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The recent proliferation of Markov chain Monte Carlo (MCMC) approaches has led to the use of the Bayesian inference in a wide
variety of fields. To facilitateMCMC applications, this paper proposes an integrated procedure for Bayesian inference usingMCMC
methods, from a reliability perspective.The goal is to build a framework for related academic research and engineering applications
to implementmodern computational-basedBayesian approaches, especially for reliability inferences.Theprocedure developed here
is a continuous improvement process with four stages (Plan, Do, Study, and Action) and 11 steps, including: (1) data preparation; (2)
prior inspection and integration; (3) prior selection; (4)model selection; (5) posterior sampling; (6)MCMCconvergence diagnostic;
(7) Monte Carlo error diagnostic; (8) model improvement; (9) model comparison; (10) inference making; (11) data updating and
inference improvement. The paper illustrates the proposed procedure using a case study.

1. Introduction

The recent proliferation of Markov Chain Monte Carlo
(MCMC) approaches has led to the use of the Bayesian
inference in a wide variety of fields, including behavioural
science, finance, human health, process control, ecological
risk assessment, and risk assessment of engineered systems
[1]. Discussions of MCMC-related methodologies and their
applications in Bayesian Statistics now appear throughout
the literature [2, 3]. For the most part, studies in reliability
analysis focus on the following topics and their cross-
applications: (1) hierarchical reliability models [4–7]; (2)
complex system reliability analysis [8–10]; (3) faulty tree
analysis [11, 12]; (4) accelerated failure models [13–17]; (5)
reliability growth models [18, 19]; (6) masked system relia-
bility [20]; (7) software reliability engineering [21, 22]; (8)
reliability benchmark problems [23, 24]. However, most of
the literature emphasizes themodel’s development; no studies
offer a full framework to accommodate academic research
and engineering applications seeking to implement modern
computational-based Bayesian approaches, especially in the
area of reliability.

To fill the gap and to facilitateMCMC applications from a
reliability perspective, this paper proposes an integrated pro-
cedure for the Bayesian inference.The remainder of the paper
is organized as follows. Section 2 outlines the integrated
procedure; this comprises a continuous improvement process
including four stages and 11 sequential steps. Sections 3 to 8
discuss the procedure, focusing on (1) prior elicitation; (2)
model construction; (3) posterior sampling; (4) MCMC con-
vergence diagnostic; (5) Monte Carlo error diagnostic; (6)
model comparison. Section 9 gives examples and discusses
how to use the procedure. Finally, Section 10 offers conclu-
sions.

2. Description of Procedure

The proposed procedure uses the Bayesian reliability infere-
nce to determine system (or unit) reliability and failure dis-
tribution, to support the optimisation of maintenance strate-
gies, and so forth.

The general procedure begins with the collection of
reliability data (see Figure 1). These are the observed val-
ues of a physical process, such as various “lifetime data.”
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Figure 1: An integrated procedure for Bayesian reliability inference via MCMC.

The data may be subject to uncertainties, such as imprecise
measurement, censoring, truncated information, and inter-
pretation errors. Reliability data are found in the “current data
set”; they contain original data and include the evaluation,
manipulation, and/or organisation of data samples. At a
higher level in the collection of data, a wide variety of “his-
torical information” can be obtained, including the results of
inspecting and integrating this “information,” thereby adding
to “prior knowledge.” The final level is reliability inference,
which is the process of making a conclusion based on “post-
erior results.”

Using the definitions shown in Figure 1, we propose an
integrated procedure which constructs a full framework for
the standardized process of Bayesian reliability inference. As
shown in Figure 1, the procedure is composed of a continuous
improvement process including four stages (Plan, Do, Study,
and Action) which will be discussed later in this section and
11 sequential steps: (1) data preparation; (2) prior inspection
and integration; (3) prior selection; (4) model selection; (5)
posterior sampling; (6) MCMC convergence diagnostic; (7)
Monte Carlo error diagnostic; (8) model improvement; (9)

model comparison; (10) inference making; (11) data updating
and inference improvement.

Step 1 (data preparation). The original data sets for “history
information” and “current data” related to reliability studies
need to be acquired, evaluated, andmerged. In this way, “his-
tory information” can be transferred to “prior knowledge,”
and “current data” can become “reliability data” in later steps.

Step 2 (prior inspection and integration). During this step,
“prior knowledge” receives a second andmore extensive treat-
ment, including a reliability consistency check, a credence
test, and a multisource integration. This step improves prior
reliability data.

Step 3 (prior selection). This step uses the results achieved
in Step 2 to determine the model’s form and parameters, for
instance, selecting informative or noninformative priors, or
unknown parameters and their distributed forms.

Step 4 (model selection). This step determines a reliability
model (parametric or nonparametric), selecting from 𝑛
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candidates for the studied system/units. It considers both
“reliability data” and the inspection, integration, and selection
of priors to implement the 𝑖th (𝑖 = 1, . . . , 𝑖 + 1, . . . , 𝑛).

Step 5 (posterior sampling). In this step, we determine a
samplingmethod (e.g., Gibbs sampling,Metropolis-Hastings
sampling, etc.) to implement MCMC simulation for the
model’s posterior calculations.

Step 6 (MCMC convergence diagnostic). In this step, we
check whether the Markov chains have reached convergence.
If they have, we move on to the next step; if they have not,
we return to Step 5 and redetermine the iteration times of
posterior sampling or rechoose the sampling methods; if the
results still cannot be satisfied, we return to Steps 3 and 4 and
redetermine the prior selection and model selection.

Step 7 (Monte Carlo error diagnostic). We need to decide
if the Monte Carlo error is small enough to be accepted in
this step. As discussed in Step 6, if it is accepted, we go on
to the next step; if it is not, we return to Step 5 and redecide
the iteration times of the posterior sampling or rechoose the
sampling methods; if the results still cannot be accepted, we
go back to Steps 3 and 4 and recalculate the prior selection
and model selection.

Step 8 (model improvement). Here, we choose the 𝑖 + 1th
candidate model and restart from Step 4.

Step 9 (model comparison). After implementing 𝑛 candidate
models, we need to (1) compare the posterior results to
determine the most suitable model or (2) adopt the average
posterior estimations (using the Bayesian model average or
the MCMCmodel average) as the final results.

Step 10 (inference making). After achieving the posterior
results in Step 9,we can performBayesian reliability inference
to determine system (or unit) reliability, find the failure dis-
tribution, optimise maintenance strategies, and so forth.

Step 11 (data updating and inference improvement). Along
with the passage of time, new “current data” can be obtained,
relegating “previous” inference results to “historical data.” By
updating “reliability data” and “prior knowledge,” and res-
tarting at Step 1, we can improve the reliability inference.

In summary, by using this step-by-step method, we can
create a continuous improvement process for the Bayesian
reliability inference.

Note that Steps 1, 2, and 3 are assigned to the “Plan”
stage when data for MCMC implementation are prepared. In
addition, a part of Steps 1, 2, and 3 refers to the elicitation of
prior knowledge. Steps 4 and 5 are both assigned to the “Do”
stage, where the MCMC sampling is carried out. Steps 6 to 9
are treated as the “Study” stage; in these steps, the sampling
results are checked and compared; in addition, knowledge is
accumulated and improved upon by implementing various
candidate reliability models. The “Action” stage consists of
Steps 10 and 11; at this point, a continuously improved
loop can be obtained. In other words, by implementing the

step-by-step procedure, we can accumulate and gradually
update prior knowledge. Equally, posterior results will be
improved upon and become increasingly robust, thereby
improving the accuracy of the inference results.

Also note that this paper will focus on six steps and their
relationship to MCMC inference implementation: (1) prior
elicitation; (2) model construction; (3) posterior sampling;
(4) MCMC convergence diagnostic; (5) Monte Carlo error
diagnostic; (6) model comparison.

3. Elicitation of Prior Knowledge
In the proposed procedure, the elicitation of prior knowledge
plays a crucial role. It is related to Steps 1, 2, and 3 and is part
of the Plan Stage, as shown in Figure 1.

