

1,019,615 117 1 1,184,917 110 1 

 

In this section, we also list two abnormal statistics below.  

Example I: Abnormal gaps in the same bogie 

 

Fig.4.22 Re-profiling history by bogie and time 
(wheel installed in bogie 169074, axel 1 on the right side) 

 

For the wheel installed in bogie 169074, we find two abnormal gaps in “before” and “after” re-

profiling statistics. Actually, these two gaps appear as the wheel-set is installed in different 

locomotives. These two gaps represent almost 92.3% of the total amount of re-profiling, a large 

number. 

 

Example II: Is smaller before re-profiling than after  

We find some cases where the diameter of the wheel before re-profiling could be smaller than the 

diameter of the wheel after re-profiling (Fig.4.23). 
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Fig.4.23 Re-profiling history by bogie and time 
(wheel installed in bogie 169082, axel 1 on the right side) 

 
 

4.3 Studies focusing on Wheel-sets and Bogies 

This section presents the process and results for the bogie-grouped strategy.  

4.3.1 Selection of Bogies 

Looking into the statistics of the re-profiling history from the bogies’ perspective, we find one obvious 

discrepancy. Fig.4.18 shows that after March 2012, a new wheel-set was installed, but the re-profiling 

system did not record the diameter of the replaced wheel. This means we cannot get complete statistics 

for the wheel-set’s entire life. In other words, we don’t know if the wheel-set was replaced because the 

diameter was smaller than 1150mm, something necessary for the wheel’s lifetime analysis, or not. 

Therefore, we examine the work orders for all bogies as the wheel-sets are replaced (Fig.4.24).  
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Fig.4.24 Wheel-set replacement records 
 

Fig.4.24 shows the wheel-set replacement records for January 2010 to May 2013. The bogies are 

divided into several groups, shown in different colours. The largest two groups are shown in red and 

blue (also marked with purple rectangles on the left side); the bogies in the “red” group are numbered 

“169XXX”, and the bogies in the “blue” group are numbered “195XXX”. As we consider the reasons 

for the replacements, shown in the last two columns and a purple rectangle on the right side (one of the 

columns is “Orsak” in Swedish), we find that for the “red” group, the reasons for replacement are 

complex. Only some cite “low diameter”. Other reasons include “RCF” problems or “Others”. 

Meanwhile, in the “blue group”, most mention “low diameter”. Hence, in this group, we can assume 

that all wheel-sets are replaced because their diameters reach 1150 mm.  

For further study, we select a group of bogies numbered “195XXX”. There are 16 bogies in this group 

at Malmbanan.  

4.3.2 Data preparation 

 

 
 

Fig.4.25 Examples for data preparation (a) 
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Fig.4.26 Examples for data preparation (b) 
 

Figure 4.25 and Figure 4.26 give two examples of how the data are prepared in this study.  
 

 
 
 

Fig.4.27 Wear rate statistics (an example) 
 

Figure 4.25 shows the wheel installed in bogie 195911, Axle 1 and on the right side. For the first 

“complete” lifetime, it is installed in locomotive 124; for the second “incomplete” lifetime, it is 

installed in locomotive 122. The “incomplete” lifetime means the record is not completed.  For each 

selected lifecycle (marked with a purple rectangle), collected data include the operating history for 

each re-profiling piecewise, and the diameters’ changes at each re-profiling.  

Figure 4.26 shows the wheel installed bogie 195910, Axle 1 and on the right side. For this case, the 

second “complete” lifetime is selected. The number of re-profiling work orders is different between 

bogies: bogie 195911 has 5 and bogie 195910 has 6. We discover that the start diameters do not 

exactly equal 1250mm (marked in red circle). LKAB/MTAB says this is a system error. However, in 

our study, we follow the real values achieved from the above statistics. 

Following the above descriptions, we calculate the following wear rate (shown in Fig.4.27 and also in 

Lin (2013)):  

 Absolute kilometres = the current reported kilometres – the previous reported kilometres; 

 Re-profiling Amount = Diameters (before) - Diameters (after); 

 Natural Wear =  previous Diameters (after) –  current Diameters (before); 

 Total Wear = Re-profiling Amount + Natural Wear; 

 Re-profiling Amount % = Re-profiling Amount / Total Wear; 

 Natural Wear % = Natural Wear/ Total Wear; 

 Wear Rate_re-profiling = Re-profiling Amount / Absolute kilometres; 
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 Wear Rate_Natural = Natural Wear / Absolute kilometres; 

 Wear Rate_Total = Total Wear / Absolute kilometres; 

 Average of the total wear rate = the average of Wear Rate_Total. 

Considering the first re-profiling is implemented before the wheel-sets are used, the statistics show the 

first natural wear as 0 mm. The final statistics are shown in the figure marked in green.  

4.3.3 Reliability and Degradation Analysis 

The re-profiling statistics for bogie 195902 are abnormal; they only include 3 re-profilings during a 

whole lifetime; therefore, the data are not included.  

 

 
 

Fig.4.28 Examples for data preparation: bogie 195902 
 

From the above dataset, we can obtain 3 to 5 measurements of the diameter of each wheel during its 

lifetime. By connecting these measurements, we can determine a degradation trend.  

The first step of the analysis is the selection of the degradation model. In their analyses of train 

wheels, most studies (Freitas et al. 2009, 2010; Lin et al. 2013) assume a linear degradation path. In 

our study, we plot the degradation data for the locomotive wheels using Exponential degradation, 

Power degradation, Logaritmic degradation, and the linear degradation path in Weibull++. The 

Gompertz model needs a total of more than 5 points to converge; therefore, it was not considered here.  

The results (see Figure 4.29) show that the better choices are Linear degradation, Power degradation, 

and Exponential degradation. The selection should be based on physics of failure (wear or fatigue). In 

our study, we select the linear degradation model.  
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Fig. 4.29 Degradation path analyses 
 

 
 

Fig. 4.30 Degradation with Linear function 
 

 

Let the longitudinal axle represent the performance (here, the diameter of the wheels), and the 

horizontal axle represent time (here, the running distance of the wheels). Fig.4.30 shows the results of 

the analysis using a linear function, for a critical degradation level (threshold level 0l ) of 100mm. 

