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Original Article

Bayesian semi-parametric analysis for
locomotive wheel degradation using
gamma frailties

Jing Lin1,2 and Matthias Asplund1,2,3

Abstract

A reliability study based on a Bayesian semi-parametric framework is performed in order to explore the impact of the

position of a locomotive wheel on its service lifetime and to predict its other reliability characteristics. A piecewise

constant hazard regression model is used to analyse the lifetime of locomotive wheels using degradation data and taking

into account the bogie on which the wheel is located. Gamma frailties are included in this study to explore unobserved

covariates within the same group. The goal is to flexibly determine reliability for the wheel. A case study is performed

using Markov chain Monte Carlo methods and the following conclusions are drawn. First, a polynomial degradation path

is a better choice for the studied locomotive wheels; second, under given operational conditions, the position of the

locomotive wheel, i.e. on which bogie it is mounted, can influence its reliability; third, a piecewise constant hazard

regression model can be used to undertake reliability studies; fourth, considering gamma frailties is useful for exploring

the influence of unobserved covariates; and fifth, the wheels have a higher failure risk after running a threshold distance,

a finding which could be applied in optimisation of maintenance activities.

Keywords

Reliability, Bayesian survival analysis, locomotive wheels, frailty, piecewise constant hazard rate, Markov chain

Monte Carlo
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Introduction

The service life of a train wheel can be significantly
reduced due to failure or damage, leading to excessive
cost and accelerated deterioration, a point which has
received considerable attention in recent literature. In
order to monitor the performance of wheel-sets and
make replacements in a timely fashion, the railway
industry uses both preventive and predictive mainten-
ance. By predicting the wear of train wheels1–3, fati-
gue4,5, tribology aspects6 and failures7, the industry
can design strategies for different types of preventive
maintenance (reprofiling, lubrication, etc.) for various
periods (days, months, seasons, running distance,
etc.). Software dedicated to predicting wear rate has
also been proposed.8 Finally, condition monitoring
data have been studied with a view to increasing a
wheel’s lifetime.9–12

One common preventive maintenance strategy
(used in the case study) is to reprofile wheels after
they run a certain distance. Reprofiling affects the
wheel’s diameter; once the diameter is reduced to a
pre-specified length, the wheel is replaced by a new
one. Seeking to optimise this maintenance strategy,
researchers have examined wheel degradation data to

determine wheel reliability and failure distribution (see
Freitas et al.13 and Freitas et al.14 and the references
therein). However, these studies only selected the data
that was most of interest, without simultaneously con-
sidering the influence of several covariates (e.g. the
wheel’s installed position). For example, Freitas
et al.13 and Freitas et al. 14 studied the diameter meas-
urements performed for the wheels of 14 trains (each
one composed of four cars: CA1, CA2, CA3, CA4). To
avoid the potential influence of wheel location, they
only considered those on the left side of axle number
1 of each one of the CA1 cars, but pointed out that ‘the
degradation of a given wheel might be associated with
its position on a given car’. Yang and Letourneau7

suggested that certain attributes, including a wheel’s
installed position (right or left), might influence its
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wear rate, but they did not provide case studies. Palo
et al.15 concluded that ‘different wheel positions in a
bogie show significantly different force signatures’. To
address the noted issues, Lin et al.16 have explored the
influence of the positioning of locomotive wheels on
their reliability. Their results indicate that the particu-
lar bogie on which the wheel is mounted has a greater
influence on its lifetime than does the axle or which
side it is on. Therefore, in this paper, we only use the
bogie as a covariate.

Most reliability studies are implemented under the
assumption that individual lifetimes are independent
identically distributed (IID). However, sometimes
Cox proportional hazard (CPH) models cannot be
used because of the dependence of data within a
group. For instance, because they have the same oper-
ating conditions, the wheels mounted on a particular
locomotive may be dependent. In a different context,
some data may come from multiple records which
actually belong to the wheels installed in the same
position but on a different locomotive. Modelling
dependence in multivariate survival data has received
considerable attention, particularly for cases where
the datasets may come from subjects of the same
group which are related to each other.17,18 A key
development in modelling such data is to consider
frailty models, in which the data are conditionally
independent. When frailties are considered, the
dependence within subgroups can be considered an
unknown and unobservable risk factor (or explana-
tory variable) of the hazard function. In this paper,
wheels installed on the same locomotive are con-
sidered as coming from one group; among them,
wheels installed on the same bogie of one locomotive,
are considered as one subgroup. In addition, we con-
sider a gamma shared frailty, first discussed by
Clayton19 and Oakes20 and later developed by Sahu
et al.17, to explore the unobserved covariates’ influ-
ence on the wheels on the same locomotive.