In practice, prior information is derived from a variety
of data sources and is also considered “historical data” (or
“experience data”). Those data taking various forms require
various processing methods. Although in the first step, “his-
torical information” can be transferred to “prior knowledge,”
this is not enough. Credible prior information and proper
forms of these data are necessary to compute the model’s
posterior probabilities, especially in the case of a small
sample set. Meanwhile, either noncredible or improper prior
data may cause instability in the estimation of the model’s
probabilities or lead to convergence problems in MCMC
implementation.This section will discuss some relevant prior
elicitation problems in Bayesian reliability inference, namely,
including acquiring priors, performing a consistency check
and credence test, fusing multisource priors, and selecting
which priors to use in MCMC implementation.

3.1. Acquisition of Prior Knowledge. In Bayesian reliability
analysis, prior knowledge comes from a wide range of histor-
ical information. As shown in Figure 2, data sources include
(1) engineering design data; (2) component test data; (3)
system test data; (4) operational data from similar systems; (5)
field data in various environments; (6) computer simulations;
(7) related standards and operation manuals; (8) experience
data from similar systems; (9) expert judgment and personal
experience. Of these, the first seven yield objective prior data,
and the last two provide subjective prior data.

Prior data also take a variety of forms, including reliability
data, the distribution of reliability parameters, moments,
confidence intervals, quantiles, and upper and lower limits.

3.2. Inspection of Priors. In Bayesian analysis, different prior
information will lead to similar results when the data sample
is sufficiently large. While the selection of priors and their
form has little influence on posterior inferences, in practice,
particularly with a small data sample, we know that some
prior information is associated with the current observed
reliability data. However, we are not sure whether the prior
distributions are the same as the posterior distributions. In
other words, we cannot confirm that all posterior distribu-
tions converge and are consistent (a consistency check issue).
Even if they pass a consistency check, we can only say that
they are consistent under a certain specified confidence inter-
val. Therefore, an important prerequisite for applying any
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Figure 2: Data source: transfer from historical to prior knowledge.

prior information is to confirm its credibility by performing
a consistency check and credence test.

As noted by Li [25], the consistency check of prior and
posterior distributions was first studied from a statistical
viewpoint by Walker [26]. Under specified conditions, pos-
terior distributions are not only consistent with those of the
priors, but they have an asymptotic normality which could
simplify their calculation. Li [25] also notes that studies on
the consistency check of priors have focused on checking the
moments and confidence intervals of reliability parameters,
as well as historical data. A number of checking method-
ologies have been developed, including robustness analysis,
significance test, Smirnov test, rank-sum test, and mood test.
More studies have been reviewed by Ghosal [27] and Choi
et al. [28].

The credibility of prior information can be viewed as the
probability that it and the collected data come from the same
population. Li [25] lists the following methods to perform a
credence test: frequency method, bootstrap method, rank-
sum text, and so forth. However, in the case of a small
sample or simulated data, the above methods are not suitable
because even if data pass the credence test, selecting different
priors will lead to different results. We therefore suggest
a comprehensive use of the above methods to ensure the
superiority of Bayesian inference.

3.3. Fusion of Prior Information. Due to the complexity of the
system, not to mention the diversification of test equipment
and methodologies, prior information can come from many
sources. As all priors can pass a consistency check, an inte-
grated fusion estimation based on the smoothness of cred-
ibility is sometimes necessary. In such situations, a common
choice is parallel fusion estimation or serial fusion estimation,
achieved by determining the reliability parameters’ weighted
credibility [25]. However, as the credibility computation
can be difficult, other methods to fuse the priors may be
called for. In the area of reliability, related research studies
include the following. Savchuk andMartz [29] develop Bayes

estimators for the true binomial survival probability when
there are multiple sources of prior information; Ren et al.
[30] adopt Kullback information as the distance measure
between different prior information and fusion distributions,
minimizing the sum to get the combined prior distribution;
looking at aerospace propulsion as a case study, Liu et al. [31]
discuss a similar fusion problem in a complex system and
suggest [32] a fusion approach based on expert experience
with the analytic hierarchy process (AHP); Fang [33] pro-
poses using multisource information fusion techniques with
Fuzzy-Bayesian for reliability assessment; Zhou et al. [34]
propose a Bayes fusion approach for assessment of spaceflight
products, integrating degradation data and field lifetime data
with Fisher information and the Weiner process. In general,
the most important thing for multisource integration is to
determine the weights of the different priors.

3.4. Selection of Priors Based onMCMC. In Bayesian reliabil-
ity inference, two kinds of priors are very useful: the conjugate
prior and the noninformative prior. To apply MCMC meth-
ods, however, the “log-concave prior” is recommended.

The conjugate prior family is very popular because it is
convenient for mathematical calculation. The concept, along
with the term “conjugate prior,” was introduced by Howard
and Robert [35] in their work on Bayesian decision theory. If
the posterior distributions are in the same family as the prior
distributions, the prior and posterior distributions are called
conjugate distributions, and the prior is called a conjugate
prior. For instance, the Gaussian family is a conjugate of itself
(or a self-conjugate) with respect to a Gaussian likelihood
function: if the likelihood function is Gaussian, choosing a
Gaussian prior distribution over the mean distribution will
ensure that the posterior distribution is also Gaussian. This
means that the Gaussian distribution is a conjugate prior
for the likelihood function which is also Gaussian. Other
examples include the following: the conjugate distribution
of a normal distribution is a normal or inverse-normal
distribution; the Poisson and the exponential distribution’s
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conjugate both have aGammadistribution, while theGamma
distribution is a self-conjugate; the binomial and the negative
binomial distribution’s conjugate both have a Beta distribu-
tion; the polynomial distribution’s conjugate is a Dirichlet
distribution.

Noninformative prior refers to a prior for which we only
know certain parameters’ value ranges or their importance;
for example, there may be a uniform distribution. A non-
informative prior can also be called a vague prior, flat prior,
diffuse prior, ignorance prior, and so forth. There are many
different ways to determine the distribution of a nonin-
formative prior, including Bayes hypothesis, Jeffrey’s rule,
reference prior, inverse reference prior, probability-matching
prior, maximum entropy prior, relative likelihood approach,
cumulative distribution function, Monte Carlo method,
bootstrap method, random weighting simulation method,
Haar invariant measurement, Laplace prior, Lindley rule,
generalized maximum entropy principle, and the use of
marginal distributions. From another perspective, the types
of prior distribution also include informative prior, hierarchi-
cal prior, Power prior, and nonparameter prior processes.

At this point, there are no set rules for selecting prior
distributions. Regardless of the manner used to determine
a prior’s distribution, the selected prior should be both
reasonable and convenient for calculation. Of the above, the
conjugate prior is a common choice. To facilitate the calcu-
lation of MCMC, especially for adaptive rejection sampling
and Gibbs sampling, a popular choice is log-concave prior
distribution. Log-concave prior distribution refers to a prior
distribution in which the natural logarithm is concave; that
is, the second derivative is nonpositive. Common logarithmic
concavity prior distributions include the normal distribu-
tion family, logistic distribution, Student’s-𝑡 distribution, the
exponential distribution family, the uniform distribution on
a finite interval greater than the gamma distribution with
a shape parameter greater than 1, and Beta distribution
with a value interval (0, 1). As logarithmic concavity prior
distributions are very flexible, this paper recommends their
use in reliability studies.

4. Model Construction

To apply MCMC methods, we divide the reliability models
into four categories: parametric, semiparametric, frailty, and
other nontraditional reliability models.

Parametric modelling offers straightforward modelling
and analysis techniques. Common choices include Bayesian
exponential model, Bayesian Weibull model, Bayesian
extreme value model, Bayesian log-normal model, and
Gammamodel. Lin et al. [36] present a reliability study using
the Bayesian parametric framework to explore the impact of
a railway train wheel’s installed position on its service lifetime
and to predict its reliability characteristics. They apply a
MCMC computational scheme to obtain the parameters’
posterior distributions. Besides the hierarchical reliability
models mentioned above, other parametric models include
Bayesian accelerated failure models (AFM), Bayesian
reliability growth models, and Bayesian faulty tree analysis
(FTA).

