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SUMMARY & CONCLUSIONS 

This paper undertakes a reliability study using both 
classical and Bayesian semi-parametric frameworks to explore 
the impact of a locomotive wheel’s position on its service 
lifetime and to predict its other reliability characteristics. The 
goal is to illustrate how degradation data can be modeled and 
analyzed by using classical and Bayesian approaches. The 
adopted data in the case study have been collected from the 
Swedish company. The results show that: 1) an exponential 
degradation path is a better choice for the studied locomotive 
wheels; 2) both classical and Bayesian semi-parametric 
approaches are useful tools to analysis degradation data; 3) 
under given operation conditions, the position of the 
locomotive wheel could influence its reliability. 

1 INTRODUCTION 

The service life of a train wheel can be significantly 
reduced due to failure or damage, leading to excessive cost 
and accelerated deterioration, a point which has received 
considerable attention in recent literature [1-9]. One common 
preventive maintenance strategy (used in the case study) is re-
profiling wheels after they run a certain distance. Re-profiling 
affects the wheel’s diameter; once the diameter is reduced to a 
pre-specified length, the wheel is replaced by a new one. 
Seeking to optimize this maintenance strategy, researchers 
have examined wheel degradation data to determine wheel 
reliability and failure distribution. However, in previous 
studies, some researchers have noticed that, the wheels’ 
different installed positions could influence the results [9-11]. 
Recently, to solve the combined problem of small data 
samples and incomplete datasets while simultaneously 
considering the influence of several covariates, Lin et al. [11] 
has explored the influence of locomotive wheels’ positioning 
on reliability with Bayesian parametric models. Their results 
indicate that the particular bogie in which the wheel is 
mounted has more influence on its lifetime than does the axel 
or which side it is on. Therefore, besides the locomotive, we 
only use the bogie as a main influence factor.  

In this paper, a reliability study using both classical and 
Bayesian semi-parametric frameworks is undertaken, to 
explore the impact of a locomotive wheel’s position (which 
locomotive and bogie) on its service lifetime and to predict its 
other reliability characteristics. The remainder of the paper is 

organized as follows. Section 2 describes the background and 
dataset for the case study of the wheels. Section 3 presents the 
models and results from a classical approach’s perspective. 
Section 4 presents the piecewise constant hazard regression 
model with gamma frailties. Finally, Section 5 offers 
conclusions and comments for future study.  

2 DATA DESCRIPTION 

The data were collected by a Swedish railway company 
from November 2010 to January 2012. We used the 
degradation data from two heavy haul cargo trains’ 
locomotives (denoted as locomotive 1 and locomotive 2). 
Correspondingly, there are two studied groups, and 2n . As 
shown in Figure 2.1, there are two bogies (Bogie I, Bogie II), 
and for each bogie, there are six wheels.  

    
Figure 2.1 Wheel positions specified  

The diameter of a new locomotive wheel is 1250 mm. A 
wheel’s diameter is measured after running a certain distance. 
If it is reduced to 1150 mm, the wheel is replaced by a new 
one. Therefore, a threshold level for failure, denoted as 0l , is 
defined as 100 mm ( 0l = 1250 mm -1150 mm). The wheel’s 
failure condition is assumed to be reached if the diameter 
reaches 0l . We can obtain 3 to 5 measurements of the diameter 
of each wheel during its lifetime. By connecting these 
measurements, we plot the degradation data for the locomotive 
wheels with exponential degradation, power degradation, 
logaritmic degradation, Gompertz degradation, as well as 
linear degradation path in Weibull++. The results (see Figure 
2.2) show that a better choice is the Gompertz degradation 
path, exponential degradation path and Power degradation. 
However, Gompertz was not selected here because normally it 
needs a total of more than 5 points to converge. In our study, 
based on the type of physics of failures associated with wear 
and fatigue, an exponential and power are selected as 
degradation models. 