Following the above discussion, a wheel’s failure condition is assumed to be reached if the diameter 

reaches 0l . We adopt the linear degradation path for all wheels and set 0l = y . The lifetimes for these 

wheels are now easily determined and are shown in Fig. 4.31.  
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Fig. 4.31 Lifetime distribution 

The results (see Fig. 4.31) show that the better choices are 3-parameter Weibull and Log-normal 

distribution. The selection should be based on physics of failure (wear or fatigue). In our study, based 

on the type of physics of failures associated with wear and fatigue, we select the 3-parameter Weibull 

lifetime model. The corresponding parameters’ estimation appears in Fig. 4.23. 
 

 
Fig. 4.32 parameters for 3-parameter Weibull 

The probability density function (pdf) 3-parameter Weibull distribution is shown in equation (4.1):  
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where t is the failure time, 0 is the shape parameter, 0 is the scale parameter, and    
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Other reliability related characteristics could be obtained following equation (4.2). 

4.3.4 Comparison Studies on Running Surface Wear  

Following each wheel-set’s selected lifetime cycle, in this section, we compare various methods of 

determining running surface wear, including: total wear rate statistics (Fig.4.32), re-profiling statistics 
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(Fig.4.33), natural wear statistics (Fig.4.34), and the ratio statistics between natural and re-profiling 

wear rate (Fig.4.34). More details appear in Appendix C. 

As mentioned in Section 4.3.3, the re-profiling statistics for bogie 195902 are abnormal; therefore, 

Table 4,15 shows statistics with bogie 195902 included and excluded. For instance, if we consider the 

data from bogie 195902, the total wear rate is 0.3542 mm per thousand kilometres; we do not consider 

it, the wear rate is 0.3262 mm per thousand kilometres. In this research, we recommend excluding the 

data from bogie 195902. 
 

Table.4.15 Comparison Studies on Running Surfaces Wearing 
 

mm/1000  
kilometres 

Average Value Max Value Min Value 

Statistics 1 Statistics 2* Statistics 1 Statistics 2 Statistics 1 Statistics 2 

Total wear rate  0.3542 0.3262 0.785 0.4 0.236 0.236 

Re-profiling statistics 0.2425 0.2133 0.70 0.3 0.12 0.12 

Natural wear statistics 0.1117 0.1129 0.192 0.192 0.052 0.052 

Ratio (natural / re-
profiling) 

2.45 2.1 10.905 4.236 0.905 0.905 

(*: Statistics 2 represents the results without considering bogie 195902) 

 

 
  

Fig.4.32 Total wear rate statistics 

In Figs.4.32, 4.33, 4.34, and 4.35, the horizontal axle represents the different wheels installed in 

different bogies; the sequence follows Appendix C. The longitudinal axle represents the values. 

For example, in Fig.4.32, the first six statistics belong to the six wheels installed in bogie 195900. 

Their installed position (axel, side) is marked in Appendix C. The longitudinal axle shows the total 

wear rate. It is obvious that the largest values come from the 13th to 18th points, which belong to the 

wheel-sets installed in bogie 195902 with the largest value 0.785 mm/1000 kilometres. Meanwhile, if 

they are not considered, the largest value is only 0.4 mm/1000 kilometres. 
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Fig.4.33 Re-profiling statistics 

 

 

Fig.4.34 Natural wear statistics 

Similarly, in Fig.4.34, the largest values come from the 13th to 18th points, which also belong to the 

wheel-sets installed in bogie 195902, with the largest value 0.7 mm/1000 kilometres. Meanwhile, if 

they are not considered, the largest value is only 0.3 mm/1000 kilometres. 

When we consider the two results, i.e., including or not including the data from bogie 195902, we find 

the latter more accurate.  

However, in Fig.4.35, showing natural wear rates, the difference between considering bogie 195902 

and not considering it is less pronounced. The maximum value does not change. We conclude that the 

re-profiling frequency influences the re-profiling wear rate and the total wear rate of the wheel-sets, 

but its influence on natural wear rate is more limited. 
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The ratio between natural and re-profiling wear rate is also clearly influenced. In Fig.4.35, the 

maximum value comes from the bogie 195902 and is 10.905; if it is not considered, the maximum 

value is 4.236. At the same time, the average value decreases from 2.4 to 2.1.    

 

 

Fig.4.35 Ratio between natural and re-profiling wear rate 

If we consider the average statistics from the same point of view, we reach similar conclusions: the re-

profiling frequency will obviously influence the average re-profiling wear rate and the average total 

wear rate of the wheel-sets, as well the ratio between natural and re-profiling wear rate; however, its 

influence on average natural wear rate is more limited. 
 
 

Table.4.16 Comparison of total wear rate considering the installed axle 
 

Axle I II III 

Total wear rate 
Numbers 7 6 3 

Percentage 43.75% 37.50% 18.75% 

Natural wear rate 
Numbers 7 1 8 

Percentage 43.75% 6.25% 50% 

Re-profiling wear rate 
Numbers 2 12 2 

Percentage 12.50% 75% 12.50% 

Ratio 
Numbers 2 13 1 

Percentage 12.50% 81.25% 6,25% 
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As for the total wear rate, we recognize the wheel-sets with maximum values with installed axles (I, II, 

III). For example, for the total wear rate, the maximum values appear in axle I 7 times, 43.75% of the 

total statistics. For the ratio between natural and re-profiling wear rate, the maximum values appear in 

axle II 13 times, and 81.25% of the total statistics. 
 

From Table 4.16, we see more natural wear for axel 1 and 3. It is an interesting finding because it is 

consistent with other conclusions reached at LKAB/MTAB’s workshop.  

 

4.4 Results and Discussions of Holistic Study  

In this holistic study, data analysis is carried out from both the locomotives and the bogies’ 

perspective. The results show that Malmbanan should consider wheel-set data from both points of 

view.  