Semiparametric reliability models have become quite
common and are well accepted in practice, since they offer a
more general modelling strategy with fewer assumptions. In
thesemodels, the failure rate is described in a semiparametric
form, or the priors are developed by a stochastic process.With
respect to the semiparametric failure rate, Lin and Asplund
[37] adopt the piecewise constant hazardmodel to analyze the
distribution of the locomotive wheels’ lifetime. The applied
hazard function is sometimes called a piecewise exponential
model; it is convenient because it can accommodate various
shapes of the baseline hazard over a number of intervals. In a
study of the processes of priors, Ibrahim et al. [38] examine
the gamma process, beta process, correlated prior processes,
and the Dirichlet process separately, using an MCMC com-
putational scheme. By introducing the gamma process of the
prior’s increment, Lin et al. [39] propose its reliability when
applied to the Gibbs sampling scheme.

In reliability inference, most studies are implemented
under the assumption that individual lifetimes are indepen-
dent and identically distributed (i.i.d.). However, Cox pro-
portional hazard (CPH) models can sometimes not be used
because of the dependence of data within a group. Take train
wheels as an example because they have the same operating
conditions, the wheels mounted on a particular locomo-
tive may be dependent. In a different context, some data
may come from multiple records of wheels installed in the
same position but on other locomotives. Modelling depen-
dence has received considerable attention, especially in cases
where the datasets may come from related subjects of the
same group [40, 41]. A key development in modelling such
data is to build frailtymodels in which the data are condition-
ally independent. When frailties are considered, the depen-
dence within subgroups can be considered an unknown
and unobservable risk factor (or explanatory variable) of
the hazard function. In a recent reliability study, Lin and
Asplund [37] consider a gamma shared frailty to explore the
unobserved covariates’ influence on the wheels on the same
locomotive.

Some nontraditional Bayesian reliability models are both
interesting and helpful. For instance, Lin et al. [10] point out
that in traditional methods of reliability analysis, a complex
system is often considered to be composed of several subsys-
tems in series. The failure of any subsystem is usually consid-
ered to lead to the failure of the entire system. However, some
subsystems’ lifetimes are long enough or they never fail dur-
ing the life cycle of the entire system. In addition, such subsys-
tems’ lifetimes will not be influenced equally under different
circumstances. For example, the lifetimes of some screws will
far exceed the lifetime of the compressor in which they are
placed. However, the failure of the compressor’s gears may
directly lead to its failure. In practice, such interferences will
affect the model’s accuracy, but are seldom considered in
traditional analysis. To address these shortcomings, Lin et
al. [10] present a new approach to reliability analysis for
complex systems, in which a certain fraction of subsystems
is defined as a “cure fraction” based on the consideration that
such subsystems’ lifetimes are long enough or they never fail
during the life cycle of the entire system; this is called the cure
rate model.
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5. Posterior Sampling

To implement MCMC calculations, Markov chains require
a stationary distribution. There are many ways to construct
these chains. During the last decade, the following Monte
Carlo (MC) based sampling methods for evaluating high-
dimensional posterior integrals have been developed: MC
importance sampling, Metropolis-Hastings sampling, Gibbs
sampling, and other hybrid algorithms. In this section, we
introduce two common samplings: (1) Metropolis-Hastings
sampling, the best known MCMC sampling algorithm, and
(2) Gibbs sampling, the most popular MCMC sampling
algorithm in the Bayesian computation literature, which is
actually a special case of Metropolis-Hastings sampling.

5.1. Metropolis-Hastings Sampling. Metropolis-Hastings sa-
mpling is a well-known MCMC sampling algorithm, which
comes from importance sampling. It was first developed by
Metropolis et al. [42] and later generalized by Hastings [43].
Tierney [44] gives a comprehensive theoretical exposition of
the algorithm; Chib and Greenberg [45] provide an excellent
tutorial on it.

Suppose that we need to create a sample using the
probability density function𝑝(𝜃). Let𝐾 be a regular constant;
this is a complicated calculation (e.g., a regular factor in
Bayesian analysis) and is normally an unknown parameter.
Then, let 𝑝(𝜃) = ℎ(𝜃)/𝐾. Metropolis sampling from 𝑝(𝜃) can
be described as follows.

Step 1. Choose an arbitrary starting point 𝜃
0
, and set ℎ(𝜃

0
) >

0.

Step 2. Generate a proposal distribution 𝑞(𝜃
1
, 𝜃
2
), which

represents the probability for 𝜃
2
to be the next transfer

value as the current value is 𝜃
1
. The distribution 𝑞(𝜃

1
, 𝜃
2
) is

named as the candidate generating distribution. This can-
didate generating distribution is symmetric, which means
that 𝑞(𝜃

1
, 𝜃
2
) = 𝑞(𝜃

2
, 𝜃
1
). Now based on the current 𝜃,

generate a candidate point 𝜃∗ from 𝑞(𝜃
1
, 𝜃
2
).

Step 3. For the specified candidate point 𝜃∗, calculate the
density ratio 𝛼 with 𝜃∗and the current value 𝜃

𝑡−1
as follows:

𝛼 (𝜃
𝑡−1
, 𝜃
∗
) =

𝑝 (𝜃
∗
)

𝑝 (𝜃
𝑡−1
)

=

ℎ (𝜃
∗
)

ℎ (𝜃
𝑡−1
)

. (1)

The ratio 𝛼 refers to the probability to accept 𝜃∗, where the
constant𝐾 can be neglected.

Step 4. If 𝜃∗ increases the probability density, so that 𝛼 > 1,
then accept 𝜃∗ and let 𝜃

𝑡
= 𝜃
∗. Otherwise, if 𝛼 < 1, then let

𝜃
𝑡
= 𝜃
𝑡−1

and go to Step 2.

The acceptance probability 𝛼 can be written as

𝛼 (𝜃
𝑡−1
, 𝜃
∗
) = min(1,

ℎ (𝜃
∗
)

ℎ (𝜃
𝑡−1
)

) . (2)

Following the above steps, generate a Markov chain with
the sampling points 𝜃

0
, 𝜃
1
, . . . , 𝜃

𝑘
, . . . .Thetransfer probability

from 𝜃
𝑡
to 𝜃
𝑡+1

is related to 𝜃
𝑡
but not related to 𝜃

0
, 𝜃
1
, . . . , 𝜃

𝑡−1
.

After experiencing a sufficiently long burn-in period, the
Markov chain reaches a steady state and the sampling points
𝜃
𝑡+1
, . . . , 𝜃

𝑡+𝑛
from 𝑝(𝜃) are obtained.

Metropolis-Hastings samplingwas promoted byHastings
[43]. The candidate generating distribution can adopt any
form and does not need to be symmetric. In Metropolis-
Hastings sampling, the acceptance probability 𝛼 can be
written as

𝛼 (𝜃
𝑡−1
, 𝜃
∗
) = min(1,

ℎ (𝜃
∗
) 𝑞 (𝜃
∗
, 𝜃
𝑡−1
)

ℎ (𝜃
𝑡−1
) 𝑞 (𝜃
𝑡−1
, 𝜃
∗
)

) . (3)

In the above equation, as 𝑞(𝜃∗, 𝜃
𝑡−1
) = 𝑞(𝜃

𝑡−1
, 𝜃
∗
), and

Metropolis-Hastings sampling becomes Metropolis sam-
pling.TheMarkov transfer probability function can therefore
be

𝑝 (𝜃, 𝜃
∗
) =

{
{

{
{

{

𝑞 (𝜃
𝑡−1
, 𝜃
∗
) ℎ (𝜃

∗
) > ℎ (𝜃

𝑡−1
)

𝑞 (𝜃
𝑡−1
, 𝜃
∗
)

ℎ (𝜃
∗
)

ℎ (𝜃
𝑡−1
)

ℎ (𝜃
∗
) < ℎ (𝜃

𝑡−1
) .