In addition, since semi-parametric Bayesian meth-
ods offer a more general modelling strategy that
contains fewer assumptions than directly adopting
parametric distributions21, we adopt the piecewise
constant hazard model to analyse the distribution of
the locomotive wheels’ lifetime. The applied hazard
function is sometimes referred to as a piecewise expo-
nential model; it is convenient because it can accom-
modate various shapes of the baseline hazard over the
intervals.

This paper explores the impact of a locomotive
wheel’s installed position on its service lifetime and
predicts its other reliability characteristics by using a
Bayesian semi-parametric framework. The remainder
of this paper is organised as follows. The piecewise
constant hazard regression model with gamma frail-
ties is discussed in the next section. In the proposed
model, a discrete-time Martingale process is con-
sidered as a prior process for the baseline hazard
rate. The section ‘Case study’ describes a real case

study using a dataset for the wheels of two locomo-
tives powering a heavy haul cargo train. Using poly-
nomial degradation, it considers the bogies as
covariates and uses a gamma frailty for each locomo-
tive. It adopts a Markov chain Monte Carlo (MCMC)
computational scheme22,23 and discusses strategies for
optimisation of maintenance activities. Finally, con-
clusions are drawn and directions for future study are
proposed.

Bayesian semi-parametric models using
the gamma frailty

In this section, we propose a Bayesian semi-
parametric framework, incorporating the piecewise
constant hazard regression model, a gamma shared
frailty model, the discrete-dime Martingale process
for the baseline hazard rate, and a MCMC computa-
tion scheme.

Piecewise constant hazard regression model

The piecewise constant hazard model is one of the
most convenient and popular semi-parametric
models in survival analysis. Begin by denoting the
jth individual in the ith group as having lifetime tij,
where i ¼ 1, . . . , n and j ¼ 1, . . . ,mi. Divide the time
axis into intervals 05 s1 5 s2 5 � � � 5 sk 51, where
sk 4 tij, thereby obtaining k intervals ð0, s1�,
ðs1, s2�, . . ., ðsk�1, sk�. Suppose that the jth individual
in the ith group has a constant baseline hazard
h0ðtijÞ ¼ �k as in the kth interval, where
tij 2 Ik ¼ ðsk�1, sk�. Then, the hazard rate function
for the piecewise constant hazard model can be
written as

h0ðtijÞ ¼ �k, tij 2 Ik ð1Þ

Equation (1) is sometimes referred to as a piecewise
exponential model; it can accommodate various
shapes of the baseline hazard over the intervals.

Studies of how to divide the time axis into k inter-
vals include the following. Kalbfleisch and Prentice24

suggested that the selection of intervals should be
made independent of the data; this has been adopted
in the construction of the traditional lifetime table.
Breslow25 suggested using distinct failure times as
end points of each interval. Both Sahu et al.17 and
Ibrahim et al.21 pointed out that the choice of a
large value for k will make the model non-parametric,
however, too large a k will produce unstable estima-
tors of the � values and too small a choice will lead to
poor model fitting. Therefore, they discussed the
robust choice of k by considering a correlated process
prior. Aslanidou et al.18 suggested that ‘for many
practical situations, the grid will be created using
intervals of equal length’, but they also indicated
that ‘one may also assume a grid of irregular intervals’

2 Proc IMechE Part F: J Rail and Rapid Transit 0(0)
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since ‘the choice of k is up to the statistician and
this model may be sufficiently flexible to offer a
satisfactory practical approximation’. Suppose
xi ¼ ðx1i, . . . , xpiÞ

0 denotes the covariate vector for
the individuals in the ith group, and b is the regression
parameter. Therefore, the regression model with the
piecewise constant hazard rate can be written as

hðtijÞ ¼

�1 expðx
0

ijbÞ, 05 tij4s1

�2 expðx
0

ijbÞ, s1 5 tij4s2

..

. ..
.

�k expðx
0

ijbÞ, sk�1 5 tij4sk

8>>>>>><
>>>>>>:

ð2Þ

Correspondingly, its probability density function
f ðtijÞ, cumulative distribution function FðtijÞ, reliabil-
ity function RðtijÞ, together with the cumulative
hazard rate �ðtijÞ can be achieved.21

Gamma shared frailty model. Frailty models were first
considered by Clayton19 and Oakes20 to handle multi-
variate survival data. In their models, the event times
are conditionally independent according to a given
frailty factor, which is an individual random effect.
As discussed by Sahu et al.17, the models formulate
different variability factors that come from two dis-
tinct sources. The first source is natural variability,
which is explained by the hazard function; the
second is variability common to individuals of the
same group or variability common to several events
of an individual, which is explained by the frailty.