We study the data on wheel-sets’ running surface wear for a group of 16 bogies. We derive holistic 

results from both degradation analysis and wear rate analysis, including the following: first, for the 

group examined, a linear degradation path is more suitable; following linear degradation, the best life 

distribution is a 3-parameter Weibull distribution, and the next best is lognormal; second, comparing 

the wear data of the wheel-sets’ running surfaces (including total wear rate, natural wear rate, re-

profiling wear rate, the ratio of re-profiling and natural wear) is an effective way to optimise 

maintenance strategies; finally, more natural wear occurs for the wheels installed in axel 1 and axel 3, 

a finding that supports related studies at Malmbanan. 

In addition, there are some problems with data quality in the work orders.  
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5 Conclusions 

As a continuous study of “JVTC project 2012-2013: Using Integrated Reliability Analysis to Optimise 

Maintenance Strategies”, this research explores the impact of a locomotive wheel-set’s installed 

position (incl. positions of the installed locomotive, bogie, axel.) on its service lifetime and attempts to 

predict its reliability related characteristics. In this research, both an integrated procedure for Bayesian 

reliability inference using Markov Chain Monte Carlo (MCMC) and other traditional statistics theories 

(incl., reliability analysis, degradation analysis, Accelerated Life Tests (ALT), Design of Experiments 

(DOE)) are applied to a number of case studies using heavy haul locomotive wheel-sets’ running 

surface wear data from Iron Ore Line (Malmbanan), Sweden. From the discussion of the research 

questions and results, we reach the following conclusions. 

First, the proposed integrated procedure for Bayesian reliability inference using MCMC methods has 

built a full framework for related academic research and engineering applications to implement 

modern computational-based Bayesian approaches, especially for reliability inference.  

Second, other traditional statistical theories (incl., reliability analysis, degradation analysis, 

Accelerated Life Tests (ALT), Design of Experiments (DOE)) are useful tools for exploring the impact 

of the locomotive wheel-sets’ installed position (incl. positions of the installed locomotive, bogie, 

axel.) on their service lifetime and for attempting to predict the reliability related characteristics.  

For the above two points, more detailed conclusions and discussions can be found in Section 3 (3.2.3 

& 3.3.6). 

Third, the holistic study using data from 26 locomotives and 57 bogies at Malmbanan shows that 

Malmbanan should consider the wheel-set data not only from the locomotives’ but also from the 

bogies’ point of view. 

Fourth, for the studied group, a linear degradation path is more suitable; following the linear 

degradation, the best life distribution is a 3-parameter Weibull distribution, and the second best is 

lognormal; comparing the wear data of the wheel-sets’ running surfaces (including total wear rate, 

natural wear rate, re-profiling wear rate, the ratio of re-profiling and natural wear) is an effective way 

to optimise maintenance strategy decision making. 

Fifth, the results of the case studies show natural wear occurs for the wheels installed in axel 1 and 

axel 3; this supports findings in related studies at Malmbanan. 

Details on the above conclusions can be found in Section 4. 

In addition, the case studies’ results reveal that, the wheels’ lifetimes differ according to where they 

are installed on the locomotive. The differences could be influenced by such factors as the operating 

environment (e.g., climate, topography, track geometry), configuration of the suspension, status of the 

bogies and spring systems, operating speeds and applied loads, as well as human influences (drivers’ 

operations, maintenance policies, lathe operators etc.). 
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Last but not least, the approach studied in this report can be applied to cargo train wheel-sets or to 

other technical problems (e.g. other industries, other components). 
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6 Recommendations 

Based on the research conducted for this report, for the LKAB / MTAB research workshop, we have 

the following recommendations: 

 Results from this study should be considered for improving daily maintenance strategies.  

 Considering the abnormal data found in this project, data quality in both work orders and re-

profiling systems needs to be improved. 

 In this project, we can only consider one lifecycle’s data for each wheel-set due to time 

limitation. To achieve more convincing results and effectively monitor wheel-set performance, 

this study should be continuous.  

 Results from this study could be used in other research in the internal workshop. 

In addition, we suggest the following research: 

 In this research, the case studies only focus on locomotive wheel-sets. We should consider 

more applications, for instance, cargo train wheel-sets, or other technical problems (e.g. other 

industries, other components). 

 The results achieved by this study could be extended to other train wheel-set research topics, 

e.g., Wheel-set “health diagnostic”, RAMS driven Maintenance Strategy Review & 

Optimization for Rolling Stock Wheels, Precise Maintenance Strategies Making, etc. 

 The covariates considered in this report are limited to locomotive wheels’ installed positions; 

more covariates must be considered. These include such factors as operating environment 

(e.g., climate, topography, track geometry, the braking forces and the curving forces), 

configuration of the suspension, status of the bogies and the spring systems, operating speeds 

and applied loads, etc. 

 Results from Section 4, incl. Appendix B and Appendix C, should be studied further. For 

instance, the piecewise for each re-profiling period should be considered separately.  

 In subsequent research, we plan to consider using our results to optimise maintenance 

strategies and the related LCC (Life Cycle Cost) problem considering maintenance costs, 

particularly with respect to different maintenance inspection levels and inspection periods 

(long term, medium term and short term).  
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Table.C.1 Studies of Total Wear Rate 
 
 

No. Installed locomotive Installed bogie 
Wear Rate ( Total ) 