An exponential model is described by the following 
function (2.1) and the power one by the function (2.2) from 
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reference [12]:  

Exponential: xaeby                               (2.1) 

Power: caxby                              (2.2) 

where y represents the performance (here, it represents the 
diameter of the wheels), x represents time (here, it represents 
the running distance of the wheels), and a , b and c  are model 
parameters to be solved for.  

 

Figure 2.2 Degradation path analyses 

Following the above discussion, a wheel’s failure 
condition is assumed to be reached if the diameter reaches 0l . 
We adopt the both the Exponential degradation path and 
power degradation path for all wheels and set 0l = y . The 
lifetimes for these wheels are now easily determined.   

3 CLASSICAL APPROACH 

Accelerated Life Tests (ALT) is used widely in 
manufacturing industries, particularly to obtain timely 
information on the reliability of product components and 
materials. In most reliability testing applications, degradation 
data, if available, can have important practical advantages 
[13]. Particularly in applications where few or no failures are 
expected, degradation data can provide considerably more 
reliability information than would be available from traditional 
censored failure-time data. Accelerated tests are commonly 
used to obtain reliability test information more quickly. Direct 
observation of the degradation process may allow direct 
modeling of the failure-causing mechanism, providing more 
credible and precise reliability estimates and basis for often-
needed extrapolation. Modeling degradation of performance 
output of a component or subsystem may be useful, but 
modeling could be more complicated or difficult because the 
output may be affected, unknowingly, by more than one 
physical/chemical failure-causing process. 

Once obtained the projected failures values for each 
degradation model, an accelerated life analysis is done using 
locomotive and bogie as stress factors.  The analysis is 
performed using a General Log Linear (GLL) life stress 
relationship (3) with a Weibull probability function [14]. 
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This model can be expressed as an exponential model, 
expressing life as a function of the stress vector X , where X  
is a vector of n stressors [14]. 

For this analysis it was considered for both stress 
applications of this model and a logarithmic transformation on
X , such that )ln(VX  where V  is the specific stress. This 
transformation generated an inverse power model life stress 
relationship as shown below for each stress factor [14]. 
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As shown in Figure 3.1, the exponential function for this 
set of data brings more conservative results and in line with 
field observation when life data is compared a different stress 
levels as previously defined.   

 

 

Figure 3.1 Reliability Curve for Degradation Type 

 

Figure 3.2 Life vs. Stress 

 

Figure 3.3 Contour Plot 

Using the exponential degradation model, a two factors 



full factorial Design of Experiment analysis was performed 
and found that the locomotive, bogie and interaction are 
critical factors. A review of the life stress relationship between 
the factors indicated the locomotive is a higher contributor to 
the degradation of the system when compared with the bogie 
(Figure 3.2 and 3.3). 

Figure 3.3 and 3.4 show the reliability values at each 
operating distance. The figure 3.4 shows Locomotive2 as the 
one with the highest degradation per distance traveled. Based 
on the analysis described, the following conclusions can be 
reached: Independent of the degradation model the locomotive 
factor is the critical stressors as shown in the data above. 
Failures modes obtained from the data are similar for 
locomotive are similar as well for bogies. Of the two stress 
conditions, level 2 is the highest for locomotive and bogie as 
shown in Figure 3.3.  

 

 
Figure 3.4 Reliability Curves at each Condition  

4 BAYESIAN APPROACH 

Most reliability studies are implemented under the 
assumption that individual lifetimes are independent identified 
distributed (i.i.d). However, sometimes Cox proportional 
hazard (CPH) models cannot be used because of the 
dependence of data within a group. A key development in 
modeling such data is to consider frailty models, in which the 
data are conditionally independent. When frailties are 
considered, the dependence within subgroups can be 
considered an unknown and unobservable risk factor (or 
explanatory variable) of the hazard function. In addition, since 
semi-parametric Bayesian methods offer a more general 
modeling strategy that contains fewer assumptions [15], we 
adopt the piecewise constant hazard model to establish the 
distribution of the locomotive wheels’ lifetime. It should be 
pointed out that: considering the results from section 2 and 
section 3, here, we adopt the results achieved by the 
exponential degradation path. 