Assume the hazard function for the jth individual
in the ith group is

hijðtÞ ¼ h0ðtÞ!i expðx
0
ijbÞ ð3Þ

In equation (3), which is a multiplicative frailty
model, !i represents the frailty parameter for the ith
group. In this equation !i is shared by individuals in
the same group, and it is thus referred to as the shared
frailty model and actually is an extension of the CPH
model (as mentioned in Aslanidou et al.18, frailty
models first arose because some researchers extended
the CPH model by including a random effect or frailty
for the group effect).

To date, discussions on frailty models have focused
on the choices of either the form of the baseline
hazard function or the form of the frailty’s distribu-
tion. Representative studies related to the former
include the gamma process for the accumulated
hazard function26,27, Weibull baseline hazard rate17

and the piecewise constant hazard rate18 which is
adopted in this paper due to its flexibility.21

Some researchers have examined finite mean frailty
distributions, including gamma distribution19,28,
lognormal distribution29, etc.; others have studied
non-parametric methods, including the inverse

Gaussian frailty distribution30, the power variance
function for frailty31, the positive stable frailty distri-
bution32,33, the Dirichlet process frailty model34 and
the Levy process frailty model.35 In this paper, we
consider the gamma shared frailty model, the most
popular model for frailty in current application
studies.21

Suppose the frailty parameters !i are IID for each
group, and follow a gamma distribution, denoted by
Gað��1, ��1Þ. Therefore, the probability density func-
tion can be written as

f ð!iÞ ¼
ð��1Þ�

�1

�ð��1Þ
� !�

�1�1
i expð���1!iÞ ð4Þ

In equation (4), the mean value of !i is one, and �
is the unknown variance of the values of !i. Greater
values of � signify a closer positive relationship
between the subjects of the same group as well as
greater heterogeneity among groups. Furthermore,
as !i >1, the failures for the individuals in the corres-
ponding group will appear earlier than if !i¼ 1; in
other words, as !i <1, their predicted lifetimes will
be greater than those found in the independent
models.

Suppose u ¼ ð!1,!2, . . . ,!nÞ
0, considering equa-

tion (5), then the likelihood function

�ðu �j Þ ¼
Yn
i¼1

f ð!i �j Þ /
Yn
i¼1

!�
�1�1
i expð���1!iÞ ð5Þ

Equation (5) will be used to achieve joint posterior
density in equations (10) to (14).

Discrete-time Martingale process for baseline
hazard rate

Based on the presented discussions (equations (2), (3)
and (4)), the piecewise constant hazard model with
gamma shared frailties can be written as

hðtijÞ ¼

�1!i expðx
0

ijbÞ, 0 5 tij4s1

�2!i expðx
0

ijbÞ, s1 5 tij4s2

..

. ..
.

�k!i expðx
0

ijbÞ, sk�1 5 tij4sk

8>>>>>><
>>>>>>:

ð6Þ

To analyse the baseline hazard rate �k, a common
choice is to construct an independent incremental pro-
cess, e.g. the gamma process, the beta process or the
Dirichlet process. In this paper, the discrete-time
Martingale process for the baseline hazard rate �k,
which is discussed by Sahu et al.17 and Aslanidou
et al.18, is adopted.

Lin and Asplund 3
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Given (�1, �2, . . . , �k�1), we specify that

�k �1, �2, . . . , �k�1j � Ga �k,
�k
�k�1

� �
ð7Þ

Let �0 ¼ 1. In equation (7), the parameter �k rep-
resents the smoothness for the prior information.
If �k ¼ 0, then �k and �k�1 are independent. As
�k !1, the baseline hazard is the same in nearby
intervals. In addition, the Martingale �k’s expected
value at any time point is the same, and

Eð�k �1, �2, . . . , �k�1j Þ ¼ �k�1 ð8Þ

Equation (8) shows that given specified historical
information (�1, �2, . . . , �k�1), the expected value of �k
is fixed.