1 2 3 4 5 Average 

1 119 1 0.373 0.251 0.39 0.393 0.291 0.346 

2 119 1 0.369 0.251 0.389 0.396 0.286 0.345 

3 119 1 0.29 0.341 0.38 0.412 0.297 0.351 

4 119 1 0.286 0.343 0.379 0.415 0.29 0.351 

5 119 1 0.32 0.299 0.379 0.418 0.292 0.348 

6 119 1 0.321 0.298 0.378 0.418 0.291 0.347 

7 122 1 0.257 0.261 0.234 0.241 0.249 0.249 

8 122 1 0.254 0.258 0.236 0.242 0.25 0.249 

9 122 1 0.316 0.27 0.24 0.241 0.252 0.263 

10 122 1 0.319 0.266 0.242 0.245 0.247 0.263 

11 122 1 0.271 0.276 0.235 0.239 0.25 0.255 

12 122 1 0.279 0.27 0.237 0.239 0.253 0.256 

13 111 2 1.023 0.401 0.785 

14 111 2 1.024 0.397 0.784 

15 111 2 0.922 0.497 0.759 

16 111 2 0.915 0.507 0.759 

17 111 2 0.929 0.545 0.782 

18 111 2 0.925 0.54 0.778 

19 119 2 0.356 0.201 0.538 0.551 0.428 

20 119 2 0.36 0.205 0.534 0.556 0.429 

21 119 2 0.321 0.251 0.539 0.408 

22 119 2 0.319 0.252 0.54 0.408 

23 119 2 0.296 0.25 0.539 0.402 

24 119 2 0.294 0.251 0.539 0.401 

25 120 1 0.378 0.199 0.413 0.524 0.385 

26 120 1 0.378 0.203 0.411 0.524 0.386 

27 120 1 0.355 0.231 0.411 0.432 0.367 

28 120 1 0.356 0.228 0.412 0.43 0.366 

29 120 1 0.313 0.233 0.413 0.43 0.361 

30 120 1 0.316 0.232 0.413 0.43 0.361 

31 121 2 0.266 0.344 0.244 0.215 0.294 0.274 

32 121 2 0.271 0.342 0.247 0.214 0.29 0.274 

33 121 2 0.263 0.343 0.229 0.231 0.29 0.273 

34 121 2 0.266 0.341 0.229 0.231 0.29 0.273 

35 121 2 0.249 0.341 0.249 0.214 0.292 0.271 

36 121 2 0.247 0.343 0.251 0.214 0.288 0.271 
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37 120 2 0.319 0.215 0.433 0.346 0.346 

38 120 2 0.314 0.212 0.434 0.352 0.346 

39 120 2 0.317 0.212 0.437 0.347 0.346 

40 120 2 0.316 0.211 0.437 0.349 0.346 

41 120 2 0.315 0.211 0.438 0.348 0.346 

42 120 2 0.316 0.211 0.436 0.349 0.346 

43 121 1 0.238 0.314 0.272 0.213 0.358 0.273 

44 121 1 0.241 0.313 0.271 0.213 0.357 0.273 

45 121 1 0.237 0.316 0.268 0.215 0.355 0.273 

46 121 1 0.24 0.317 0.269 0.215 0.349 0.273 

47 121 1 0.23 0.298 0.295 0.212 0.355 0.271 

48 121 1 0.22 0.307 0.289 0.212 0.357 0.271 

49 122 2 0.245 0.26 0.199 0.23 0.241 0.237 

50 122 2 0.243 0.261 0.195 0.232 0.245 0.237 

51 122 2 0.248 0.259 0.197 0.238 0.235 0.237 

52 122 2 0.246 0.257 0.209 0.229 0.231 0.236 

53 122 2 0.243 0.259 0.198 0.238 0.233 0.236 

54 122 2 0.243 0.262 0.196 0.235 0.236 0.237 

55 116 2 0.253 0.301 0.286 0.44 0.262 0.298 

56 116 2 0.256 0.299 0.288 0.436 0.262 0.298 

57 116 2 0.262 0.3 0.288 0.416 0.276 0.3 

58 116 2 0.265 0.296 0.288 0.44 0.262 0.3 

59 116 2 0.279 0.282 0.287 0.335 0.321 0.299 

60 116 2 0.284 0.282 0.284 0.337 0.32 0.299 

61 116 1 0.284 0.309 0.506 0.322 0.278 

62 116 1 0.284 0.31 0.507 0.321 0.279 

63 116 1 0.577 0.066 0.5 0.503 0.322 0.379 

64 116 1 0.587 0.09 0.482 0.51 0.32 0.382 

65 116 1 0.282 0.308 0.519 0.318 0.278 

66 116 1 0.282 0.309 0.518 0.32 0.279 

67 124 1 0.251 0.276 0.707 0.223 0.335 

68 124 1 0.249 0.28 0.697 0.226 0.334 

69 124 1 0.27 0.265 0.706 0.229 0.337 

70 124 1 0.272 0.262 0.708 0.227 0.336 

71 124 1 0.305 0.244 0.699 0.234 0.339 

72 124 1 0.306 0.244 0.699 0.233 0.339 

73 124 2 0.332 0.243 0.813 0.207 0.358 

74 124 2 0.331 0.244 0.811 0.196 0.355 

75 124 2 0.238 0.809 0.116 0.254 

76 124 2 0.245 0.804 0.091 0.249 

77 124 2 0.366 0.243 0.811 0.202 0.364 

78 124 2 0.364 0.243 0.807 0.204 0.364 

79 125 1 0.251 0.29 0.609 0.38 

80 125 1 0.254 0.285 0.61 0.38 

81 125 1 0.29 0.215 0.687 0.39 
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82 125 1 0.289 0.217 0.681 0.389 

83 125 1 0.253 0.214 0.681 0.377 

84 125 1 0.254 0.218 0.677 0.377 

85 125 2 0.235 0.195 0.369 0.683 0.357 

86 125 2 0.218 0.21 0.368 0.681 0.357 

87 125 2 0.269 0.214 0.365 0.682 0.37 

88 125 2 0.271 0.217 0.36 0.685 0.371 

89 125 2 0.27 0.276 0.422 0.54 0.37 

90 125 2 0.271 0.286 0.407 0.545 0.37 

91 126 1 0.238 0.24 0.635 0.288 0.345 

92 126 1 0.238 0.242 0.633 0.287 0.345 

93 126 1 0.301 0.248 0.635 0.287 0.363 

94 126 1 0.306 0.249 0.633 0.288 0.364 

95 126 1 0.301 0.283 0.6 0.287 0.365 

96 126 1 0.302 0.279 0.608 0.284 0.365 

Average 1 0.354229 

Average 2 0.326211 

 

Table.C.2 Studies of Re-profiling Wear Rate 
 

No. 
Wheel 

Position 
Installed  

Locomotive 
Installed 

Bogie 
wear rate ( re-profiling) 