The piecewise constant hazard model is one of the most 
convenient and popular semi-parametric models in survival 
analysis. Begin by denoting the thj individual in the thi group 
as having lifetime ijt , where ni ,,1  and imj ,,1 . Divide 
the time axis into intervals  ksss 210 , where

ijk ts  , thereby obtaining k intervals ],,0( 1s ],,( 21 ss  
],( 1 kk ss  . Suppose the thj individual in the thi group has a 

constant baseline hazard kijth )(0 as in the thk interval, 
where kij It  ],( 1 kk ss  . Then, the hazard rate function for 
the piecewise constant hazard model can be written as  

kijkij Itth  ,)(0                             (4.1) 

Equation (4.1) is sometimes referred to as a piecewise 
exponential model; it can accommodate various shapes of the 
baseline hazard over the intervals.  

Suppose '
1 ),( piii xx x denotes the covariate vector for 

the individuals in the thi group, and β  is the regression 
parameter. Therefore, the regression model with the piecewise 
constant hazard rate can be written as 
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Correspondingly, its probability density function )( ijtf , 
cumulative distribution function )( ijtF , reliability function

)( ijtR  can be achieved [14].  
Frailty models are first considered to handle multivariate 

survival data. In such models, the event times are 
conditionally independent according to a given frailty factor, 
which is an individual random effect. Assume the hazard 
function for the thj individual in the thi group is 

)exp()()( 0 βx'
ij iij thth                   (4.3) 

In equation (4.3), i represents the frailty parameter for 
the thi group. By denoting )exp( ii   , the equation can be 
written as 

)exp()()( 0 βx'
ijiij thth                    (4.4) 

Equation (4.3) is an additive frailty model, and equation 
(4.4) is a multiplicative frailty model. In both equations, i
and i  are shared by the individuals in the same group, and 
they are thus referred to as shared-frailty models and actually 
are extensions of the CPH model. In this paper, we consider 
the gamma shared frailty model, the most popular model for 
frailty. From equation (4.4), suppose the frailty parameters i
are independent and identically distributed (i.i.d) for each 
group, and follow a gamma distribution, denoted by

),( 11  Ga . Therefore, the probability density function can 
be written as 
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In equation (4.5), the mean value of i  is one, where  is 
the unknown variance of i s.  

Suppose '
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Based on the above discussions, the piecewise constant hazard 
model with gamma shared frailties can be written as: 
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In equation (4.7), i ~ ),( 11  Ga .  
To analysis the baseline hazard rate k , a common choice 

is to construct an independent incremental process. However, 
in many applications [15], prior information is often available 
on the smoothness of the hazard rather than the actual baseline 
hazard itself. In addition, given the same covariates, the ratio 
of marginal hazards at the nearby time-points is approximately 
equal to the ratio of the baseline hazards at these points. In 
such situations, correlated prior processes for the baseline 
hazard can be more suitable. Given ( 121 ,,, k  ), we 
specify that 

),(~,,,
1

121



k

k
kkk Ga

                 (4.8)  

Let 10  . In equation (4.8), the parameter k represents 
the smoothness for the prior information. If 0k , then k
and 1k are independent. As k , the baseline hazard is 
the same in the nearby intervals. In addition, the Martingale

k ’s expected value at any time point is the same, and 

1121 ),,,(   kkkE                  （4.9） 

Equation (4.9) shows that given specified historical 
information ( 121 ,,, k  ), the expected value of k is 
fixed.  