Bayesian semi-parametric model using MCMC

In reliability analysis, the lifetime data are usually
incomplete, and only a portion of the individual life-
times are known. Right-censored data are often called
Type I censoring, and the corresponding likelihood
construction problem has been extensively studied in
the literature.36,37 Suppose that the jth individual in
the ith group has lifetime Tij and censoring time Lij.
The observed lifetime tij ¼ minðTij,LijÞ; therefore, the
exact lifetime Tij will be observed only if Tij4Lij. In
addition, the lifetime data involving right-censoring
can be represented by n pairs of random variables
ðtij,�ijÞ, where �ij ¼ 1 if Tij4Lij and �ij ¼ 0 if
Tij 4Lij. This means that �ij indicates whether life-
time Tij is censored or not. The likelihood function
is deduced as

LðtÞ ¼
Yn
i¼1

Ymi

j¼1

½ f ðtijÞ�
�ijRðtijÞ

1��ij ð9Þ

In the previously presented piecewise constant haz-
ard model, we denote gij as tij 2 ðsgij , sgijþ1Þ ¼ Igijþ1 and
the model’s dataset as D ¼ ð!, t,X, �Þ. Following
equations (7) to (10), the complete likelihood function
Lðb, � Dj Þ for the individuals for the ith group in k
intervals can be written as

Yn
i¼1

Ymi

j¼1

½
Qgij
k¼1

expð��k!i expðx
0
ijbÞðsk � sk�1Þ�

�ð�gijþ1!i expðx
0
ijbÞÞ

�ij

� exp½��gijþ1!i expðx
0

ijbÞðtij � sgijÞ�

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð10Þ

Let �ð�Þ denote the prior or posterior distribu-
tions for the parameters. Following equations (5)
and (10), the joint posterior distribution

�ð!i b, �,D
�� Þ for gamma frailties !i can be

written as

� !i b, �,D
��� �

/ L b, � Djð Þ � � ! �jð Þ

/ !
��1þ

Pmi

j¼1
�ij�1

i exp � ��1 þ
Xmi

j¼1
expðx

0

ijbÞ
h i� �n

�
Xgij

k¼1
�k sk � sk�1ð Þþ�gijþ1 tij � sgij

� �� �o
� ~Ga ��1 þ

Xmi

j¼1
�ij, �

�1 þ
Xmi

j¼1
exp x

0

ijb
� �h in

�
Xgij

k¼1
�k sk � sk�1ð Þþ�gijþ1 tij � sgij

� �� �o
ð11Þ

Equation (11) shows that the full conditional dens-
ity of each !i is a gamma distribution. Similarly, the
full conditional density of ��1 and b can be given by

�ð��1 b,u, �,D
�� Þ /

Yn
i¼1

!�
�1�1
i ð��1Þ�n�

�1

�
exp ���1

Pn
i¼1 !i

� �
½�ð��1Þ�n

� �ð��1Þ ð12Þ

� b ��1,u, �,D
��� �

/ exp
Xn
i¼1

Xmi

j¼1

�ijx
0

ijb�
Xn

i¼1

Xni

m¼1

(

� exp x
0

ijb
� �

!i�

	Xgij

k¼1
�k sk � sk�1ð Þ

þ �gijþ1 tij � sgij
� �
�

� � �ð Þ

ð13Þ

Let Rk ¼ fði, j Þ; tij 4 skg denote the risk set at sk
and Dk ¼ Rk�1 � Rk; let dk denote the failure individ-
uals in the interval Ik. Let �ð�k �

ð�kÞ
�� Þ denote the con-

ditional prior distribution for (�1, �2, . . . , �J) without
�k. We therefore derive �ð�k b,u, ��1,D

�� Þ as

�dkk exp

��k!i expðx
0
ijbÞ�

P
ði,jÞ2Rk

ðsk�sk�1Þþ

"

þ
P
ði,jÞ2Dk

ðtij�sk�1Þ

#
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
��ð�k �

ð�kÞ
�� Þ

ð14Þ

Case study

In this section, we present a case study to illustrate the
use of the proposed Bayesian semi-parametric models
for the degradation analysis of locomotive wheels.

Degradation data

The data were collected between November 2010 and
January 2012 by a Swedish railway company. We use
the degradation data from two heavy haul cargo
trains’ locomotives (denoted as locomotive 1 and

4 Proc IMechE Part F: J Rail and Rapid Transit 0(0)
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locomotive 2). Correspondingly, there are two studied
groups, and n ¼ 2. For each locomotive, see Figure 1,
there are two bogies (bogie I, bogie II), and for each
bogie, there are six wheels. The installed positions of
the wheels on a particular locomotive are specified by
the bogie number and are defined as covariates x. The
covariates’ coefficients are represented by b. More
specifically, x ¼ 1 represents the wheels mounted on
bogie I, and x ¼ 2 represents the wheels mounted in
bogie II. �1 is the coefficient of the covariates x, and
�0 is defined as natural variability.