(4)

From another perspective, when using Metropolis-Hastings
sampling, say we need to generate the candidate point 𝜃∗. In
this case, generate an arbitrary 𝜇 from a uniform distribution
𝑈(0, 1). Set 𝜃

𝑡
= 𝜃
∗ if𝜇 ≤ 𝛼 (𝜃

𝑡−1
, 𝜃
∗
) and 𝜃

𝑡
= 𝜃
𝑡−1

otherwise.

5.2. Gibbs Sampling. Metropolis-Hastings sampling is conve-
nient for lower-dimensional numerical computation. How-
ever, if 𝜃 has a higher dimension, it is not easy to choose
an appropriate candidate generating distribution. By using
Gibbs sampling, we only need to know the full condi-
tional distribution. Therefore, it is more advantageous in
high-dimensional numerical computation. Gibbs sampling is
essentially a special case of Metropolis-Hastings sampling,
as the acceptance probability equals one. It is currently the
most popular MCMC sampling algorithm in the Bayesian
reliability inference literature. Gibbs sampling is based on the
ideas of Grenander [46], but the formal term comes from
S. Geman and D. Geman [47] to analyze lattice in image
processing. A landmarkwork forGibbs sampling in problems
of Bayesian inference is Gelfand and Smith [48]. Gibbs
sampling is also called heat bath algorithm in statistical
physics. A similar idea, data augmentation, is introduced by
Tanner and Wong [49].

Gibbs sampling belongs to the Markov update mecha-
nism and adopts the ideology of “divide and conquer.” It
supposes that all other parameters are fixed and known,
inferring a set of parameters. Let 𝜃

𝑖
be a random parameter

or several parameters in the same group. For the 𝑗th group,
the conditional distribution is 𝑓(𝜃

𝑗
). To carry out Gibbs

sampling, the basic scheme is as follows.

Step 1. Choose an arbitrary starting point 𝜃(0) = (𝜃(0)
1
, . . . ,

𝜃
(0)

𝑘
).
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2
from the conditional distribu-

tion 𝑓(𝜃
2
| 𝜃
(1)

1
, 𝜃
(0)

3
, . . . , 𝜃

(0)

𝑘
).

Step 3. Generate 𝜃(1)
𝑗

from 𝑓(𝜃
𝑗
| 𝜃
(1)

1
, . . . , 𝜃

(1)

𝑗−1
, 𝜃
(0)

𝑗+1
, . . . , 𝜃

(0)

𝑘
).

Step 4. Generate 𝜃(1)
𝑘

from 𝑓(𝜃
𝑘
| 𝜃
(1)

1
, 𝜃
(1)

2
, . . . , 𝜃

(1)

𝑘−1
).

As shown above, one-step transitions from 𝜃(0) to 𝜃(1) =
(𝜃
(1)

1
, . . . , 𝜃

(1)

𝑘
), where 𝜃(1)can be viewed as a one-time accom-

plishment of the Markov chain.

Step 5. Go back to Step 2.

After 𝑡 iterations, 𝜃(𝑡) = (𝜃(𝑡)
1
, . . . , 𝜃

(𝑡)

𝑘
) can be obtained,

and each component 𝜃(1), 𝜃(2), 𝜃(3), . . . will be achieved. The
Markov transition probability function is

𝑝 (𝜃, 𝜃
∗
)

= 𝑓 (𝜃
1
| 𝜃
2
, . . . , 𝜃

𝑘
) 𝑓 (𝜃
2
| 𝜃
∗

1
, 𝜃
3
, . . . , 𝜃

𝑘
) ⋅ ⋅ ⋅

𝑓 (𝜃
𝑘
| 𝜃
∗

1
, . . . , 𝜃

∗

𝑘−1
) .

(5)

Starting from different 𝜃(0), as 𝑡 → ∞, the marginal dis-
tribution of 𝜃(𝑡) can be viewed as a stationary distribution
based on the theory of the ergodic average. In this case, the
Markov chain is seen as converging and the sampling points
are seen as observations of the sample.

For both methods, it is not necessary to choose the
candidate generating distribution, but it is necessary to do
sampling from the conditional distribution. There are many
other ways to do sampling from the conditional distri-
bution, including sample-importance resampling, rejection
sampling, and adaptive rejection sampling (ARS).

6. Markov Chain Monte Carlo
Convergence Diagnostic

Because of the Markov chain’s ergodic property, all statistics
inferences are implemented under the assumption that the
Markov chain converges.Therefore, theMarkovChainMonte
Carlo convergence diagnostic is very important.When apply-
ing MCMC for reliability inference, if the iteration times are
too small, the Markov chain will not “forget” the influence of
the initial values; if the iteration times are simply increased to
a large number, there will be insufficient scientific evidence
to support the results, causing a waste of resources.

Markov chain Monte Carlo convergence diagnostic is
a hot topic for Bayesian researchers. Efforts to determine
MCMC convergence have been concentrated in two areas.
The first is theoretical, and the second is practical. For the
former, the Markov transition kernel of the chain is analyzed
in an attempt to predetermine a number of iterations that
will insure convergence in a total variation distance within a
specified tolerance of the true stationary distribution. Related
studies include Polson [50], Roberts and Rosenthal [51], and
Mengersen and Tweedie [52].While approaches like these are

promising, they typically involve sophisticated mathematics,
as well as laborious calculations that must be repeated for
every model under consideration. As for practical studies,
most research is focused on developing diagnostic tools,
including Gelman and Rubin [53], Raftery and Lewis [54],
Garren and Smith [55], and Roberts and Rosenthal [56].
When these tools are used, sometimes the bounds obtained
are quite loose; even so, they are considered both reasonable
and feasible.

At this point, more than 15 MCMC convergence diag-
nostic tools have been developed. In addition to a basic
tool which provides intuitive judgments by tracing a time
series plot of the Markov chain, other examples include tools
developed byGelman andRubin [53], Raftery and Lewis [54],
Garren and Smith [55], Brooks and Gelman [57], Geweke
[58], Johnson [59],Mykland et al. [60], Ritter andTanner [61],
Roberts [62], Yu [63], Yu andMykland [64], Zellner andMin
[65], Heidelberger and Welch [66], and Liu et al. [67].

We can divide diagnostic tools into categories depending
on the following: (1) if the target distribution needs to be
monitored; (2) if the target distribution needs to calculate a
single Markov chain or multiple chains; (3) if the diagnostic
results depend on the output of the Monte Carlo algorithm,
not on other information from the target distribution.

It is not wise to rely on one convergence diagnostic
technique, and researchers suggest amore comprehensive use
of different diagnostic techniques. Some suggestions include
(1) simultaneously diagnosing the convergence of a set of
parallel Markov chains; (2) monitoring the parameters’ auto-
correlations and cross-correlations; (3) changing the parame-
ters of themodel or the samplingmethods; (4) using different
diagnostic methods and choosing the largest preiteration
times as the formal iteration times; (5) combining the results
obtained from the diagnostic indicators’ graphs.

Six tools have been achieved by computer programs.
The most widely used are the convergence diagnostic tools
proposed by Gelman and Rubin [53] and Raftery and Lewis
[54]; the latter is an extension of the former. Both are based
on the theory of analysis of variance (ANOVA); both use
multiple Markov chains and both use the output to perform
the diagnostic.