1 2 3 4 5 Average 

1 195900_1H 119 1 0.337 0.143 0.145 0.294 0.16 0.201 

2 195900_1V 119 1 0.354 0.118 0.148 0.318 0.143 0.201 

3 195900_2H 119 1 0.205 0.237 0.155 0.348 0.174 0.212 

4 195900_2V 119 1 0.294 0.224 0.153 0.358 0.146 0.221 

5 195900_3H 119 1 0.277 0.187 0.102 0.303 0 0.165 

6 195900_3V 119 1 0.3 0.163 0.102 0.325 0 0.167 

7 195901_1H 122 1 0.081 0.201 0.111 0.168 0.161 0.151 

8 195901_1V 122 1 0.053 0.195 0.133 0.168 0.158 0.148 

9 195901_2H 122 1 0.154 0.242 0.15 0.188 0.192 0.19 

10 195901_2V 122 1 0.143 0.235 0.157 0.186 0.185 0.186 

11 195901_3H 122 1 0.087 0.223 0 0.176 0.16 0.139 

12 195901_3V 122 1 0.067 0.219 0 0.164 0.142 0.129 

13 195902_1H 111 2 0.9 0.282 0.663 

14 195902_1V 111 2 0.901 0.311 0.675 

15 195902_2H 111 2 0.86 0.431 0.696 

16 195902_2V 111 2 0.84 0.425 0.681 

17 195902_3H 111 2 0.83 0.454 0.686 

18 195902_3V 111 2 0.83 0.449 0.684 

19 195903_1H 119 2 0.336 0.063 0.198 0.442 0.237 

20 195903_1V 119 2 0.325 0.114 0.216 0.466 0.258 

21 195903_2H 119 2 0.323 0.155 0.239 0.234 
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22 195903_2V 119 2 0.243 0.151 0.243 0.217 

23 195903_3H 119 2 0.27 0.133 0.231 0.212 

24 195903_3V 119 2 0.266 0.15 0.225 0.213 

25 195904_1H 120 1 0.335 0.09 0.168 0.394 0.231 

26 195904_1V 120 1 0.338 0.085 0.194 0.419 0.246 

27 195904_2H 120 1 0.342 0.132 0.201 0.356 0.245 

28 195904_2V 120 1 0.29 0.121 0.199 0.345 0.231 

29 195904_3H 120 1 0.277 0.101 0.19 0.329 0.217 

30 195904_3V 120 1 0.264 0.108 0.193 0.278 0.206 

31 195905_1H 121 2 0.09 0.289 0.145 0.154 0.211 0.184 

32 195905_1V 121 2 0.063 0.283 0.134 0.137 0.202 0.17 

33 195905_2H 121 2 0.108 0.318 0.155 0.182 0.215 0.205 

34 195905_2V 121 2 0.101 0.318 0.161 0.177 0.219 0.203 

35 195905_3H 121 2 0.08 0.295 0.155 0.151 0.196 0.183 

36 195905_3V 121 2 0.052 0.29 0.157 0.13 0.193 0.172 

37 195906_1H 120 2 0.288 0.093 0.189 0.216 0.19 

38 195906_1V 120 2 0.297 0.079 0.18 0.246 0.192 

39 195906_2H 120 2 0.292 0.111 0.207 0.253 0.21 

40 195906_2V 120 2 0.287 0.112 0.203 0.28 0.214 

41 195906_3H 120 2 0.267 0.082 0.182 0.232 0.186 

42 195906_3V 120 2 0.298 0.093 0.176 0.247 0.194 

43 195907_1H 121 1 0.057 0.233 0.153 0.141 0.25 0.166 

44 195907_1V 121 1 0.062 0.251 0.123 0.141 0.252 0.166 

45 195907_2H 121 1 0.074 0.288 0.174 0.168 0.28 0.198 

46 195907_2V 121 1 0.064 0.28 0.169 0.162 0.272 0.191 

47 195907_3H 121 1 0.042 0.252 0.18 0.155 0.255 0.177 

48 195907_3V 121 1 0.03 0.21 0.172 0.133 0.222 0.153 

49 195908_1H 122 2 0.062 0.199 0.106 0.161 0.158 0.144 

50 195908_1V 122 2 0.055 0.204 0.099 0.16 0.173 0.146 

51 195908_2H 122 2 0.077 0.231 0.119 0.19 0.166 0.165 

52 195908_2V 122 2 0.087 0.232 0.131 0.181 0.182 0.17 

53 195908_3H 122 2 0.04 0.21 0.007 0.157 0.139 0.122 

54 195908_3V 122 2 0.06 0.217 0.015 0.164 0.169 0.135 

55 195909_1H 116 2 0.148 0.251 0.192 0.315 0.199 0.215 

56 195909_1V 116 2 0.164 0.251 0.199 0.35 0.171 0.217 

57 195909_2H 116 2 0.196 0.262 0.23 0.328 0.226 0.243 

58 195909_2V 116 2 0.204 0.256 0.237 0.372 0.184 0.241 

59 195909_3H 116 2 0.19 0.228 0.205 0.218 0.227 0.214 

60 195909_3V 116 2 0.192 0.226 0.211 0.233 0.221 0.216 

61 195910_1H 116 1 0.229 0.215 0.39 0.234 0.208 

62 195910_1V 116 1 0.221 0.203 0.377 0.242 0.203 

63 195910_2H 116 1 0.511 0.028 0.247 0.443 0.248 0.272 

64 195910_2V 116 1 0.488 0.044 0.234 0.413 0.265 0.268 

65 195910_3H 116 1 0.214 0.225 0.426 0.226 0.21 

66 195910_3V 116 1 0.194 0.2 0.394 0.236 0.197 
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67 195911_1H 124 1 0.161 0.165 0.618 0.14 0.24 