In reliability analysis, the lifetime data are usually 
incomplete, and only a portion of the individual lifetimes are 
known. Suppose the thj individual in the thi group has lifetime

ijT and censoring time ijL . The observed lifetime
),min( ijijij LTt  .; therefore, the exact lifetime ijT will be 

observed only if ijij LT  . In addition, the lifetime data 
involving right censoring can be represented by n pairs of 
random variables ),( ijijt  , where 1ij if ijij LT  and 0ij if

ijij LT  . This means that ij  indicates whether lifetime ijT is 
censored or not. The likelihood function is deduced as 
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In the above piecewise constant hazard model, we denote 

ijg as 11),(  
ijijij gggij Isst and the model’s dataset as

)( υX,t,ω,D . Following equation (4.7) - (4.10), the 
complete likelihood function )( DL λβ,  for the individuals for 
the thi group in k  intervals can be written as 
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Let )(  denote the prior or posterior distributions for the 
parameters. Following equation (4.6) and (4.11), the joint 
posterior distribution )( Di λ,β, for gamma frailties i can 
be written as  
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Similarly, the full conditional density of 1 andβ can be 
given by 
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Let });,{( kijk stjiR  denote the risk set at ks and

kkk RRD  1 ; let kd denote the failure individuals in the 
interval kI . Let )( )( k

k
λ denote the conditional prior 

distribution for ( ,1 ,2 J, ) without k . We therefore 
derive ),,( 1 Dk

 ωβ,  as  
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In this model, the installed positions of the wheels on a 
particular locomotive are specified by the bogie number and 
are defined as covariates x . The covariates’ coefficients are 
represented byβ . More specifically, 1x represents the wheel 
mounted in Bogie I, while 2x represents the wheel mounted 
in Bogie II. 1 is the coefficient and 0 is defined as natural 
variability. 

In our study, determining the degradation path requires us 
to make 3 to 5 measurements for each locomotive wheel. 
Following the reasoning above, we divide the time axis into 6 
sections piecewise. In our case study, no predicted lifetime 
exceeds 360,000 kilometres. Therefore, k =6, and each 
interval is equal to 60,000km. For convenience, we let

)exp( kk b , and vague prior distributions are adopted here 
as the following: Gamma frailty prior: ),(~ 11   Gai ; 
Normal prior distribution: ),(~ 1 kk bNb ; Normal prior 
distribution: ),0(~1 Nb ; Gamma prior distribution:  ~ 
Ga  (0.0001, 0.0001); Normal prior distribution: 0  ~ N
(0.0, 0.001); Normal prior distribution:  1 ~ N (0.0, 0.001). 
At this point, the MCMC calculations are implemented with 
the software WinBUGS [16].  

Following the convergence diagnostics, we consider the 
following posterior distribution summaries (Table 4.1). 
Statistics summaries include the parameters’ posterior 
distribution mean, SD, MC error, and the 95% highest 
posterior distribution density (HPD) interval.  

 
 
 



Parameter mean SD MC error 95% HPD  

0  -12.08 4.184 0.4019 (-22.17,-4.802) 

1  0.04517 0.4889 0.02025 (-0.948,0.9669) 

  0.1857 0.1667 0.008398 (0.008616,0.6128) 

1  0.5246 0.2878 0.01401 (0.06489,1.064) 

2  1.473 0.5807 0.01596 (0.6917,2.948) 

1b  -0.3764 4.113 0.1619 (-8.316,5.933) 

2b  0.3571 4.95 0.2429 (-8.836,8.181) 

3b  2.272 4.61 0.3029 (-6.4,10.81) 

4b  7.301 4.106 0.3938 (0.2106,17.13) 

5b  5.223 4.225 0.3281 (-3.166,13.41) 

6b  10.03 3.993 0.3802 (2.72,19.3) 

Table.4.1 Posterior Distribution Summaries 

In Table.4.1, 01  means that the wheels mounted in the 
first bogie (as 1x ) have a shorter lifetime than those in the 
second (as 2x ). However, the influence could possibly be 
reduced as more data are obtained in the future, because the 
95% HPD interval includes 0 point. In addition, the small 
value of 1  (0.045) also indicates that, in this case, the 
heterogeneity among the wheels installed in different bogies 
exists but not significant. Because 5.0 , the heterogeneity 
among the locomotives does exists but is not significant either. 
However, the frailty factors exist obviously. For instance, 

11   suggests that the predictive lifetimes for those wheels 
mounted on the first locomotive are longer than if the frailties 
are not considered; in fact, 12  indicates the opposite 
conclusion.  