6.1. Gelman-Rubin Diagnostic. In traditional literature on
iterative simulations, many researchers suggest that to guar-
antee the Markov chain’s diagnostic ability, multiple parallel
chains should be used simultaneously to do the iterative
simulation for one target distribution. In this case, after
running the simulation for a certain period, it is necessary
to determine whether the chains have “forgotten” the initial
value and if they converge. Gelman and Rubin [53] point out
that lack of convergence can sometimes be determined from
multiple independent sequences but cannot be diagnosed
using simulation output from any single sequence. They also
find that more information can be obtained during one single
Markov chain’s replication process than in multiple chains’
iterations. Moreover, if the initial values are more dispersed,
the status of nonconvergence is more easily found.Therefore,
they propose a method using multiple replications of the
chain to decide whether it becomes stationary in the second
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half of each sample path. The idea behind this is an implicit
assumption that convergence will be achieved within the first
half of each sample path; the validity of this assumption is
tested by the Gelman-Rubin diagnostic or the variance ratio
method.

Based on normal theory approximations to exact
Bayesian posterior inference, Gelman-Rubin diagnostic inv-
olves two steps. In Step 1, for a target scalar summary 𝜑, select
an overdispersed starting point from its target distribution
𝜋(𝜑). Then, generate 𝑚 Markov chains for 𝜋(𝜑), where
each chain has 2𝑛 times iterations. Delete the first 𝑛 times
iterations and use the second 𝑛 times iterations for analysis.
In Step 2, apply the between-sequence variance 𝐵/𝑛 and
the within-sequence variance 𝑊 to compare the corrected
scale reduction factor (CSRF). CSRF is calculated by 𝑚
Markov chains and the formed 𝑚𝑛 values in the sequences
which stem from 𝜋(𝜑). By comparing the CSRF value, the
convergence diagnostic can be implemented. In addition,

𝐵

𝑛

=

1

𝑚 − 1

𝑚

∑

𝑗=1

(𝜑
𝑗.
− 𝜑
..
)

2

,

𝜑
𝑗.
=

1

𝑛

𝑛

∑

𝑡=1

𝜑
𝑗𝑡
, 𝜑

..
=

1

𝑚

𝑚

∑

𝑗=1

𝜑
𝑗.
,

𝑊 =

1

𝑚 (𝑛 − 1)

𝑚

∑

𝑗=1

𝑛

∑

𝑡=1

(𝜑
𝑗𝑡
− 𝜑
𝑗.
)

2

,

(6)

where𝜑
𝑗𝑡
denotes the 𝑡th of the 𝑛 iterations of𝜑 in chain 𝑗 and

𝑗 = 1, . . . , 𝑚, 𝑡 = 1, . . . , 𝑛. Let 𝜑 be a random variable of 𝜋(𝜑),
with mean 𝜇 and variance 𝜎2 under the target distribution.
Suppose that 𝜇 has some unbiased estimator 𝑉̂. To explain
the variability between 𝜇 and 𝑉̂, Gelman and Rubin construct
Student’s 𝑡-distribution with a mean 𝜇 and variance 𝑉̂ as
follows:

𝜇 = 𝜑
..
, 𝑉̂ =

𝑛 − 1

𝑛

𝑊 + (1 +

1

𝑚

)

𝐵

𝑛

, (7)

where 𝑉̂ is a weighted average of 𝑊 and 𝐵. The above
estimation will be unbiased if the starting points of the
sequences are drawn from the target distribution. However,
it will be overestimated if the starting distribution is overdis-
persed. Therefore, 𝑉̂ is also called a “conservative” estimate.
Meanwhile, because the iteration number 𝑛 is limited, the
within-sequence variance𝑊 can be too low, leading to falsely
diagnosing convergence. As 𝑛 → ∞, both 𝑉̂ and𝑊 should
be close to𝜎2. In other words, the scale of current distribution
of 𝜑 should be decreasing as 𝑛 is increasing.

Denote√𝑅̂
𝑠
= √𝑉̂/𝜎

2 as the scale reduction factor (SRF).

By applying𝑊, √𝑅̂
𝑝
= √𝑉̂/𝑊 becomes the potential scale

reduction factor (PSRF). By applying a correct factor df/(df−
2) for PSRF, a correct scale reduction factor (CSRF) can be
obtained as follows:

√𝑅̂
𝑐
= √(

𝑉̂

𝑊

)

df
df − 2

= √(

𝑛 − 1

𝑛

+

𝑚 + 1

𝑚𝑛

𝐵

𝑊

)

df
df − 2

,

(8)

where df represents the degree of freedom in Student’s 𝑡-
distribution. Following Fisher [68], df ≈ 2𝑉̂/Var(𝑉̂). The
diagnostic based on CSRF can be implemented as follows:
if 𝑅̂
𝑐
> 1, it indicates that the iteration number 𝑛 is too

small. When 𝑛 is increasing, 𝑉̂ will become smaller and 𝑊
will become larger. If 𝑅̂

𝑐
is close to 1 (e.g., 𝑅̂

𝑐
< 1.2), we can

conclude that each of the 𝑚 sets of 𝑛 simulated observations
is close to the target distribution, and the Markov chain can
be viewed as converging.

6.2. Brooks-GelmanDiagnostic. Although theGelman-Rubin
diagnostic is very popular, its theory has several defects.
Therefore, Brooks and Gelman [57] extend the method in the
following way.

First, in the above equation, df/(df − 2) represents the
ratio of the variance between the Student 𝑡-distribution and
the normal distribution. Brooks and Gelman [57] point out
some obvious defects in the equation. For instance, if the
convergence speed is slow, or df < 2, CSRF could be infinite
and may even be negative. Therefore, they set up a new and
correct factor for PSRF; the new CSRF becomes

√𝑅̂
∗

𝑐
= √(

𝑛 − 1

𝑛

+

𝑚 + 1

𝑚𝑛

𝐵

𝑊

)

df + 3
df + 1

. (9)

Second, Brooks and Gelman [57] propose a new and more
easily implemented way to calculate PSRF. The first step
is similar to Gelman-Rubin’s diagnostic. Using 𝑚 chains’
second 𝑛 iterations, obtain an empirical interval 100(1 −
𝛼%) after each chain’s second 𝑛 iteration. Then, 𝑚 empirical
intervals can be achieved within a sequence, denoted by 𝑙.
In the second step, determine the total empirical intervals
for sequences from 𝑚𝑛 estimates of 𝑚 chains, denoted by 𝐿.
Finally, calculate the PSRF as follows:

√𝑅̂
∗

𝑝
= √
𝑙

𝐿

. (10)

The basic theory behind the Gelman-Rubin and Brooks-
Gelman diagnostics is the same. The difference is that we
compare the variance in the former and the interval length
in the latter.

Third, Brooks and Gelman [57] point out that the value
of CSRF being close to one is a necessary but not sufficient
condition for MCMC convergence. Additional condition is
that both 𝑊 and 𝑉̂ should stabilize as a function of 𝑛. That
is to say, if 𝑊 and 𝑉̂ have not reached the steady state,
CSRF could still be one. In other words, before convergence,
𝑊 < 𝑉̂ and both should be close to one. Therefore, as
an alternative, Brooks and Gelman [57] propose a graphical
approach tomonitoring convergence.Divide the𝑚 sequences
into batches of length 𝑏.Then calculate 𝑉̂(𝑘), 𝑊(𝑘), and 𝑅̂

𝑐
(𝑘)

based upon the latter half of the observations of a sequence of
length 2𝑘𝑏, for 𝑘 = 1, . . . , 𝑛/𝑏. Plot√𝑉̂(𝑘), √𝑊(𝑘), and 𝑅̂

𝑐
(𝑘)

as a function of 𝑘 on the same plot. Approximate convergence
is attained if 𝑅̂

𝑐
(𝑘) is close to one and at the same time, both

𝑉̂(𝑘) and𝑊(𝑘) stabilize at one.
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Fourth and finally, Brooks and Gelman [57] discuss the
multivariate situation. Let 𝜑 denote the parameter vector and
calculate the following:
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(11)

Let 𝜆
1
be maximum characteristic root of𝑊−1𝐵/𝑛; then, the

PSRF can be expressed as

√𝑅𝑝
= √
𝑛 − 1

𝑛

+

𝑚 + 1

𝑚

𝜆
1
. (12)

7. Monte Carlo Error Diagnostic

When implementing the MCMCmethod, besides determin-
ing the Markov chains’ convergence diagnostic, we must
check two uncertainties related to theMonte Carlo point esti-
mation: statistical uncertainty and Monte Carlo uncertainty.