68 195911_1V 124 1 0.175 0.152 0.582 0.119 0.227 

69 195911_2H 124 1 0.2 0.176 0.646 0.175 0.267 

70 195911_2V 124 1 0.187 0.176 0.661 0.167 0.265 

71 195911_3H 124 1 0.19 0.136 0.607 0.154 0.239 

72 195911_3V 124 1 0.207 0.145 0.627 0.147 0.248 

73 195912_1H 124 2 0.266 0.13 0.689 0.095 0.299 0.254 

74 195912_1V 124 2 0.242 0.137 0.694 0.11 0.309 0.256 

75 195912_2H 124 2 0.157 0.75 0.059 0.265 0.203 

76 195912_2V 124 2 0.156 0.743 0.032 0.252 0.194 

77 195912_3H 124 2 0.284 0.13 0.753 0.122 0.319 0.278 

78 195912_3V 124 2 0.27 0.129 0.732 0.118 0.313 0.269 

79 195913_1H 125 1 0.041 0.227 0.521 0.262 

80 195913_1V 125 1 0.081 0.224 0.481 0.261 

81 195913_2H 125 1 0.112 0.186 0.65 0.311 

82 195913_2V 125 1 0.112 0.186 0.641 0.308 

83 195913_3H 125 1 0.064 0.156 0.598 0.268 

84 195913_3V 125 1 0.057 0.159 0.614 0.272 

85 195914_1H 125 2 0.041 0.158 0.317 0.258 0.191 

86 195914_1V 125 2 0.063 0.156 0.301 0.256 0.191 

87 195914_2H 125 2 0.115 0.183 0.33 0.269 0.222 

88 195914_2V 125 2 0.103 0.19 0.315 0.248 0.213 

89 195914_3H 125 2 0.082 0.213 0.359 0.249 0.225 

90 195914_3V 125 2 0.073 0.229 0.307 0.249 0.214 

91 195915_1H 126 1 0.075 0.172 0.561 0.161 0.239 

92 195915_1V 126 1 0.05 0.183 0.574 0.159 0.238 

93 195915_2H 126 1 0.14 0.218 0.592 0.19 0.282 

94 195915_2V 126 1 0.111 0.209 0.594 0.18 0.271 

95 195915_3H 126 1 0.114 0.226 0.533 0.155 0.256 

96 195915_3V 126 1 0.083 0.211 0.519 0.142 0.237 

Average 1 0.242531 

Average 2 0.213311 
 
 
 

Table.C.3 Studies of Natural Wear Rate 
 

No. 
Wheel 

Position 
Installed  

Locomotive 
Installed 

Bogie 
Wear rate ( natural) 

1 2 3 4 5 Average 

1 195900_1H 119 1 0.036 0.107 0.245 0.1 0.131 0.146 

2 195900_1V 119 1 0.015 0.133 0.241 0.078 0.142 0.144 

3 195900_2H 119 1 0.085 0.104 0.224 0.065 0.123 0.139 

4 195900_2V 119 1 0 0.118 0.227 0.057 0.144 0.13 

5 195900_3H 119 1 0.043 0.112 0.277 0.115 0.292 0.183 

6 195900_3V 119 1 0.02 0.135 0.276 0.094 0.291 0.18 

7 195901_1H 122 1 0.175 0.059 0.123 0.073 0.088 0.098 
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8 195901_1V 122 1 0.2 0.063 0.104 0.075 0.092 0.101 

9 195901_2H 122 1 0.163 0.027 0.09 0.053 0.06 0.072 

10 195901_2V 122 1 0.176 0.031 0.086 0.059 0.062 0.077 

11 195901_3H 122 1 0.184 0.052 0.235 0.063 0.09 0.116 

12 195901_3V 122 1 0.212 0.051 0.237 0.075 0.111 0.126 

13 195902_1H 111 2 0.123 0.119 0.121 

14 195902_1V 111 2 0.123 0.086 0.109 

15 195902_2H 111 2 0.062 0.066 0.064 

16 195902_2V 111 2 0.074 0.082 0.077 

17 195902_3H 111 2 0.099 0.092 0.096 

18 195902_3V 111 2 0.096 0.091 0.094 

19 195903_1H 119 2 0.02 0.137 0.34 0.109 0.192 

20 195903_1V 119 2 0.035 0.091 0.318 0.089 0.171 

21 195903_2H 119 2 0 0.096 0.3 0.174 

22 195903_2V 119 2 0.077 0.102 0.296 0.191 

23 195903_3H 119 2 0.026 0.118 0.308 0.19 

24 195903_3V 119 2 0.029 0.101 0.314 0.189 

25 195904_1H 120 1 0.043 0.109 0.245 0.13 0.155 

26 195904_1V 120 1 0.04 0.118 0.217 0.105 0.14 

27 195904_2H 120 1 0.013 0.099 0.21 0.076 0.122 

28 195904_2V 120 1 0.066 0.107 0.213 0.085 0.136 

29 195904_3H 120 1 0.036 0.132 0.224 0.101 0.144 

30 195904_3V 120 1 0.051 0.124 0.22 0.152 0.155 

31 195905_1H 121 2 0.175 0.056 0.099 0.062 0.083 0.09 

32 195905_1V 121 2 0.208 0.059 0.113 0.077 0.088 0.104 

33 195905_2H 121 2 0.155 0.024 0.074 0.049 0.075 0.069 

34 195905_2V 121 2 0.165 0.023 0.068 0.054 0.071 0.07 

35 195905_3H 121 2 0.169 0.046 0.094 0.063 0.096 0.087 

36 195905_3V 121 2 0.195 0.053 0.094 0.084 0.095 0.099 

37 195906_1H 120 2 0.031 0.122 0.244 0.131 0.155 

38 195906_1V 120 2 0.016 0.133 0.253 0.106 0.153 

39 195906_2H 120 2 0.025 0.101 0.23 0.095 0.136 

40 195906_2V 120 2 0.029 0.099 0.234 0.069 0.132 

41 195906_3H 120 2 0.048 0.129 0.256 0.116 0.161 

42 195906_3V 120 2 0.019 0.118 0.26 0.102 0.152 

43 195907_1H 121 1 0.181 0.081 0.119 0.072 0.108 0.107 

44 195907_1V 121 1 0.179 0.063 0.147 0.072 0.104 0.107 

45 195907_2H 121 1 0.164 0.028 0.094 0.047 0.076 0.075 

46 195907_2V 121 1 0.176 0.037 0.101 0.053 0.077 0.082 

47 195907_3H 121 1 0.187 0.046 0.114 0.058 0.1 0.093 

48 195907_3V 121 1 0.189 0.097 0.117 0.079 0.135 0.117 

49 195908_1H 122 2 0.182 0.062 0.093 0.069 0.084 0.093 

50 195908_1V 122 2 0.188 0.057 0.096 0.072 0.072 0.092 

51 195908_2H 122 2 0.171 0.028 0.078 0.049 0.068 0.072 
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52 195908_2V 122 2 0.159 0.025 0.078 0.048 0.049 0.066 