Baseline hazard rate statistics based on the above results (

61 ,, bb  ) are shown in Table 4.2. At the fourth piecewise 
interval, the wheels’ baseline hazard rate increases 
dramatically (1481.78). It is interesting to point out that, at the 
fifth piecewise interval, it decreases (185.49); and it increases 
again since the sixth piecewise (22697.27). 

 

Piecewise 
(1000km) 

1 2 3 4 5 6 

(0, 
60] 

(60, 
120] 

(120, 
180] 

(180, 
240] 

(240, 
300] 

(300, 
360] 

k  0.069 1.43 9.7 1481.78 185.49 22697.27 

Table.4.2 Baseline Hazard Rate Statistics 

The statistics on reliability )(tR  for the wheels mounted 
in different bogies are listed in Table 4.3 and Figure 4.2. 

It should be pointed that, both Figure4.2 show change 
points in the wheels. For example, the reliability declines 
sharply at the fourth and the sixth piecewise interval. From 
Figure 4.1 and Figure 4.2, the change points appearing from 
the fourth piecewise interval indicate that after running about 
180 000 kilometers, the locomotive wheel has a high-risk of 
failure. Although the difference is not that obvious, the wheels 
installed in the first bogie should be given more attention 

during maintenance. The results could also support related 
predictions for spares inventory. Last but not least, the frailties 
between locomotives could also be caused by the different 
operating environments (e.g., climate, topography, and track 
geometry), configuration of the suspension, status of the 
bogies or spring systems, operation speeds, the applied loads 
and human influences (such as drivers’ operations, 
maintenance policies and the lathe operator). Specific 
operating conditions should be considered when designing 
maintenance strategies because even if the locomotives and 
wheel types are the same, the lifetimes and operating 
performance could differ. 

 

Distance 
(1000 km) 

Reliability )(tR  

Locomotive 1 Locomotive 2 

Bogie I Bogie II Bogie I Bogie II 

60 0.999872 0.999866 0.99964 0.999624 

120 0.999466 0.999442 0.998502 0.998433 

180 0.99458 0.994331 0.984857 0.984162 

240 0.330536 0.314054 0.044672 0.038695 

300 0.840949 0.834245 0.614843 0.601179 

360 8.98E-12 2.77E-12 9.61E-32 3.54E-33 

Table.4.3 Reliability Statistics 

 
Fig.4.2 Plot of the reliabilities  

5  CONCLUSIONS 

This paper proposes a reliability study using both classical 
and Bayesian semi-parametric frameworks to explore the 
impact of a locomotive wheel’s position on its service lifetime 
and to predict its other reliability characteristics. The results of 
the case study suggest that an exponential degradation path for 
the wheels is a better choice. With classical approach, both 
Accelerated Life Tests (ALT) and Design of Experiment 
(DOE) technology are carried on to determine the how each 
critical factor, locomotive or bogie, affects the prediction 
performance. Within the Bayesian semi-parametric approach, 
the piecewise constant hazard rate is used to establish the 
distribution of the wheels’ lifetime. The results of the case 
study suggest the wheels’ lifetimes differ according to where 



they are installed (in which bogie they are mounted) on the 
locomotive. The gamma frailties help with exploring the 
unobserved covariates and thus improve the model’s 
precision. We can determine the wheel’s reliability 
characteristics, including the baseline hazard rate )(t , 
reliability )(tR , etc. The results also indicate the existence of 
change points. As Figure 4.1 and Figure 4.2 show, wheel 
reliability can be divided into two stages: stable and unstable 
at 180 000 kilometers. The results allow us to evaluate and 
optimise wheel replacement and maintenance strategies 
(including the re-profiling interval, inspection interval, 
lubrication interval, depth and optimal sequence of re-
profiling, and so on). 
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