Statistical uncertainty is determined by the sample data
and the adoptedmodel. Once the data are given and themod-
els are selected, the statistical uncertainty is fixed. For max-
imum likelihood estimation (MLE), statistical uncertainty
can be calculated by the inverse square root of the Fisher
information. For Bayesian inference, statistical uncertainty is
measured by the parameters’ posterior standard deviation.

Monte Carlo uncertainty stems from the approximation
of the model’s characteristics, which can be measured by a
suitable standard error (SE). Monte Carlo standard error of
themean, also calledMonte Carlo error (MC error), is a well-
known diagnostic tool. In this case, define MC error as the
ratio of the sample’s standard deviation and the square root
of the sample volume, which can be written as

SE [𝐼 (𝑦)] =
SD [𝐼 (𝑦)]
√𝑛

=
[

[

1

𝑛

(

1

𝑛 − 1

𝑛

∑

𝑖=1

(ℎ (𝑦 | 𝑥
𝑖
)) − 𝐼 (𝑦))

2

]

]

1/2

.

(13)

Obviously, as 𝑛 becomes larger, MC error will be smaller.
Meanwhile, the average of the sample data will be closer to
the average of the population.

As in the MCMC algorithm, we cannot guarantee that
all the sampled points are independent and identically dis-
tributed (i.i.d.); we must correct the sequence’s correlation.
To this end, we introduce the autocorrelation function and
sample size inflation factor (SSIF).

Following the samplingmethods introduced in Section 5,
define a sampling sequence 𝜃

1
, . . . , 𝜃

𝑛
with length 𝑛. Suppose

there are autocorrelations which exist among the adjacent
sampling points; this means that 𝜌(𝜃

𝑖
, 𝜃
𝑖+1
) ̸= 0. Furthermore,

𝜌(𝜃
𝑖
, 𝜃
𝑖+𝑘
) ̸= 0. Then, the autocorrelation coefficient 𝜌

𝑘
can be

calculated by
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𝑡
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𝑛−𝑘

𝑡=1
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𝑡
− 𝜃)

2
, (14)

where 𝜃 = 1/𝑛∑𝑛
𝑡=1
𝜃
𝑡
. Following the above discussion, the

MC error with consideration of autocorrelations in MCMC
implementation can be written as

SE (𝜃) = SD
√𝑛

√

1 + 𝜌

1 − 𝜌

. (15)

In the above equation, SD/√𝑛 represents the MC error
shown in SE[𝐼(𝑦)]. Meanwhile, √(1 + 𝜌)/(1 − 𝜌) represents
the SSIF. SD/√𝑛 is helpful to determine whether the sample
volume 𝑛 is sufficient, and SSIF reveals the influence of
the autocorrelations on the sample data’s standard deviation.
Therefore, by following each parameter’s MC error, we can
evaluate the accuracy of its posterior.

The core idea of the Monte Carlo method is to view
the integration of some function 𝑓(𝑥) as an expectation
of the random variable; therefore, the sampling methods
implemented on the random variable are very important. If
the sampling distribution is closer to 𝑓(𝑥), the MC error will
be smaller. In other words, by increasing the sample volume
or improving the adopted models, the statistical uncertainty
could be reduced; the improved samplingmethods could also
reduce the Monte Carlo uncertainty.

8. Model Comparison

In Step 8, we might have several candidate models which
could pass the MCMC convergence diagnostic and the MC
error diagnostic. Thus, model comparison is a crucial part
of reliability inference. Broadly speaking, discussions of the
comparison of Bayesianmodels focus onBayes factors,model
diagnostic statistics, measure of fit, and so forth. In a more
narrow sense, the concept of model comparison refers to
selecting a better model after comparing several candidate
models. The purpose of doing model comparison is not
to determine the model’s correctness. Rather, it is to find
out why some models are better than others (e.g., which
parametric model or non-parametric model; which prior
distribution; which covariates; which family of parameters for
application, etc.) or to obtain an average estimation based on
theweighted estimate of themodel parameters and stemming
from the posterior probability of model comparison (e.g.,
model average).

In Bayesian reliability inference, the model comparison
methods can be divided into three categories:

(1) separate estimation [69–82] including posterior pre-
dictive distribution, Bayes factors (BF) and its app-
roximate estimation-Bayesian information criterion
(BIC), deviance information criterion (DIC), pseudo-
Bayes factor (PBF), and conditional predictive ordi-
nate (CPO). It also includes some estimations based
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on the likelihood theory, using the same as BF but
offering more flexibility, for instance, harmonic mean
estimator, importance sampling, reciprocal impor-
tance estimator, bridge sampling, candidate estima-
tor, Laplace-Metropolis estimator, data augmentation
estimator, and so forth;

(2) comparative estimation including different distance
measures [83–87]: entropy distance, Kullback-Leibler
divergence (KLD), 𝐿-measure, and weighted 𝐿-mea-
sure;

(3) simultaneous estimation [49, 88–92] including rev-
ersible Jump MCMC (RJMCMC), birth-and-death
MCMC (BDMCMC), and fusionMCMC (FMCMC).

Related reference reviews are given by Kass and Raftery [70],
Tatiana et al. [91], and Chen and Huang [93].

This section introduces three popular comparison meth-
ods used in Bayesian reliability studies: BF, BIC, and DIC.
BF is the most traditional method, BIC is BF’s approximate
estimation, and DIC improves BIC by dealing with the
problem of the parameters’ degree of freedom.

8.1. Bayes Factors (BF). Suppose that𝑀 represents 𝑘models
which need to be compared. The data set 𝐷 stems from
𝑀
𝑖
(𝑖 = 1, . . . , 𝑘), and 𝑀

1
, . . . ,𝑀

𝑘
are called competing

models. Let 𝑓(𝐷 | 𝜃
𝑖
,𝑀
𝑖
) = 𝐿(𝜃

𝑖
| 𝐷,𝑀

𝑖
) denote the

distribution of𝐷, with consideration of the 𝑖th model and its
unknown parameter vector 𝜃 of dimension 𝑝

𝑖
, also called the

likelihood function of𝐷 with a specified model. Under prior
distribution 𝜋(𝜃

𝑖
| 𝑀
𝑖
) and ∑𝑘

𝑖=1
𝜋(𝜃
𝑖
| 𝑀
𝑖
) = 1, the marginal

distributions of𝐷 are found by integrating out the parameters
as follows:
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𝑖
, (16)

where Θ
𝑖
represents the parameter data set for the 𝑖th mode.

As in the data likelihood function, the quantity 𝑝(𝐷 |

𝑀
𝑖
) = 𝐿(𝐷 | 𝑀

𝑖
) is called model likelihood. Suppose we

have some preliminary knowledge about model probabilities
𝜋(𝑀
𝑖
); after considering the given observed data set 𝐷, the

posterior probability of 𝑖th model being the best model is
determined as
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(17)

The integration part of the above equation is also called the
prior predictive density or marginal likelihood, where 𝑝(𝐷)
is a nonconditional marginal likelihood of𝐷.