53 195908_3H 122 2 0.203 0.049 0.191 0.081 0.094 0.115 

54 195908_3V 122 2 0.182 0.045 0.181 0.072 0.067 0.101 

55 195909_1H 116 2 0.105 0.05 0.094 0.125 0.062 0.083 

56 195909_1V 116 2 0.092 0.048 0.089 0.086 0.091 0.081 

57 195909_2H 116 2 0.067 0.038 0.058 0.088 0.05 0.057 

58 195909_2V 116 2 0.061 0.041 0.052 0.068 0.077 0.059 

59 195909_3H 116 2 0.089 0.054 0.082 0.116 0.094 0.084 

60 195909_3V 116 2 0.092 0.056 0.073 0.104 0.098 0.083 

61 195910_1H 116 1 0.055 0.095 0.116 0.087 0.071 

62 195910_1V 116 1 0.063 0.107 0.13 0.079 0.075 

63 195910_2H 116 1 0.066 0.038 0.253 0.06 0.074 0.107 

64 195910_2V 116 1 0.099 0.046 0.248 0.098 0.055 0.114 

65 195910_3H 116 1 0.067 0.084 0.093 0.092 0.069 0.069 

66 195910_3V 116 1 0.088 0.109 0.124 0.084 0.082 0.082 

67 195911_1H 124 1 0.09 0.111 0.089 0.083 0.095 

68 195911_1V 124 1 0.074 0.128 0.114 0.107 0.107 

69 195911_2H 124 1 0.07 0.089 0.06 0.054 0.07 

70 195911_2V 124 1 0.085 0.086 0.047 0.061 0.072 

71 195911_3H 124 1 0.115 0.108 0.093 0.081 0.099 

72 195911_3V 124 1 0.099 0.099 0.072 0.086 0.09 

73 195912_1H 124 2 0.065 0.113 0.124 0.112 0.104 

74 195912_1V 124 2 0.089 0.107 0.118 0.086 0.099 

75 195912_2H 124 2 0.081 0.059 0.057 0.052 

76 195912_2V 124 2 0.089 0.061 0.059 0.055 

77 195912_3H 124 2 0.082 0.114 0.057 0.079 0.087 

78 195912_3V 124 2 0.093 0.114 0.076 0.086 0.095 

79 195913_1H 125 1 0.21 0.062 0.088 0.118 

80 195913_1V 125 1 0.172 0.062 0.129 0.119 

81 195913_2H 125 1 0.178 0.028 0.037 0.079 

82 195913_2V 125 1 0.177 0.031 0.04 0.08 

83 195913_3H 125 1 0.189 0.059 0.083 0.108 

84 195913_3V 125 1 0.196 0.059 0.063 0.104 

85 195914_1H 125 2 0.194 0.037 0.052 0.424 0.166 

86 195914_1V 125 2 0.156 0.055 0.067 0.425 0.166 

87 195914_2H 125 2 0.154 0.031 0.035 0.413 0.148 

88 195914_2V 125 2 0.168 0.027 0.044 0.437 0.158 

89 195914_3H 125 2 0.189 0.062 0.063 0.291 0.145 

90 195914_3V 125 2 0.199 0.057 0.1 0.296 0.156 

91 195915_1H 126 1 0.163 0.068 0.073 0.126 0.106 

92 195915_1V 126 1 0.188 0.059 0.059 0.128 0.107 

93 195915_2H 126 1 0.161 0.03 0.043 0.097 0.081 

94 195915_2V 126 1 0.194 0.04 0.038 0.108 0.094 

95 195915_3H 126 1 0.187 0.058 0.067 0.132 0.109 
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96 195915_3V 126 1 0.219 0.068 0.09 0.142 0.128 

Average1 0.111688 

Average2 0.1129 
 
 
 

Table.C.4 Studies of the Ratio of Wear Rate (Re-profiling / Natural) 
 
 

No. 
Wheel 

Position 
Installed  

Locomotive 
Installed 

Bogie 
Ratio of wear rate (re-profiling / natural) 