The diameter of a new locomotive wheel is
1250mm. In the company’s current maintenance
strategy, a wheel’s diameter is measured after running
a certain distance. If it has been reduced to 1150mm,
the wheel is replaced by a new one. Otherwise, it is
reprofiled or other maintenance strategies are

implemented. Therefore, a threshold level for failure,
denoted as y0, is defined as 100mm (y0¼ 1250 –
1150mm). The wheel’s failure condition is assumed
to be reached if the diameter reaches y0. The com-
pany’s complete dataset includes the diameters of all
locomotive wheels at a given inspection time, the total
running distances corresponding to their ‘time to be
maintained (reprofiled or replaced)’, and the wheels’
bill of material data, from which we can determine
their positions.

Degradation path and lifetime data

From the dataset, we obtain five or six measurements
of the diameter of each wheel during its lifetime. By
connecting these measurements, we can determine a
degradation trend (e.g. in Figure 2, the blue line).

Figure 2. Plot of the wheel degradation data: an example.

Figure 1. Wheel positions specified in this study.

Lin and Asplund 5
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In their analyses of train wheels, most studies assume
a linear degradation path (see the black dotted line in
Figure 2). However, in our study, the results show
that a better choice is a polynomial degradation
path (see Figure 2, the purple dotted line). We plot
the degradation data for one locomotive wheel in
Figure 2. The squares of their correlation coefficients
(denoted as R2) are 0.9973 for a polynomial path and
0.9271 for a linear path, indicating that a polynomial
degradation path is better than a linear degradation
path for the wheels studied.

Compared with the linear degradation path, the
polynomial degradation path in this study suggests
the degradation rate of the wheels is increasing. One
possible improvement for maintenance is to remove
more material at later reprofiling because the depth at
an earlier reprofiling was inadequate to remove the

full depth of surface damage. However, mismatched
diameters (from machining tolerances) because of
additional wear could also be a possibility.

Take locomotive 1 for example; for all wheels
installed on this locomotive, the assumptions of the
polynomial function are supported by the statistics
shown in Table 1. Note: some lifetime data are right-
censored (denoted by superscript * in Table 1).
However, we know the real lifetimes will exceed the
predicted lifetimes.16 Considering the likelihood func-
tion, if those data are recognised as completed data, it
is clear that some information will be neglected and the
resultswill be underestimated. Table 2 shows the results
of the same test for the wheels on locomotive 2. Again,
a polynomial degradation path is a better choice.

Following the presented discussion, a wheel’s fail-
ure condition was assumed to be reached if the

Table 1. Statistics on degradation path and lifetime data: locomotive 1.

Number Positions Polynomial path R2-polynomial Linear path R2-linear

Lifetime

(�1000 km)

1 Bogie I y¼ 6E-10x2
þ 8E-05x 0.9973 y¼ 0.0002x 0.9271 347

2 Bogie I y¼ 6E-10x2
þ 8E-05x 0.9974 y¼ 0.0002x 0.9274 347

3 Bogie I y¼ 7E-10x2
þ 6E-05x 0.9981 y¼ 0.0002x 0.9109 338

4 Bogie I y¼ 7E-10x2
þ 6E-05x 0.9982 y¼ 0.0002x 0.9102 338

5 Bogie I y¼ 6E-10x2
þ 7E-05x 0.9986 y¼ 0.0002x 0.9211 354

6 Bogie I y¼ 6E-10x2
þ 7E-05x 0.9986 y¼ 0.0002x 0.9215 354

7 Bogie II y¼ 1E-09x2
þ 4E-06x 0.9960 y¼ 0.0002x 0.8485 314*

8 Bogie II y¼ 1E-09x2
þ 4E-06x 0.9960 y¼ 0.0002x 0.8485 314*

9 Bogie II y¼ 1E-09x2
þ 4E-06x 0.9964 y¼ 0.0002x 0.8419 314*

10 Bogie II y¼ 1E-09x2
þ 3E-06x 0.9963 y¼ 0.0002x 0.8430 315*

11 Bogie II y¼ 7E-10x2
þ 7E-05x 0.9792 y¼ 0.0002x 0.9039 331

12 Bogie II y¼ 7E-10x2
þ 7E-05x 0.9805 y¼ 0.0003x 0.9027 331

*Right-censored data

Table 2. Statistics on degradation path and lifetime data: locomotive 2.