Suppose there are two models, 𝑀
1
and 𝑀

2
. Let BF

12

denote the Bayes factors, equal to the ratio of the posterior
odds of the models to the prior odds:

BF
12
=

𝑝 (𝑀
1
| 𝐷)

𝑝 (𝑀
2
| 𝐷)

×

𝜋 (𝑀
2
)

𝜋 (𝑀
1
)

=

𝑝 (𝐷 | 𝑀
1
)

𝑝 (𝐷 | 𝑀
2
)

. (18)

The above equation shows that BF
12

equals the ratio of the
model likelihoods for the two models. Thus, it can be written
as

𝑝 (𝑀
1
| 𝐷)

𝑝 (𝑀
2
| 𝐷)

=

𝑝 (𝐷 | 𝑀
1
)

𝑝 (𝐷 | 𝑀
2
)

×

𝜋 (𝑀
1
)

𝜋 (𝑀
2
)

. (19)

We can also say that BF
12

shows the ratio of posterior odds
of the model𝑀

1
and the prior odds of𝑀

1
. In this way, the

collection of model likelihoods 𝑝(𝐷 | 𝑀
𝑖
) is equivalent to the

model probabilities themselves (since the prior probabilities
𝜋(𝑀
𝑖
) are known in advance) and, hence, could be considered

as the key quantities needed for Bayesian model choice.
Jeffreys [94] recommends a scale of evidence for inter-

preting Bayes factors. Kass and Raftery [70] provide a similar
scale, alongwith a complete review of Bayes factors, including
their interpretation, computation or approximation, and
robustness to the model-specific prior distributions and
applications in a variety of scientific problems.

8.2. Bayesian Information Criterion (BIC). Under some situa-
tions, it is difficult to calculate BF, especially for those models
which consider different random effects, or adopt diffusion
priors or a large number of unknown and informative priors.
Therefore, we need to calculate BF’s approximate estimation.
The Bayesian information criterion (BIC) is also called
the Schwarz information criterion (SIC) and is the most
important method to get BF’s approximate estimation. The
key point of BIC is to obtain the approximate estimation of
𝑝(𝐷 | 𝑀

𝑖
). It is proved by Volinsky and Raftery [72] that

ln𝑝 (𝐷 | 𝑀
𝑖
) ≈ ln𝑓 (𝐷 | ̂𝜃

𝑖
,𝑀
𝑖
) −

𝑝
𝑖

2

ln (𝑛) . (20)

Then, we get SIC as follows:

ln BF
12

= ln𝑝 (𝐷 | 𝑀
1
) − ln𝑝 (𝐷 | 𝑀

2
)

= ln𝑓 (𝐷 | ̂𝜃
1
,𝑀
1
) − ln𝑓 (𝐷 | ̂𝜃

2
,𝑀
2
) −

𝑝
1
− 𝑝
2

2

ln (𝑛) .
(21)

As discussed above, considering two models, 𝑀
1
and 𝑀

2
,

BIC
12
represents the likelihood ratio test statistic with model

sample size 𝑛 and the model’s complexity as penalty. It can be
written as

BIC
12
= −2 ln BF

12

= −2 ln(
𝑓(𝐷 |

̂
𝜃
1
,𝑀
1
)

𝑓 (𝐷 |
̂
𝜃
2
,𝑀
2
)

) + (𝑝
1
− 𝑝
2
) ln (𝑛) ,

(22)
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Figure 3: Locomotive wheels’ installation positions.

where 𝑝
𝑖
is proportional to the model’s sample size and

complexity.
Kass and Raftery [70] discuss BIC’s calculation program.

Kass and Wasserman [73] show how to decide 𝑛. Volinsky
and Raftery [72] discuss the way to choose 𝑛 if the data are
censored. If 𝑛 is large enough, BF’s approximate estimation
can be written as

BF
12
≈ exp (−0.5BIC

12
) . (23)

Obviously, if the BIC is smaller, we should consider model
𝑀
1
; otherwise,𝑀

2
should be considered.

8.3. Deviance InformationCriterion (DIC). Traditionalmeth-
ods for model comparison consider two main aspects: the
model’s measure of fit and the model’s complexity. Normally,
the model’s measure of fit can be increased by increasing the
model’s complexity. For this reason, most model comparison
methods are committed balancing both two points. To utilize
BIC, the number 𝑝 of free parameters of the model must
be calculated. However, for complex Bayesian hierarchical
models, it is very difficult to get 𝑝’s exact number. Therefore,
Spiegelhalter et al. [74] propose the deviance information
criterion (DIC) to compare Bayesian models. Celeux et al.
[95] discuss DIC issues for a censored data set; this paper and
other researchers’ discussion of it are representative literature
in the DIC field in recent years.

DIC utilizes deviance to evaluate the model’s measure
of fit, and it utilizes the number of parameters to evaluate
its complexity. Note that it is consistent with the Akaike
information criterion (AIC), which is used to compare
classical models [96].

Let𝐷(𝜃) denote the Bayesian deviance, and

𝐷 (𝜃) = −2 log (𝑝 (𝐷 | 𝜃)) . (24)

Let𝑝
𝑑
denote themodel’s effective number of parameters, and

𝑝
𝑑
= 𝐷 (𝜃) − 𝐷 (𝜃)

= −∫ 2 ln (𝑝 (𝐷 | 𝜃)) 𝑑𝜃 − (−2 ln (𝑝 (𝐷 | 𝜃))) .
(25)

Then,

DIC = 𝐷(𝜃) + 2𝑝
𝑑
= 𝐷 (𝜃) + 𝑝𝑑

. (26)

Select the model with a lower DIC value. As DIC < 5, the
difference between models can be ignored.

9. Discussions with a Case Study

In this section, we discuss a case study for a locomotive
wheel’s degradation data to illustrate the proposed procedure.
The case was first discussed by Lin et al. [36].

9.1. Background. The service life of a railway wheel can be
significantly reduced due to failure or damage, leading to
excessive cost and accelerated deterioration. This case study
focuses on the wheels of the locomotive of a cargo train.
While two types of locomotives with the same type of wheels
are used in cargo trains, we consider only one.

There are two bogies for each locomotive and three axels
for each bogie (Figure 3).The installed position of the wheels
on a particular locomotive is specified by a bogie number (I,
II—number of bogies on the locomotive), an axel number (1,
2, 3—number of axels for each bogie) and the side of thewheel
on the alxe (right or left) where each wheel is mounted.

The diameter of a new locomotive wheel in the studied
railway company is 1250mm. In the company’s current
maintenance strategy, a wheel’s diameter is measured after
running a certain distance. If it is reduced to 1150mm, the
wheel is replaced by a new one. Otherwise, it is reprofiled or
other maintenance strategies are implemented. A threshold
level for failure is defined as 100mm (= 1250mm – 1150mm).
The wheel’s failure condition is assumed to be reached if the
diameter reaches 100mm.

The company’s complete database also includes the diam-
eters of all locomotive wheels at a given observation time,
the total running distances corresponding to their “time to
be maintained,” and the wheels’ bill of material (BOM) data,
from which we can determine their positions.

Two assumptions are made: (1) for each censored datum
it is supposed that the wheel is replaced; (2) degradation is
linear. Only one locomotive is considered in this example
to ensure that (1) all wheel’s maintenance strategies are the
same; (2) the alxe load and running speed are obviously
constant; and (3) the operational environments including
routes, climates, and exposure are common for all wheels.

The data set contains 46 datum points (𝑛 = 46) of a single
locomotive throughout the periodNovember 2010 to January
2012.We take the following steps to obtain locomotivewheels’
lifetime data (see Figure 4).

(i) Establish a threshold level 𝐿
𝑠
, where 𝐿

𝑠
= 100mm

(1250mm – 1150mm).
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Figure 4: Plot of the wheel degradation data: one example.

(ii) Transfer observed 90 records of wheel diameters
at reported time 𝑡 degradation data; this equals to
1250mm minus the corresponding observed diame-
ter.

(iii) Assume a liner degradation path and construct a
degradation line𝐿

𝑖
(e.g.,𝐿

1
, 𝐿
2
) using the origin point

and the degradation data (e.g., 𝐵
1
, 𝐵
2
).

(iv) Set 𝐿
𝑠
= 𝐿
𝑖
, get the point of intersection and the

corresponding lifetimes data (e.g.,𝐷
1
, 𝐷
2
).