1 2 3 4 5 Average 

1 195900_1H 119 1 9.417 1.336 0.592 2.953 1.217 1.381 

2 195900_1V 119 1 24 0.894 0.613 4.102 1.004 1.398 

3 195900_2H 119 1 2.425 2.289 0.692 5.41 1.41 1.532 

4 195900_2V 119 1 0 1.89 0.675 6.246 1.012 1.71 

5 195900_3H 119 1 6.463 1.667 0.368 2.636 0 0.905 

6 195900_3V 119 1 14.873 1.212 0.372 3.464 0 0.931 

7 195901_1H 122 1 0.464 3.405 0.901 2.289 1.833 1.545 

8 195901_1V 122 1 0.264 3.082 1.283 2.247 1.71 1.469 

9 195901_2H 122 1 0.942 8.804 1.674 3.545 3.202 2.636 

10 195901_2V 122 1 0.808 7.475 1.825 3.167 2.968 2.436 

11 195901_3H 122 1 0.473 4.263 0 2.774 1.77 1.203 

12 195901_3V 122 1 0.318 4.319 0 2.195 1.283 1.024 

13 195902_1H 111 2 7.333 2.356 5.452 

14 195902_1V 111 2 7.333 3.587 6.194 

15 195902_2H 111 2 13.706 6.519 10.905 

16 195902_2V 111 2 11.346 5.211 8.804 

17 195902_3H 111 2 8.434 4.952 7.13 

18 195902_3V 111 2 8.709 4.952 7.264 

19 195903_1H 119 2 16.857 0.462 0.585 4.051 1.237 

20 195903_1V 119 2 9.309 1.257 0.681 5.211 1.506 

21 195903_2H 119 2 0 1.604 0.799 1.347 

22 195903_2V 119 2 3.167 1.488 0.821 1.132 

23 195903_3H 119 2 10.494 1.128 0.748 1.114 

24 195903_3V 119 2 9.204 1.475 0.718 1.128 

25 195904_1H 120 1 7.696 0.821 0.686 3.032 1.494 

26 195904_1V 120 1 8.434 0.724 0.894 4 1.762 

27 195904_2H 120 1 26.027 1.336 0.953 4.682 2.012 

28 195904_2V 120 1 4.405 1.123 0.938 4.051 1.703 

29 195904_3H 120 1 7.621 0.767 0.848 3.237 1.506 

30 195904_3V 120 1 5.135 0.873 0.876 1.825 1.326 

31 195905_1H 121 2 0.515 5.173 1.463 2.497 2.546 2.049 

32 195905_1V 121 2 0.302 4.78 1.183 1.786 2.279 1.646 

33 195905_2H 121 2 0.692 13.085 2.106 3.739 2.861 2.968 

34 195905_2V 121 2 0.608 13.925 2.356 3.274 3.098 2.906 

35 195905_3H 121 2 0.473 6.407 1.653 2.378 2.03 2.106 
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36 195905_3V 121 2 0.267 5.494 1.674 1.545 2.04 1.747 

37 195906_1H 120 2 9.204 0.767 0.776 1.653 1.227 

38 195906_1V 120 2 18.231 0.592 0.709 2.333 1.257 

39 195906_2H 120 2 11.821 1.096 0.901 2.676 1.551 

40 195906_2V 120 2 9.753 1.132 0.869 4.025 1.625 

41 195906_3H 120 2 5.579 0.637 0.712 2.012 1.155 

42 195906_3V 120 2 15.949 0.786 0.678 2.436 1.278 

43 195907_1H 121 1 0.316 2.891 1.283 1.959 2.322 1.551 

44 195907_1V 121 1 0.344 3.975 0.838 1.967 2.413 1.558 

45 195907_2H 121 1 0.451 10.111 1.849 3.608 3.695 2.636 

46 195907_2V 121 1 0.362 7.621 1.674 3.049 3.525 2.311 

47 195907_3H 121 1 0.227 5.494 1.571 2.676 2.546 1.899 

48 195907_3V 121 1 0.16 2.155 1.475 1.688 1.646 1.309 

49 195908_1H 122 2 0.342 3.219 1.132 2.344 1.882 1.558 

50 195908_1V 122 2 0.294 3.566 1.033 2.236 2.39 1.591 

51 195908_2H 122 2 0.449 8.174 1.525 3.902 2.448 2.289 

52 195908_2V 122 2 0.546 9.204 1.681 3.739 3.762 2.584 

53 195908_3H 122 2 0.195 4.291 0.038 1.95 1.469 1.062 

54 195908_3V 122 2 0.332 4.814 0.083 2.289 2.534 1.331 

55 195909_1H 116 2 1.41 5.024 2.04 2.521 3.202 2.584 

56 195909_1V 116 2 1.786 5.289 2.226 4.051 1.874 2.69 

57 195909_2H 116 2 2.937 7 3.95 3.717 4.464 4.236 

58 195909_2V 116 2 3.367 6.299 4.587 5.452 2.39 4.076 

59 195909_3H 116 2 2.135 4.236 2.497 1.882 2.413 2.546 

60 195909_3V 116 2 2.086 4.025 2.891 2.236 2.247 2.61 

61 195910_1H 116 1 4.155 2.268 3.367 2.69 2.937 

62 195910_1V 116 1 3.525 1.907 2.906 3.049 2.704 

63 195910_2H 116 1 0.733 0.976 7.333 3.367 2.534 

64 195910_2V 116 1 0.961 0.942 4.236 4.814 2.356 

65 195910_3H 116 1 3.184 2.676 4.587 2.448 3.049 

66 195910_3V 116 1 2.195 1.825 3.167 2.802 2.413 

67 195911_1H 124 1 1.786 1.481 6.937 1.674 2.534 

68 195911_1V 124 1 2.378 1.183 5.098 1.105 2.115 

69 195911_2H 124 1 2.861 1.985 10.765 3.237 3.831 

70 195911_2V 124 1 2.195 2.04 14.152 2.745 3.695 

71 195911_3H 124 1 1.653 1.252 6.576 1.907 2.413 

72 195911_3V 124 1 2.086 1.475 8.709 1.717 2.745 

73 195912_1H 124 2 4.076 1.155 5.536 0.842 2.448 

74 195912_1V 124 2 2.704 1.278 5.897 1.288 2.584 

75 195912_2H 124 2 1.924 12.889 1.041 3.926 

76 195912_2V 124 2 1.77 12.158 0.55 3.525 

77 195912_3H 124 2 3.484 1.141 13.085 1.545 3.202 

78 195912_3V 124 2 2.891 1.132 9.638 1.37 2.846 

79 195913_1H 125 1 0.196 3.651 5.897 2.215 

80 195913_1V 125 1 0.473 3.63 3.739 2.195 
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81 195913_2H 125 1 0.631 6.576 17.519 3.926 

82 195913_2V 125 1 0.631 6.042 15.949 3.831 

83 195913_3H 125 1 0.337 2.65 7.197 2.472 

84 195913_3V 125 1 0.292 2.676 9.753 2.61 

85 195914_1H 125 2 0.212 4.236 6.143 0.608 1.151 

86 195914_1V 125 2 0.401 2.846 4.464 0.603 1.151 

87 195914_2H 125 2 0.748 5.944 9.526 0.653 1.5 

88 195914_2V 125 2 0.616 7.065 7.065 0.567 1.347 

89 195914_3H 125 2 0.433 3.425 5.711 0.855 1.551 

90 195914_3V 125 2 0.366 4.025 3.065 0.842 1.37 

91 195915_1H 126 1 0.462 2.534 7.621 1.278 3.049 2.247 

92 195915_1V 126 1 0.266 3.132 9.753 1.242 3.115 2.226 

93 195915_2H 126 1 0.873 7.264 13.925 1.959 4.319 3.484 

94 195915_2V 126 1 0.572 5.25 15.393 1.66 3.695 2.891 

95 195915_3H 126 1 0.61 3.926 7.929 1.169 2.953 2.344 

96 195915_3V 126 1 0.381 3.115 5.803 0.996 2.436 1.857 

Average 1 2.4515 

Average 2 2.1 

 



 



 