Number Positions Polynomial path R2-polynomial Linear path R2-linear

Lifetime

(�1000 km)

1 Bogie I y¼ 8E-10x2
þ 0.0002x 0.9807 y¼ 0.0003x 0.9579 250

2 Bogie I y¼ 8E-10x2
þ 0.0002x 0.9817 y¼ 0.0003x 0.9597 250

3 Bogie I y¼ 8E-10x2
þ 0.0002x 0.9805 y¼ 0.0003x 0.9590 250

4 Bogie I y¼ 8E-10x2
þ 0.0002x 0.9798 y¼ 0.0003x 0.9589 250

5 Bogie I y¼ 7E-10x2
þ 0.0002x 0.9790 y¼ 0.0003x 0.9624 261

6 Bogie I y¼ 7E-10x2
þ 0.0002x 0.9792 y¼ 0.0003x 0.9624 261

7 Bogie II y¼ 9E-10x2
þ 0.0002x 0.9751 y¼ 0.0003x 0.9491 240

8 Bogie II y¼ 1E-09x2
þ 0.0002x 0.9750 y¼ 0.0003x 0.9484 232

9 Bogie II y¼ 1E-09x2
þ 0.0002x 0.9709 y¼ 0.0003x 0.9420 232

10 Bogie II y¼ 1E-09x2
þ 0.0002x 0.9689 y¼ 0.0003x 0.9415 232

11 Bogie II y¼ 9E-10x2
þ 0.0002x 0.9727 y¼ 0.0003x 0.9498 240

12 Bogie II y¼ 9E-10x2
þ 0.0002x 0.9726 y¼ 0.0003x 0.9495 240
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diameter reaches y0 (y0¼ 100mm). We adopted
the polynomial path for all wheels and set y0¼ y (y
represent the function of the degradation path yðxÞ,
see Table 1). The lifetimes for these wheels were easily

determined and are shown in the last columns of
Table 1 and Table 2.

Parameter configuration

Sahu et al.17 and Ibrahim et al.21 pointed out that a
choice of a very large k will make the model non-
parametric, however, too large a k will produce
unstable estimators of the � values and too small a
value will lead to poor model fitting. In our study, the
degradation path is obtained from analysis of five or
six measurements for each locomotive wheel; in other
words, the lifetime data are based on the data
acquired at five or six different inspections. For ease
of calculation, in this paper, we adopted a very
common choice for many practical situations18: that
of creating intervals of equal length and dividing the
time axis into six sections piecewise. In our case
study, no predicted lifetime exceeds 360,000 km.
Therefore, k¼ 6, and each interval is equal to 60,000
km. We obtained six intervals (0, 60,000], (60,000,
120,000], . . . , (300,000, 360,000]. (Note that, since the
data in this case shows there are no failures before

κλ
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Figure 3. Plot of baseline hazard rate.

Table 4. Baseline hazard rate statistics.

Piecewise

intervals

(�1000 km)

1 2 3 4 5 6

(0, 60] (60, 120] (120, 180] (180, 240] (240, 300] (300, 360]

�k 1.15 2.13 6.96 85.37 567.93 3494.69

Table 3. Posterior distribution summaries.

Parameter Mean SD MC error 95% HPD interval

�0 �10.39 2.888 0.2622 (�16.61, �4.79)

�1 0.3293 0.4927 0.02016 (�0.661, 1.271)

� 0.563 0.269 0.01038 (0.1879, 1.225)

!1 0.1441 0.1374 0.004822 (0.01192, 0.5258)

!2 1.866 1.016 0.03628 (0.3846, 4.308)

b1 0.1361 1.595 0.1037 (�3.196, 3.364)

b2 0.758 2.182 0.1672 (�3.7, 5.248)

b3 1.94 2.514 0.2105 (�3.126, 7.342)

b4 4.447 2.668 0.2389 (�0.5652, 10.48)

b5 6.342 2.684 0.2415 (1.126, 12.29)

b6 8.159 2.724 0.2417 (2.843, 14.15)
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240,000 km, using irregular intervals could be another
choice for some specified case studies.)

Once we settled on a model, the task became to
infer the desired parameters. For this purpose, we
resorted to Monte Carlo integration which essentially
draws samples from the required distribution, and
then forms sample averages to approximate expect-
ations. The recent proliferation of MCMC
approaches has led to the use of the Bayesian infer-
ence in a wide variety of fields, including behavioural
science, finance, human health, process control, eco-
logical risk assessment, and risk assessment of engin-
eered systems. MCMC draws these samples by
running a cleverly constructed Markov chain for a
long time. There are many ways of constructing
these chains. One of the simplest MCMC sampling
algorithms found in the Bayesian computational lit-
erature is the Gibbs sampler. The literature concern-
ing the MCMC method using a Gibbs sampler is too

vast to be listed here. In this paper, the method is used
to integrate over the posterior distribution of model
parameters given the data, this to make inference for
the desired model parameters.