To explore the impact of a locomotive wheel’s installed
position on its service lifetime and to predict its reliability
characteristics, the Bayesian exponential regression model,
BayesianWeibull regressionmodel, and Bayesian log-normal
regression model are used to establish the wheel’s lifetime
using degradation data and taking into account the position
of the wheel. For each reported datum, a wheel’s installation
position is documented, and asmentioned above, positioning
is used in this study as a covariate.Thewheel’s position (bogie,
axel, and side) or covariateX is denoted by 𝑥

1
(bogie I:𝑥

1
= 1,

bogie II: 𝑥
1
= 2), 𝑥

2
(axel 1: 𝑥

2
= 1, axel 2: 𝑥

2
= 2,

and axel 3, 𝑥
2
= 3), and 𝑥

3
(right: 𝑥

3
= 1, left: 𝑥

3
= 2).

Correspondingly, the covariates’ coefficients are represented
by 𝛽
1
, 𝛽
2
, and 𝛽

3
. In addition, 𝛽

0
is defined as random effect.

The goal is to determine reliability, failure distribution, and
optimal maintenance strategies for the wheel.

9.2. Plan. During the Plan Stage, we first collect the “current
data,” as mentioned in Section 9.1, including the diameter
measurements of the locomotive wheel, total distances cor-
responding to the “time to maintenance,” and the wheel’s
bill of material (BOM) data. Then, see Figure 4, we note the
installed position and transfer the diameter into degradation
data, which becomes “reliability data” during the “data prepa-
ration” process.

We consider the noninformative prior for the constructed
models and select the vague prior with log-concave form,
which has been determined to be a suitable choice as a
noninformative prior selection. For exponential regression:
𝛽 ∼ 𝑁(0, 0.0001); for Weibull regression: 𝛼 ∼ 𝐺(0.2, 0.2),

𝛽 ∼ 𝑁(0, 0.0001); for lognormal regression: 𝜏 ∼ 𝐺(1,
0.01), 𝛽 ∼ 𝑁(0, 0.0001).

9.3. Do. In the Do Stage, we set up the three models noted
above for the degradation analysis: Bayesian exponential
regression model, Bayesian Weibull regression model, and
Bayesian log-normal regression model. For our calculations,
we implement Gibbs sampling.

The joint likelihood function for the exponential regres-
sion model, Weibull regression model, and log-normal
regression model is given as follows (Lin et al. [36]):

(i) exponential regression model:

𝐿 (𝛽 | 𝐷) =
𝑛

∏

𝑖=1

[exp (x󸀠i𝛽) exp (− exp (x
󸀠

i𝛽) 𝑡𝑖)]
𝜐𝑖

× [exp (− exp (x󸀠i𝛽) 𝑡𝑖)]
1−𝜐𝑖

= exp[
𝑛

∑

𝑖=1

𝜐
𝑖
x󸀠i𝛽] exp[−

𝑛

∑

𝑖=1

exp (x󸀠i𝛽) 𝑡𝑖] ;

(27)

(ii) Weibull regression model:

𝐿 (𝛼,𝛽 | 𝐷)

= 𝛼
∑
𝑛

𝑖=1
𝜐𝑖 exp{

𝑛

∑

𝑖=1

𝜐
𝑖
[x󸀠i𝛽 + 𝜐𝑖 (𝛼 − 1) ln (𝑡𝑖)

− exp (x󸀠i𝛽) 𝑡
𝛼

𝑖
]} ;

(28)

(iii) log-normal regression model:

𝐿 (𝛽, 𝜏 | 𝐷)

= (2𝜋𝜏
−1
)

−(1/2)∑
𝑛

𝑖=1
𝜐𝑖 exp{−𝜏

2

𝑛

∑

𝑖=1

𝜐
𝑖
[(ln (𝑡

𝑖
) − x󸀠i𝛽)]

2

}

×

𝑛

∏

𝑖=1

𝑡
−𝜐𝑖

𝑖
{1 − Φ[

ln (𝑡
𝑖
) − x󸀠i𝛽
𝜏
−1/2

]}

1−𝜐𝑖

.

(29)

9.4. Study. After checking the MCMC convergence diagnos-
tic and accepting the Monte Carlo error diagnostic for all
three models, in the Study Stage, we compare the model with
the three DIC values. After comparing the DIC values, we
select the Bayesian log-normal regression model as the most
suitable one (see Table 1).

Accordingly, the locomotive wheels’ reliability functions
are achieved:

(i) exponential regression model:

𝑅 (𝑡
𝑖
| X) = exp [− exp (−5.862 − 0.072𝑥

1

−0.032𝑥
2
− 0.012𝑥

3
) × 𝑡
𝑖
] ;

(30)



Journal of Quality and Reliability Engineering 13

Table 1: DIC summaries.

Model 𝐷(𝜃) 𝐷(𝜃) 𝑝
𝑑

DIC
Exponential 648.98 645.03 3.95 652.93
Weibull 472.22 467.39 4.83 477.05
Log-normal 442.03 436.87 5.16 447.19

Table 2: MTTF statistics based on Bayesian log-normal regression
model.

Bogie Axel Side 𝜇
𝑖

MTTF (×103 km)

I (𝑥
1
= 1)

1 (𝑥
2
= 1) Right (𝑥

3
= 1) 5.9532 387.03

Left (𝑥
3
= 2) 5.9543 387.46

2 (𝑥
2
= 2) Right (𝑥

3
= 1) 5.9740 395.16

Left (𝑥
3
= 2) 5.9751 395.60

3 (𝑥
2
= 3) Right (𝑥

3
= 1) 5.9947 403.43

Left (𝑥
3
= 2) 5.9958 403.87

II (𝑥
1
= 2)

1 (𝑥
2
= 1) Right (𝑥

3
= 1) 6.0205 413.97

Left (𝑥
3
= 2) 6.0216 414.43

2 (𝑥
2
= 2) Right (𝑥

3
= 1) 6.0413 422.67

Left (𝑥
3
= 2) 6.0424 423.14

3 (𝑥
2
= 3) Right (𝑥

3
= 1) 6.0621 431.56

Left (𝑥
3
= 2) 6.0632 432.03

(ii) Weibull regression model:

𝑅 (𝑡
𝑖
| X) = exp ⌊ − exp (−60.47 − 0.078𝑥

1

−0.146𝑥
2
− 0.050𝑥

3
) × 𝑡
10.08

𝑖
⌋ ;

(31)

(iii) log-normal regression model:

𝑅 (𝑡
𝑖
| X)

= 1 − Φ[

ln (𝑡
𝑖
) − (5.864 + 0.067𝑥

1
+ 0.02𝑥

2
+ 0.001𝑥

3
)

(187.5)
−1/2

] .

(32)

9.5. Action. With the chosen model’s posterior results, in the
Action Stage, wemake ourmaintenance predictions (Table 2)
and apply them to the proposed maintenance inspection
level. This, in turn, allows us to evaluate and optimise the
wheel’s replacement and maintenance strategies (including
the reprofiling interval, inspection interval, and lubrication
interval).

As more data are collected in the future, the old “current
data set” will be replaced by new “current data”; meanwhile,
the results achieved in this casewill become “history informa-
tion,” which will be transferred to be “prior knowledge” and
a new cycle will start. With this step-by-step method, we can
create a continuous improvement process for the locomotive
wheel’s reliability inference.

10. Conclusions

This paper has proposed an integrated procedure for Bayesian
reliability inference using Markov chain Monte Carlo meth-
ods.The goal is to build a full framework for related academic
research and engineering applications to implement modern
computational-basedBayesian approaches, especially for reli-
ability inference. The suggested procedure is a continuous
improvement process with four stages (Plan, Do, Study, and
Action) and 11 sequential steps including (1) data preparation;
(2) priors’ inspection and integration; (3) prior selection;
(4) model selection; (5) posterior sampling; (6) MCMC
convergence diagnostic; (7)Monte Carlo error diagnostic; (8)
model improvement; (9) model comparison; (10) inference
making; (11) data updating and inference improvement.

The paper illustrates the proposed procedure using a case
study. It concludes that the procedure can be used to perform
Bayesian reliability inference to determine system (or unit)
reliability, failure distribution and to support maintenance
strategies optimization, and so forth.
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