For convenience, we let �k ¼ expðbkÞ, and the fol-
lowing vague prior distributions were adopted:

. gamma frailty prior: !i � Gað��1, ��1Þ;

. normal prior distribution: bk � Nðbk�1, �Þ;

. normal prior distribution: b1 � Nð0, �Þ;

. gamma prior distribution: � � Ga (0.0001, 0.0001);

. normal prior distribution: �0 � N(0.0, 0.001);

. normal prior distribution: �1 � N(0.0, 0.001).

At this point, the MCMC calculations were imple-
mented with the software WinBUGS.38 The initial
values were generated by WinBUGS in our case and
a burn-in of 10,001 samples was used, with an add-
itional 10,000 Gibbs samples.

Figure 4. Plot of the reliabilities for locomotive 1 and locomotive 2.

Table 5. Reliability and cumulative hazard statistics.

Distance

(1000 km)

Reliability RðtÞ Cumulative hazard �ðtÞ

Locomotive 1 Locomotive 2 Locomotive 1 Locomotive 2

Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II Bogie I Bogie II

60 0.999,577 0.999,412 0.994,534 0.992,41 0.000,184 0.000,256 0.002,38 0.003,309

120 0.998,425 0.997,811 0.979,79 0.972,02 0.000,685 0.000,952 0.008,867 0.01,2325

180 0.992,318 0.989,338 0.904,96 0.870,393 0.003,349 0.004,655 0.043,37 0.060,285

240 0.881,485 0.839,169 0.195,241 0.103,252 0.054,785 0.076,151 0.709,428 0.986,101

300 0.350,289 0.232,678 1.26E-06 6.31E-09 0.455,574 0.633,245 5.899,379 8.200,106

360 0.000,433 2.11E-05 2.75E-44 2.82E-61 3.363,977 4.675,91 43.561,28 60.549,95
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Results

Following the convergence diagnostics (including
checking dynamic traces in Markov chains, time
series, and comparing the Monte Carlo (MC) error
with standard deviation (SD); see Lunn et al.38), we
consider the following posterior distribution summa-
ries (Table 3). Statistics summaries include the param-
eters’ posterior distribution mean, SD, MC error, and
the 95% highest posterior distribution density (HPD)
interval.

In Table 3, �1 4 0 means that the wheels mounted
on the first bogie (as x ¼ 1) have a shorter lifetime
than those on the second bogie (as x ¼ 2). However,
the influence may be possibly reduced as more data
are obtained in the future, because the 95% HPD
interval includes the zero point. Because k is likely
to be 4 0:5, there is probably a positive relationship
between the wheels mounted on the same locomotive;
in addition, the heterogeneity among the locomotives
is significant. Meanwhile, !1 5 1 suggests that the
predicted lifetimes for those wheels mounted on the
first locomotive are longer than if the frailties are not
considered; meanwhile, o2 is likely to be 4 1 which
would indicate the wheels mounted on the second
locomotive have shorter lifetime than if the frailties
are not considered.

Baseline hazard rate statistics based on the above
results are shown in Table 4 and Figure 3. The red
arrows marked in Figure 3 underline that the wheels’
baseline hazard rate increases dramatically after the
fourth piecewise interval. One possible reason for the
increase is that, in our case study, there is no failure
data until the fourth interval.

By considering the random effects resulting from
the natural variability (explained by covariates) and
from the unobserved random effects within the same
group (explained by frailties), we can determine other
reliability characteristics of the lifetime distribution.
The statistics on reliability RðtÞ and cumulative
hazard rate �ðtÞ for the two wheels mounted on dif-
ferent bogies are listed in Table 5. Figure 4 and
Figure 5 show the reliabilities and cumulative hazards
for locomotive 1 and locomotive 2, respectively. In
addition, for these locomotives, the wheels mounted
in the first bogie (x ¼ 1) have lower reliability and a
higher cumulative hazard rate than those mounted in
the second one (x ¼ 2). In addition, Figure 4 and
Figure 5 show that the wheels have a high risk of fail-
ure after they have run for a certain distance. For
example, the reliability declines sharply at the fourth
piecewise interval, and at the fifth piecewise interval,
the cumulative hazard increases dramatically.

Discussion

The presented results can be applied to maintenance
optimisation procedures, including lifetime prediction

and replacement optimisation, preventive mainten-
ance optimisation, and reprofiling optimisation.

First, determining the distribution of reliability
characteristics over the wheels’ lifetime could be
used to optimise replacement strategies. The results
could also support related predictions for spares
inventory.

Second, the dramatically increasing points
(Figures 3 to5) appearing in the fourth and fifth pie-
cewise interval (from 180,000 to 300,000 km) indicate
that after running about 180,000 km, a locomotive’s
wheel has a high risk of failure. To understand the
possible reasons for this phenomenon, we held on-
site discussions with operators and maintenance
engineers. Using the knowledge gained from their
experience, they suggested that the observed behav-
iour could be the result of rolling contact fatigue
problems starting in the fifth interval (after 240,000
kilometres). Therefore, special attention should be
paid if the wheels have run longer than these points.

Third, the wheels installed on the first bogie should
be paid more attention during maintenance.
Especially when the wheels are reprofiled, they
should be checked starting with the first bogie to
avoid duplication of effort. Note that in the studied
company, the first checked wheel could belong in the
second bogie. After the second checked wheel is
lathed or reprofiled, if the diameter is smaller than
predicted, the first checked wheel might need to be
lathed or reprofiled again. Therefore, starting with
the wheel installed on the first bogie could improve
maintenance effectiveness.

Last, but by no means least, the frailties between
locomotives could be caused by different operating
environments (e.g. climate, topography and track
geometry), configuration of the suspension, status of
the bogies or spring systems, operation speeds and
applied loads. Specific operating conditions should
be considered when designing maintenance strategies
because even if the locomotives and wheel types are

Distance/1000km
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Locomotive 1-Bogie I

Locomotive 1-Bogie II

Locomotive 2-Bogie I

Locomotive 2-Bogie II

Figure 5. Plot of the cumulative hazard for locomotive 1 and

locomotive 2.
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the same, the lifetimes and operating performance
could differ.

Conclusions

This paper proposes a Bayesian semi-parametric
framework to analyse a locomotive wheel’s reliability
using degradation data. The piecewise constant
hazard rate is used to analyse the distribution of a
wheel’s lifetime. The gamma shared frailties ui are
used to explore the influence of unobserved covariates
within the same locomotive. By introducing covariate
xi’s linear function x

0

ib, the influence of the bogie on
which a wheel is installed can be taken into account.
The proposed framework can deal with small and
incomplete datasets and simultaneously consider the
influence of different covariates. The MCMC tech-
nique is used to integrate high-dimensional probabil-
ity distributions to make inferences and predictions
about model parameters.

The results of the case study suggest that a poly-
nomial degradation path for the wheels is more
appropriate than a linear degradation path. The life-
times of wheels probably differ according to where
they are installed (on which bogie they are mounted)
on the locomotive. Wheels installed on the second
bogie have longer lifetimes than the ones on the first
bogie. We have an educated guess that the differences
could be influenced by the real running situation (e.g.
topography) and the locomotive’s centre of gravity.
The gamma frailties help with exploring the unob-
served covariates and thus improve the model’s accu-
racy. Results also indicate a close positive relationship
between wheels mounted on the same locomotive; the
heterogeneity between locomotives is also significant.
We can determine the wheel’s reliability characteris-
tics, including the baseline hazard rate �ðtÞ, reliability
RðtÞ and cumulative hazard rate �ðtÞ. As shown in
Figures 3 to 5, wheel reliability probably declines
sharply at the fourth piecewise interval, while at the
fifth piecewise interval, the cumulative hazard
increases dramatically. The results allow us to evalu-
ate and optimise wheel replacement and maintenance
strategies (including the reprofiling interval, inspec-
tion interval, lubrication interval, depth and optimal
sequence of reprofiling, etc.).

Finally, the approach discussed in this paper can
also be applied to cargo train wheels or passenger
train wheels.

We suggest the following additional research:

1. The covariates considered in this paper are limited
to the installed positions of the locomotive wheels;
more covariates must be considered. To this end,
we will study such factors as operating environ-
ment (e.g. climate, topography and track geom-
etry), configuration of the suspension, status of
the bogies and the spring systems, operation
speeds and the applied loads, etc. By considering

more and more factors such as those listed, we
expect to improve the accuracy of the model step
by step. The goal will be to find out the key influ-
ence factors which will influence the lifetime of the
wheels the most and explore their impact.

2. We have taken both the first and the second bogie
in one integrated model. Later, taking first and
second bogie data as two different distributions
and comparing these should be studied.

3. The causes of the differences between bogies are
not explored in this paper, which are addressed by
vehicle dynamics and work in this field. They
should be studied further.

4. We have chosen vague prior distributions for the
case study. Other prior distributions, including
both informative and non-informative prior distri-
butions, should be studied.

5. Although the diagnostic of the MCMC method
show the gamma shared frailty could be one
choice, however, other frailty models should be
studied.

6. In subsequent research, we plan to consider using
our results to optimise maintenance strategies and
the related Life Cycle Cost problem considering
maintenance costs, particularly with respect to dif-
ferent maintenance inspection levels and inspec-
tion periods (long, medium and short term).

Funding

Financial support was provided by Luleå Railway Research
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